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PROMPT: Probabilistic Motion Primitives based
Trajectory Planning
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Abstract—We present a novel approach to motion planning for
autonomous ground vehicles by formulating motion primitives as
probabilistic distributions of trajectories (aka probabilistic mo-
tion primitives - ProMP) and performing stochastic optimisation
on them for finding an optimal path. We show that compared to
the traditional approach of using discrete motion primitives or
direct stochastic optimisation of the whole path, incorporating
ProMPs enables higher quality of paths by enabling constraint
conditioning, combination and blending of probability distribu-
tions. We present two motion planners utilizing this approach:
feasibility based trajectory sampling (PROMPT-S) and stochastic
gradient-based trajectory optimisation (PROMPT-O). We show
simulation results of our approach outperforming state of the art
optimisation as well as discrete motion primitives based planners.

We additionally illustrate the versatility of our approach
by showing PROMPT’s ability to handle significantly skewed
motion primitives, e.g, as induced by steering failure in AGVs
as well as composition of motion primitives to perform complex
manoeuvres. Finally, we demonstrate the practicality of these
planners by implementing them on a real self-driving vehicle
navigating on structured and unstructured off-road terrains.

I. INTRODUCTION

The success of motion primitives* in motion planning
has been due to their ability to identify relevant motion
patterns associated with different tasks that aids in reducing
the intractable search space as well as act as a building
block of complex motion sequences. Motion primitives [10]
have been used widely in robotics literature to represent
movement patterns both in high dimensional robotic systems
like manipulators [3] and human motions [13] as well as for
lower dimensional robots (e.g., AGVs, UAVs) with motion
constraints [15]. To do so various representations have been
proposed for motion primitives. Atomic motion primitives that
represent a singleton action have been proposed in the context
of search-based planning for manipulation [2]. The motion
primitive sets are generated from sampling the control space to
ensure suitable coverage of the state space [14], referred to as
control sampling primitives. Alternatively, the state itself could
be sampled and the controls solved by applying a boundary
value problem solver as in the case of state lattice primitives
[18]. To handle high dimensionality in manipulator arms,
adaptive motion primitives [3] were proposed where static
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primitives with variable dimensionality was augmented with
on-the-fly motions generated by analytical inverse kinematics
solvers.

In the domain of human movement modelling and learning
from demonstration (LfD), movement primitives have been
introduced as a way to model complex human motions
performing specific tasks or behaviours involving very high
degrees of freedom systems into tractable lower dimensional
representation. These movement primitives usually model
tasks like pick and place as compared to kinodynamically
constrained motion primitives used for AGVs, like turning with
allowable curvatures. A powerful probabilistic representation of
such movement primitives, probabilistic movement primitives
(ProMP) was introduced and developed in [16, 17]. Similar
formulations are used in LfD problems which aim to enable
non-experts teach task specific skills to robots. In the case of
ProMP, the trajectory can also be adapted online with human
intention awareness [9]. We use this representation for our
work and conceptually use the terms movement and motion
interchangeably.

In addition to analytical formulations of the motion primi-
tives, data driven approaches have also been used to represent
motion models of complex systems in lower dimensionality
as motion primitives. Kinematic motion primitives were ex-
tracted from EMG signals on human subjects to describe the
complexity of human motions with reduced dimensionality
[13]. More generally, dynamic motion primitives have been
used to model attractor behaviours of autonomous non-linear
dynamical systems using statistical learning techniques [6].

Recent work on discrete motion primitives, [25], introduces
path groups as a mechanism to couple a set of deterministic
trajectories whose combined quality (in terms of likelihood
of collision free path) enables robust trajectory planning for
partially known environments. In essence our approach takes a
probabilistic approach of representing such trajectory bundles
as Gaussian radial basis functions (GRBFs). We show how
such a probabilistic representation improves the performance
over its discrete counterparts. While the PROMPT formulation
of this paper does not encode the likelihood of collision free
path into its weight distributions, such additional parameters
can be incorporated into our formulation by encoding a suitable
cost function.

In this work, we formulate our motion primitives in the prob-
abilistic motion primitive (ProMP) framework as introduced in
[16]. Representing the motion primitive as a distribution rather
than an atomic action allows for more flexibility in trajectory
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generation as the distribution could be conditioned based on the
sampled goal position or the via points that need to be transited
through. This enables additional constraints both physical (e.g.,
avoiding obstacles) and logical (e.g following a road lane) to
be seamlessly added to constrain the trajectory.

Representing the trajectory as a weighted sum of an
Gaussian radial basis function (GBRF) set allows the trajectory
distribution to be encoded by the underlying weight distribution
with just a few parameters. Additionally, these parameters of
the weight distribution could either be learnt on the fly from
the vehicle environmental interactions [11] or from an expert
human drivers [24].

