Paper: PROMPT: Probabilistic Motion Primitives based Trajectory Planning

July 7th, 2021

RSS (Robotics: Science and Systems Conference) is arguably one of the most prestigious and selective conferences in robotics. This year we had 2 out of 2 submitted papers accepted to RSS!

One of them is PROMPT: Probabilistic Motion Primitives based Trajectory Planning

We present a novel approach to motion planning for autonomous ground vehicles by formulating motion primitives as probabilistic distributions of trajectories (aka probabilistic motion primitives – ProMP) and performing stochastic optimisation on them for finding an optimal path. We show that compared to the traditional approach of using discrete motion primitives or direct stochastic optimisation of the whole path, incorporating ProMPs enables higher quality of paths by enabling constraint conditioning, combination and blending of probability distributions.

We present two motion planners utilizing this approach:feasibility based trajectory sampling (PROMPT-S) and stochastic gradient-based trajectory optimisation (PROMPT-O). We show simulation results of our approach outperforming state of the art optimisation as well as discrete motion primitives based planners.

We additionally illustrate the versatility of our approach by showing PROMPT’s ability to handle significantly skewed motion primitives, e.g, as induced by steering failure in AGVs as well as composition of motion primitives to perform complex manoeuvres.

Finally, we demonstrate the practicality of these planners by implementing them on a real self-driving vehicle navigating on structured and unstructured off-road terrains.

Tobias Low, Tirthankar Bandyopadhyay, Jason Williams, Paulo V K Borges, “PROMPT: Probabilistic Motion Primitives based Trajectory Planning” in Robotics: Science and Systems, 2021.

Download the full paper here.

For more information, contact Tirthankar Bandyopadhyay or Paulo Borges.

Subscribe to our News via Email

Enter your email address to subscribe and receive notifications of new posts by email.