Flow Chemistry Polymerization

The CSIRO has a long history in polymers and a broad capability in flow chemistry polymerization.

Free Radical Polymerization

Reversible Addition- Fragmentation chain Transfer (RAFT) polymerization technology is an established form of controlled free radical polymerization. RAFT makes possible the rational design of well-defined polymeric structures. It can be used in a wide range of monomers and reaction conditions and provides access to polymers with unprecedented control over size, composition and architecture. We have shown that RAFT polymers can be can be accessed via flow chemistry polymerization.

Anionic Polymerization

Anionic polymerization is a form of controlled addition polymerization of vinyl monomers. This method  provides access to polymers
 with predicted molecular weights, narrow molecular weight
distributions, and defined end-groups. CSIRO’s ability to perform anionic polymerization using continuous processing methods removes the problem of batch-to-batch variation encountered using batch processing.

Condensation Polymerization

Condensation polymerization is a step-growth polymerization process that can be used with non-vinylic monomers. CSIRO has flow chemistry to synthesize polyurethane pre-polymers.

[ddownload id=”385″ button=”blue” text=”Download Flyer”]

 

Publications

2017

  • “Preparation of Forced Gradient Copolymers Using Tube-in-Tube Continuous Flow Reactors”, Simon Saubern, Xuan Nguyen, Van Nguyen, James Gardiner, John Tsanaktsidis and John Chiefari, Macromolecular Reaction Engineering, 2017, DOI: 10.1002/mren.201600065
  • “Looped flow RAFT Polymerization for multiblock copolymer synthesis”, Agnès Kurok, Ivan Martinez-Botella,  Christian H. Hornung, Liam Martin, Elizabeth G. L. Williams, Katherine E. S. Locock, Matthias Hartlieba, Sebastien Perrier, Polymer Chemistry, 2017, 8, 3249-3254,

2016

  • “Continuous flow photo-initiated RAFT polymerization using a tubular photochemical reactor”, James Gardiner, Christian Hornung, John Tsanaktsidis, Duncan Guthrie, Eur. Polym. J., 2016, 80, 200-207, DOI: 10.1016/j.eurpolymj.2016.01.033

2015

  • “Triphenylphosphine-grafted, RAFT-synthesized, porous monoliths as catalysts for Michael addition in flow synthesis”, Kristine Barlow, Victor Bernabeu, Xiaojuan Hao, Timothy Hughes, Oliver Hutt, Anastasios Polyzos, Kathleen Turner, Graeme Moad, Reactive and Functional Polymers, 2015, 96, 89-96, , DOI: 10.1016/j.reactfunctpolym.2015.09.008

2014

  • “Continuous Flow Aminolysis of RAFT Polymers Using Multistep Processing and Inline Analysis”, C. H. Hornung, K. von Känel, I. Martinez-Botella, M. Espiritu, X. Nguyen, A. Postma, S. Saubern, J. Chiefari, and S. H. Thang, Macromolecules, 2014, 47, 8203–8213, DOI: 10.1021/ma501628f.
  • “Scale-up of the reversible addition-fragmentation chain transfer (RAFT) polymerization using continuous flow processing”, Micic, N.; Young, A.; Rosselgong, J.; Hornung, C. H, Processes, 2014, 13, 58-70, DOI: 10.3390/pr2010058
  • “Sequential flow process for the controlled polymerisation and thermolysis of RAFT-synthesised polymers”, Hornung, C. H.; Postma, A.; Saubern, S.; Chiefari, J., Polymer, 2014, 55, 1427-1435, DOI: 10.1016/j.polymer.2014.01.023
  • “Porous, functional, poly(styrene-co-divinylbenzene) monoliths by RAFT polymerization.” Barlow, K. J.; Hao, X.; Hughes, T. C.; Hutt, O. E.; Polyzos, A.; Turner, K. A.; Moad, G., Polym. Chem. 2014, 5, 722-732, DOI: 10.1039/C3PY01015E