Stochastic optimisation algorithms for motion planning, e.g
STOMP [7, 12] have been widely successful in a variety of
scenarios of high complexity and our approach follows the
same optimisation framework. However STOMP [7] does not
utilise motion primitives but performs the optimisation on
sampled trajectories in the neighbourhood of the initial possibly
infeasible trajectory. Recent extensions Guided STOMP [12]
use dynamic motion primitives to primarily initialise the
stochastic optimisation planning problem, enabling significant
generality of scenarios and tasks over existing learning from
demonstration (LfD) approaches, however do not incorporate
the motion primitives into the optimisation iterations. In
our work, we restrict our sampling and optimisation from
a trajectory distribution representing the motion primitives to
generate better trajectories faster.

In essence, by incorporating two fundamental techniques, (1)
representing the motion primitives in their probabilistic form
(ProMP) and (2) utilizing the general stochastic optimisation
approach to trajectory optimisation, we present a novel and
powerful motion planning framework that outperforms the state
of the art planners and can be generalized to a wide range of
scenarios and robot kinematics. The main contributions of this
paper are:

• a unified framework of utilizing ProMP for stochastic
optimisation for trajectory planning

• to present two motion planning algorithms (PROMPT-O,
PROMPT-S) under this framework

• to show the versatility of computing suitable trajectories
of severely skewed motion primitive distributions

• to show the ability to generate optimal trajectories by
combining multiple motion primitives in sequence

• to show the approach working on a real system.
We present the background of STOMP and ProMP in section
II followed by our formulation of the problem and the planners
in Section III. We show the comparison with other approaches
in simulation and implementation results in an autonomous
robots in Section IV.

II. BACKGROUND
In our formulation, we unify the two concepts of representing

motion primitives as ProMP and performing stochastic optimi-
sation over the local planning horizon. We take advantage of
ProMP’s Gaussian nature to find a compact, and continuously
deformable, representation of the robot’s motion capabilities

inside this local window. In the following a brief overview of
ProMP and stochastic optimisation with a focus on STOMP is
presented.

A. Probabilistic Motion Primitives (ProMP)

Let a trajectory ξ be defined as sequence of states ζ(s) over a
progress variable s ∈ [0, 1], where s is normalised to 1 to allow
for time modulation. The state vector ζ ∈ Rns , consists of 3D
position and orientation as a quaternion (ns = 7). Following
ProMP framework [16], we compute the trajectory ξ by a
linear combination of weighted basis functions Φ which itself
is a matrix of Gaussian radial basis functions (GRBF) [4] with
K kernels:

Φ = [φ1 . . .φK ]⊗ Ins (1)

where ⊗ denotes the Kronecker product, and φk =
[φk(0), . . . , φk(1)]

T represents the k-th RBF evaluated at
different times s ∈ [0, 1], with φk(s) representing the RBF
with the k-th mean evaluated at s.

The weight vector uniquely identifies a trajectory sample for
a given basis function set. In our formulation, the weight vector
is assumed to have a normal distribution, µ̃ ∼ N{µ,Σ}, so
that a sampled trajectory can be constructed from the sampled
weight as ξ̃ = Φµ̃. The distribution of the weight vectors
induces the trajectory distribution that in turn represents a
single probabilistic motion primitive. The trajectory distribution
then can be represented as

ξ̃ ∼ N
(
Φµ,ΦΣΦT

)
(2)

B. Stochastic Trajectory Optimisation

We perform stochastic trajectory optimisation similar to
STOMP to compute an optimal trajectory for the robot. STOMP
considers trajectory planning by solving an optimisation such
as:

min
ξ

E
[
Q(ξ̃) +

1

2
ξ̃
T
Rξ̃

]
(3)

where ξ̃ ∼ N (ξ,Υ) is a sampled trajectory whose discretised
states are sampled from a normal distribution with a mean
trajectory ξ and covariance matrix Υ. Q(ξ̃) is the path cost
and R is a positive semi-definite matrix representing control
costs.

While STOMP was inspired by work in path integrals,
an alternative way to motivate the solution is to replace the
objective (3) by one that encodes the path cost Q(ξ̃) through a
probability measure, seeking the mean trajectory that maximises
the likelihood:

max
ξ

J(ξ); J(ξ) = E
[
e−

1
λQ(ξ̃)

]
(4)

where λ is a parameter that regulates the cost sensitivity, which
is selected to adapt to the dynamic range of the cost values.
It can be readily shown that an approximate Newton step for
this optimisation is given by:

δξ =

∑
m(ξ̃m − ξ)e−

1
λQ(ξ̃m)∑

m e−
1
λQ(ξ̃m)

(5)
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where {ξ̃m} are independent and identically distributed samples
as drawn from (2).

III. MOTION PLANNING USING PROBABILISTIC
MOTION PRIMITIVES

A key advantage of using ProMPs comes from using a
Gaussian distribution to represent trajectories that allows us to
condition the trajectory distribution on desired constraints. This
enables the primitive distribution to be easily modulated to
pass through a desired state ζ∗(s) with a covariance parameter
Σ∗, defining the tolerance of the desired constraint.

The conditioning is introduced as a pseudo-measurement
with measurement matrix Hs = [φ1(s) . . . φK(s)]⊗ Ins . This
results in a new conditional trajectory distribution:

p(ξ̃|s, ζ∗(s),Σ∗) = N (ξ̃; Φµ̄,ΦΣ̄ΦT ) (6)

The conditional mean µ̄ and covariance Σ̄ can be found using
Equations (7) and (8), respectively.

µ̄ = µ + ΣHT
s (Σ∗ + HsΣHT

s )−1(ζ∗(s)−Hsµ) (7)

Σ̄ = Σ−ΣHT
s (Σ∗ + HsΣHT

s )−1HsΣ (8)

While the above distribution is conditioned on the goal,
it does not account for obstacles and other traversability
limitations that might be encountered along the way. Finally,
the product of Gaussians can be used to combine multiple
distributions. This makes it possible to either bootstrap from a
previous solution or bias towards a path from a global planner.

Using the above stochastic optimisation approach, we now
present two planning algorithms that use probabilistic motion
primitives for local trajectory planning of an AGV.

A. Probabilistic Motion Primitive Trajectory Sampling
(PROMPT-S)

The first approach, Probabilistic Motion Primitive Trajectory
Sampling (PROMPT-S), is shown in Algorithm 1. The motion
primitive distribution is first conditioned according to (6) with
s = 1 and ζ∗(s = 1) the current local goal. The local goal
or via point selected in the local planning horizon is either
given directly as input to the local planner or selected from
the global path in a rolling window fashion.

Trajectories are sampled directly from the conditional
distribution outlined in Equations (7, 8) and infeasibility checks
are performed to reject invalid trajectories. Note that to remove
temporal dependency between the states, the diagonal of the
covariance could be used for sampling as in [8], but in this
instance we wanted to retain the temporal dependency, thus the
full covariance matrix is utilised. The remaining valid trajectory
samples are used to computed the new conditional distribution
parameters, e.g mean and covariance. The algorithms runs
iteratively until the mean trajectory passes the feasibility check
and is the mean trajectory is used as the output of the planner.
An advantage of iterating until the mean trajectory is feasible,
as compared to selecting one of the sampled feasible trajectory
is that any future iterations would produce feasible trajectories
from the new conditional distribution with very high probability.

Algorithm 1: PROMPT-S
Data: trajectory distribution

p(ξ̃) = N
(
ξ̃; Φµ,ΦΣΦT

)
current robot state ζ(s = 0)
goal state ζ(s = 1)

Result: trajectory ξ
1 obtain conditional distribution q(µ̃) = N (µ̃; µ̄, Σ̄)
2 use equations (7) and (8)

3 assign initial parameter vector µ̄∗ ← µ̄
4 while ξ = Φµ̄∗ is not feasible do
5 initialize empty list of feasible samples L
6 draw M samples µ̃m from q(µ̃) = N (µ̃; µ̄∗, Σ̄)
7 for each sample µ̃m:
8 if sample µ̃m is feasible then
9 add µ̃m to the list of feasible samples L

10 else
11 reject µ̃m

12 µ̄∗ ← mean of all samples in L

13 obtain optimised trajectory ξ = Φµ̄∗

Additionally, the mean trajectory is more robust to control errors
during execution as effectively it is at the centre of a bundle
of feasible trajectories.
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(a) (b) (c)
Figure 1. The effect of conditioning and distribution convergence in presence
of obstacles. (a) shows samples drawn from a nominal motion primitive
distribution, (b) shows samples drawn from a distribution conditioned on a via
pose (8, 3, 45◦), (c) shows samples drawn at 41 iterations from a distribution
conditioned on the via pose (12, 0, 0◦) and in the presence of an obstacle at
(6,0)

Figure 1 shows how the probability distribution and the
subsequent sampled trajectories are affected by the conditioning
of a local goal or a via pose and the obstacles. Here the
trajectories generated with the same time limit. The spatial
discrepancy in the trajectory length come about as different
velocities are being sampled as well and executed for the same
time limit. In Figure 1(a) the samples are generated from an
unconditioned motion primitive distribution. Using Equation
(7,8) to condition the distribution on the goal or a via pose we
can sample and evaluate suitable trajectories from a smaller
subset of the whole trajectory space as seen in Figure 1(b)
thereby increasing the effectiveness of planning. Similarly in
Figure 1(c) as the sampled trajectories that collide with the
obstacles are discarded, we find the trajectory distribution
starting to converge on a set of solution paths that satisfy both
the kinematic and goal constraints.
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In reality, real solution distribution is multi-modal, and our
gaussian modeling is inherently unimodal, the mean trajectory
of the distribution might not be collision free. This however
does not affect our approach negatively, as the gaussian
parameters are only used for generating the sampled trajectories.
Only those trajectories that are collision free, satisfy all the
kinematic constraints and have the lowest cost are selected and
passed to the robot during run time. As the algorithm iterates,
the distribution snaps on to one of the homology class e.g
the top section in Figure 1(c). A more general approach of
maintaining multiple distributions across different homology
classes as introduced in [22] for the TEB planner can be
adopted to mitigate this effect.

B. Probabilistic Motion Primitive Trajectory Optimisation
(PROMPT-O)

Algorithm 2: PROMPT-O

Data: trajectory distribution p(ξ) ∼ N
(
Φµ,ΦΣΦT

)
current robot state ζ(s = 0)
goal state ζ(s = 1)

Result: optimised trajectory ξ
1 while not converged do
2 obtain importance density ρ(µ̃) = N{µ̃; µ̄, Σ̄} ∝

N{µ̃;µ,Σ}N{ζ∗(s); Hsµ̃,Σ
∗}

3 use equations (7) and (8)

4 draw M samples µ̃m from ρ(µ̃)
5 for each sample µ̃m:
6 calculate trajectory cost Q(Φµ̃m)
7 use equation (10)

8 calculate importance weight and cost πm
9 use equation (16)

10 calculate update δµ
11 use equation (18)

12 apply parameter update to µ
13 use equation (17)

14 obtain optimised trajectory ξ = Φµ

We now present a stochastic trajectory optimisation variant
of the previous planner, probabilistic motion primitive trajectory
optimisation planner (PROMPT-O) in Algorithm 2. As in
Equation (4), we formulate the motion planning problem as an
optimisation that minimises costs e.g. smoothness, collisions
and kinodynamic constraints, along the trajectory:

µ∗ = arg max
µ

J(µ); J(µ) = E
[
e−

1
λQ(ξ̃)

]
(9)

where ξ̃ is a trajectory distributed according to Equation (2).
Q(ξ) denotes a general cost function for a single trajectory ξ
that is usually expressed as a summation of state dependent
cost values:

Q(ξ) =

∫ s=1

s=0

q(ζ(s))ds (10)

where for ξ = Φµ, the state at progress s is ζ(s) = Hsµ.
Expanding the objective and taking the gradient and Hessian,
we find:

J(µ) =

∫
N{µ̃;µ,Σ}e− 1

λQ(Φµ̃)dµ̃ (11)

∇µJ(µ) = Σ−1

∫
(µ̃− µ)N{µ̃;µ,Σ}e− 1

λQ(Φµ̃)dµ̃ (12)

∇2
µJ(µ) =

∫ [
−Σ−1 + Σ−1(µ̃− µ)(µ̃− µ)TΣ−1

]
×

N{µ̃;µ,Σ}e− 1
λQ(Φµ̃)dµ̃ (13)

The challenge of estimating the gradient in Equation (12) is
the inefficiency of sampling from N (µ,Σ), since it represents
the entire motion capability of the robot and therefore would
take a long time to converge to a solution that is applicable
to the current situation. Thus, in order to increase sampling
efficiency we apply an importance sampling scheme where
the sampling distribution incorporates the destination encoded
in the cost Q(ξ̃). Instead, we sample from an importance
density which incorporates a Gaussian approximation of this
destination. Specifically, let:

ρ(µ̃) = N{µ̃; µ̄, Σ̄}
∝ N{µ̃;µ,Σ}N{ζ∗(s); Hsµ̃,Σ

∗} (14)

where the conditional mean µ̄ and covariance Σ̄ can be found
using (7) and (8), respectively. Then taking M samples µ̃m ∼
ρ(µ̃), the gradient (12) can be estimated as:

∇µJ(µ) ≈ Σ−1

M

M∑
m=1

(µ̃m − µ)πm (15)

where πm incorporates the importance weight and cost:

πm =
N{µ̃m;µ,Σ}
N{µ̃m; µ̄, Σ̄}

e−
1
λQ(Φµ̃m) (16)

A key property for importance sampling to be applied is
that the proposal density should have heavier tails than the
desired density. On the surface, it might appear that this is
not satisfied as the proposal distribution in the denominator
of (16) is narrower than the numerator. However, if we view
the trajectory cost as a part of the desired distribution, the
encoding of the goal into Q(ξ) and the goal factor in the
proposal distribution can be selected to be in balance. Since
we expect the covariance conditioned on the goal to be much
smaller than the prior covariance Σ, we can approximate the
Hessian in (13) by dropping the second term in the sum. This
provides an approximate Newton method through the update

µ← µ + αδµ (17)

where α represents the step size, and the update δµ is:

δµ =
1

c

M∑
m=1

(µ̃m − µ)πm, c =

M∑
m=1

πm (18)

As before, unlike [8] we dont restrict our sampling to
the diagonal of the covariance Σ̄ to preserve the temporal
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dependency, thus yielding samples that are likely to be
kinematically feasible. Note that in Equation (17) as opposed
to the update rule of STOMP, we do not require the gradient
estimate to be smoothed with the scaled covariance matrix.

With PROMPT-S and PROMPT-O we presented two different
approaches for exploiting Probabilistic Motion Primitives.
It is important to note that PROMPT-S presents a naive
implementation of using ProMP which is meant to provide
a baseline behaviour that is shown to outperform state of
the art algorithms like STOMP, clearly demonstrating the
implicit advantage of using such a motion primitive formulation.
PROMPT-O is a sophisticated algorithm that proposes the
integrated approach for optimal trajectory generation on top
of the ProMP formulation. Ideally, PROMPT-O is preferred
to PROMPT-S under most conditions with well-defined cost
structures.

C. Analysis and Discussion

Each iteration of PROMPT-S generates M samples, yielding
complexity O(MKns

2nt), where K is the number of GRBF
kernels, ns = 7 is the state space dimensionality, and nt is
the number of time steps evaluated along the trajectory for
each kernel. Each iteration of PROMPT-O draws M samples,
and evaluates the trajectory cost and the importance weight,
yielding complexity O(MKns

2nt + MK3n3
s). In practice,

we find that 40 samples are sufficient, and that convergence
is generally achieved after 30 iterations for PROMPT-S and
PROMPT-O. We limit the number of iterations to 200, and
have not found this to be a problem in practice.

An important benefit in comparison to STOMP is the
continuous-time nature of the motion primitive trajectories.
It allows for a state to be queried for any arbitrary s ∈ [0, 1].
This makes it possible to have a non-uniform or adaptive dis-
cretization when evaluating the cost functions numerically. Both
versions of PROMPT implicitly capture the robot kinematics
with the ProMP representation of the trajectories. Therefore as
opposed to STOMP the kinematics model does not need to be
enforced from the outside via the cost function, it only needs
to filter out the low probability samples which violate these
constraints. Using ProMP and the forward kinematics with
different velocities also allows for capturing time dependency
resulting in smoother trajectories than STOMP. Furthermore,
it provides an interface between classical trajectory planning
approaches and modern machine learning techniques via the
motion primitive distribution. This distribution can either be
learned from demonstrations or explicitly modelled with the
known kinematics. A combination is also possible, in which
case the demonstrations can be thought of as a calibration of
the specific robot or task. This is also where the fundamental
difference to learning from demonstrations (LfD) lies in
the use of ProMP. We use the ProMP distribution as a
representation for the motion capabilities of the robot, whereas
LfD encodes specific manipulation tasks and their variances
into the distribution.

In the case of ground vehicles the benefit of applying LfD to
the utilised ProMP distribution could lie in encoding specific

driving styles; e.g., consider that every passenger has their
personal preferences for driving a vehicle. By using LfD, those
preferences could be taught and reproduced by the autonomous
vehicle using our planning approach.

IV. EXPERIMENTS

To understand the nature of the PROMPT planning frame-
work and its efficacy to current state-of-the-art planners, we
compare our planners (PROMPT-O, PROMPT-S) with two
classes of planners: search based discrete motion primitives
planner FALCO([25]) and trajectory optimisation based plan-
ners STOMP([7]) and TEB([20]). While there are numerous
variants to these planners, these three have been chosen due
to their demonstrated improved performance over others. For
comparison, publicly available code from the authors have been
used without modification.

A. Experimental setup

We treat all the planners mentioned above in a local planning
framework where a global path is provided as a prior, here
computed by an A∗ algorithm. The global planner is agnostic
to the robot kinematics and only outputs via poses without
orientations. The local planner converts this global path segment
into executable local trajectories. Once the local planner
generates a feasible solution, the trajectory is executed for
1s and the updated state is used to re-plan a new trajectory
with updated via point in an online fashion. All the planners
are given full obstacle information within the local planning
horizon with a local goal or a via point selected from the global
path to plan towards. All the planners are given the same time
limit for planning. No additional smoothing is done on any of
the trajectory outputs.

B. Motion Primitive Distribution

For the PROMPT planners, a data driven approach has been
applied to generate the AGV’s motion primitive distribution.
Specifically for this paper the motion primitive distribution was
generated using forward simulation of a simplified kinematics
model of a car-like robot representing the AGV. In general
other robot kinematics, can easily be incorporated into the
framework.

To perform forward simulation, we discretize the input space
(i.e., the control commands) and record the output (i.e, the
trajectory) of the forward kinematics, which leaves us with a
set of individual motion trajectories. By calculating the mean µ
and covariance Σ of the set, the motion primitive distribution
can be obtained p(ξ) ∼ N (Φµ,ΦΣΦ). Backward driving, and
backward primitives can be easily incorporated by selective
negative velocity commands, but for this paper we only use
forward motion of AGVs to simplify comparison with other
planners.

C. Cost Function

The cost given by Equation (10) is computed by discretizing
ξ into N time steps between s0 = 0 and sN−1 = 1 and
adding the costs of each state ζ(sn). We use two classes of
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cost functions: state costs qs (e.g., distance from obstacles) and
transition costs qt (e.g., kinematics). Expressing the resulting
summation using ζ(sn) = Hsnµ yields:

Q(Φµ) =

N∑
n=0

qs(Hsnµ) +

N∑
n=1

qt(Hsn−1
µ,Hsnµ) (19)

Here Hsn is a measurement matrix as defined previously in
(6). The basis functions have parameters K = 6 and a variance
of 0.05 for each radial basis function. The obstacle cost is
defined as the Euclidean distance transform of the boolean-
valued occupancy grid map, analogously to other methods in
the literature [19, 7]. As for the kinematics constraint, since we
are simulating a non-holonomic robot, we follow the constraint
derived in [21] defined by:cos(ϕt−1)

sin(ϕt−1)
0

+

cos(ϕt)
sin(ϕt)

0

×∆ζ = 0 (20)

The deviation from zero for each each pair of states is
given as cost to planning algorithms. This ensures that the
robot kinematic errors are minimized. For the experiments,
qkin,max = 0.2 empirically proved to result in kinematically
feasible trajectories.

PROMPT is able to exploit additional cost functions during
its optimisation step. E.g, the additional cost-to-go value for
the local grids, which is a byproduct of the A∗ planner can
be provided along with the A∗ path in the local planning
horizon, enabling to converge to the optimal solutions faster.
Note however that in many cases at runtime the local planner
has to take into account obstacles which the global planner
might not have knowledge of, e.g road obstruction, pedestrian
movement etc. While the global path and the cost-to-go values
aid in guiding the optimisation, a valid runtime evaluation and
feasibility is performed ensuring that the trajectories generated
at run time are truly feasible.

D. Qualitative Comparison

Figure 2. Behaviour of different planners when encountering a single obstacle.
The whole environment is 20m long, the planners are given local planning
horizon of 10m and are executed at 1Hz with a vehicle velocity of 1m/s. The
trajectories displayed above have been computed online in a receding horizon
approach.

a) Single Obstacle Scenario: In order to get an insight
about the behaviour of the different planners we used for
comparison we first simulated a single obstacle scenario which
can be seen in Figure 2. To bring out the local adaptability of
each planner in a priori unknown environments, we purposefully
gave a path segment in collision to each planner.

We see from Figure 2 that although all the planners are
able to avoid the unseen obstacle successfully, their output
trajectories give an insight into the optimisation performance.
As both PROMPT-O and PROMPT-S are sampled from a
gaussian distribution, they are inherently smooth. Stochastic
optimisation over non-gaussian distribution, as done by STOMP,
generates a feasible solution but incurs higher kinematic cost
as per Equation (20). It is possible that STOMP converges to
a better solution with more time. FALCO effectively chooses
suitable motion primitives to curve away from the obstacle
at a close range ensuring fast collision avoidance. However,
the effect of motion primitive discretization becomes apparent
in the wake of the obstacle response as seen by the wavy
nature of the trajectory where motion primitives of different
curvatures are stitched together. This is the inherent difference
between representing the motion primitives as discrete curvature
trajectories compared to PROMPT’s gaussian distribution
representation which enables a seamless conditioning of the
previous state generating a highly smooth trajectory.

Figure 3. Behaviour of PROMPT-O compared to FALCO when passing
multiple narrow passages. While FALCO computes the shortest path, PROMPT
generates smoother paths. The whole environment is 70m long, with the walls
spaced 20m from each other. The planners are given local horizon of 10m and
are executed at 1Hz with a vehicle velocity of 1m/s. As before, the trajectories
displayed above have been computed online in a receding horizon approach.

b) Narrow Passage Scenario: In more constrained scenar-
ios, the limitations of discretization become apparent as can be
seen in Figure 3. Here the FALCO and PROMPT-O are tasked
with navigating multiple narrow passages. The grey dotted
line denotes the A∗ global path provided to both the planners.
FALCO computes a much shorter path, but its local discrete
primitive selection limits it from reaching the goal when it
gets too close to the obstacle. This can be seen near the third
barrier where the robot reaches a position and orientation from
which FALCO is unable to execute a forward trajectory out.
Note however that enabling backward motion primitive or a
recovery mode would prevent a robot collision. However these
manoeuvres are expensive and the planner should avoid such
scenarios as much as possible. PROMPT-O on the other hand
is able to generate a smooth path. This improved behaviour
in more constrained environments is borne out by substantive
quantitative experiments presented ahead.

E. Quantitative Comparison
Similar to [23], a randomised obstacle field (Figure 4), where

the position and the radius of the circular obstacles is drawn
from a uniform distribution, is used to compare the quantitative
performance of all the planners. The size and number of
obstacles is varied to generate cluttered environments of varying
obstacle ratio (obstacle vs free space).

 ���



Figure 4. All planner’s successful navigation through a randomised obstacle
field. Figure shows the driven paths for PROMPT-O (red), PROMPT-S (blue),
STOMP (light blue). TEB (yellow). FALCO (green).

For the presented results the number of obstacles ranged
between 20 and 100 (step size 5), their maximum radius
between 3 m and 7 m (step size 0.5m). For each combination
15 different scenarios were generated. This equals a total of
1920 unique scenarios. The length of the entire obstacle field
equals 200 m and its width is 50 m.

The start and goal positions for each scenario always remain
the same. Additionally, all the planners are given a precomputed
successful global A∗ path with the same robot footprint, which
ensures the existence of a connected free space component
containing the solution trajectory. All planners consider the
same two cost functions to determine the feasibility of a
trajectory: (1) the local perception of the obstacle field and (2)
the kinematic constraints of the vehicle. As a consequence a
planner fails as soon as it cannot find an executable trajectory
that avoids all obstacles. The planners were constrained to
maintain a minimum of 1.5m from obstacles and all the planners
operated at 1 Hz. Each planner is truncated if it fails to return
a valid path under 1000 iterations. For stochastic optimisation
planners like STOMP and PROMPT variants, the planned
trajectory at the timeout is considered for evaluation, unless
they hit a successful stopping criteria and return a solution
earlier.

a) Performance metrics: To capture the smoothness of
the path, we choose the average jerk and average curvature as
performance metrics. Both jerk and curvature were summed
along the trajectory and then divided by the number of points
to get the average jerk and curvature, respectively. The average
jerk value tells us the speed variation and the control effort
required to maintain the speed of a vehicle to execute the
trajectory. Lower jerk values pertain to temporally smooth
motion. Similarly average curvature captures the steering
behaviour of the vehicle. The higher the curvature, the higher
the control effort in maintaining a smooth steering output. We
also evaluate the average planning time taken per online local
planning horizon to evaluate the rate at which the planners
performed.

b) Results: These metrics are computed and plotted in
Figure 5 against varying obstacle density ratio. As the obstacle
density increases, the scenario becomes more cluttered making
the planning more difficult.

Figure 5(a) shows the success rates for each planner effec-
tively decreases with increasing obstacle density as expected.
TEB consistently under performs as compared to others,
possibly due to the timeout constraints. Among the stochastic
optimisation based planners, PROMPT variants outperform
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(d) Total planning time for a successful run.
Figure 5. Quantitative results of the runs for the planners listed in the Figure
5 for randomized obstacle fields

STOMP because of more efficient sampling from a biased
distribution. Without the knowledge of the vehicle kinematics,
many of the STOMP trajectories have to be discarded due
to high kinematic costs. With increased timeout values, the
performance of STOMP could be improved. PROMPT-O
outperforms both STOMP and PROMPT-S as incorporating
importance sampling greatly improves the convergence over
other stochastic optimisation approaches.

The discrete motion primitives based planner, FALCO, per-
forms extremely well, matching the performance of PROMPT-
O for lower and medium obstacle densities. This is primarily
because there is sufficient free space for a sufficient set of
precomputed motion primitives to be valid. From this set a
suitable selection of motion primitives leads to successful
navigation. However, with increasing obstacle density, this
feasibility set gets depleted leading to lower success rates.
PROMPT-O clearly outperforms FALCO at higher obstacle
densities due to its continuous representation of motion
primitives allowing for sufficient samples. The statistical result
here confirms the insight from Figure 3.

From Figure 5(b-c) we see that the PROMPT planners have
better curvature metrics than both STOMP and FALCO, and
better jerk metric than STOMP. Precomputing discrete motion
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primitive with vehicle kinematics allows FALCO to have a
much smoother speed variation as compared to PROMPT or
STOMP.

In terms of the planning time as seen in Figure 5(d), we find
STOMP takes a much longer planning time compared to other
planners and FALCO is extremely fast due to its precomputed
path groups. The PROMPT planners perform better than
STOMP but worse than FALCO. The faster convergence due
to importance sampling based optimisation of PROMPT-O as
compared to sample rejection of PROMPT-S becomes evident
here as well.

Overall in terms of the success rates, the quality of paths
and planning time, PROMPT variants, especially PROMPT-
O, matches the state of the art of both search based discrete
motion primitives planners and stochastic optimisation planners
in some metrics and outperforms in others.

F. Planning Under Degraded Actuation
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Figure 6. Skewed motion primitive distribution that is the result of e.g. a
broken steering actuator.

A key advantage of representing the motion primitives as
a probabilistic distribution is the ability to seamlessly adapt
the parameters either by physical or functional constraints. So
in a scenario where the robot’s steering is broken, and only
has partial angular actuation, we simply need to adjust the
underlying motion primitive distribution accordingly for the
planners. Figure 6 displays the individual trajectories that were
used to form the distribution. In this example the steering
angle was limited to ϕ ∈ [0.1, 0.7] leading to a highly skewed
mean trajectory. Figure 7 shows that, as expected, the robot
drives in spirals if it is told to follow a global path. More
importantly, when introduced to an obstacle field, as before
the planner adapts its curvature conditioned on the obstacle
while optimizing seemlessly for open spaces. This shows the
versatility of PROMPT in incorporating a variety of motion
primitive distributions for stochastic optimisation.

G. Hardware experiments

The field tests were conducted using a full-size AGV
operating on a large outdoor site, with the vehicle performing
localisation against a pre-built 3D map. For map generation
and localisation, we use LiDAR-inertial mapping, employing a
3D SLAM algorithm [1, 5]. The AGV sets its reference path
using an A∗-based global planner, and as the vehicle moves
the path is adapted locally using the proposed method.

moving direction →
adapting steady state adapting

Figure 7. Broken robot moving in spirals through a randomised obstacle
field. It can be seen that it adapts the curvature to avoid obstacles and settles
to a steady state behaviour if there are no obstacles.

Figure 8. PROMPT-O was implemented on an autonomous AGV shown
in the inset top right. The green path shows the trajectory executed by the
vehicle, the grey points show occupancy grid obstacles and the red markers
show local obstacles detected by the AGV’s spinning laser. The inset at the
bottom right shows the vehicle avoiding obstacles.

On average the trajectory planning was computed in under
200ms for the planning horizon of 10m. The path from a
typical experimental run is plotted in Figure 8. The top right
inset view of the vehicle shows a snapshot of the path where
the vehicle negotiates a narrow passage between a bush on
the left (which as not present in the original map) and the
building wall on the right. The bottom right inset also shows the
robot avoiding an obstacle (tall grass in the centre) on its path.
This vegetation was not present in the original map and hence
was not considered by the global planner, but was avoided by
the proposed local planner. It can be seen that the planner is
responding properly to obstacles like tree branches and grass
patch as these appear as solid obstacles in the projected 2D
plane of the planner at run time.

V. CONCLUSION

We presented a unified approach in incorporating motion
primitives under the Probabilistic Motion Primitives framework
and stochastic optimisation to compute an optimised trajectory.
We have shown that using probabilistic movement primitives
for motion planning of ground vehicles greatly improves
not only the success rate of the algorithms but also the
quality of plans. The versatility of the approach can be
seen by introducing reduced mobility as induced by steering
failure for an AGV and showing that our approach is able
to handle such limitations seamlessly. The implementation
results on a real autonomous vehicle shows the efficacy of the
planners. The advantage of representing the motion primitive
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as a parameterized distribution allows us to integrate various
learning paradigms seamlessly into our approach.
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