KEH-Sense: Technology for self-powering wearables
KEH-Sense: Technology for self-powering wearables
Recent Advancements in energy harvesting hardware have created an opportunity for realizing self-powered wearables for continuous and pervasive human context recognition. Unfortunately, the power requirements of the continuous sensing using different sensors, such as accelerometers, and the burdensome on-node classification and communication are relatively high compared to the amount of power that can be practically harvested, which limit the energy harvesting’s usefulness.
A generic architecture of self-powered wearable devices
This research introduces a novel approach that employs kinetic energy harvesting (KEH) and infers human context information directly from the KEH patterns without using any other sensors such as accelerometers which need continuous power to operate. The underlying idea lies in the fact that different ambient vibrations generate energy in a different way producing different energy generation patterns in the KEH circuit. Because no actual sensor such as accelerometer is needed, a significant percentage of the limited harvestable energy can be saved, making significant progress towards self-powered autonomous wearables.
Conventional accelerometer-based vibration recognition in self-powered device
Proposed architecture of KEH-Sense
In this project, we quantify the capabilities of KEH-Sense for various applications:
- On-going investigations
- Human Activity Recognition
- Step Counting
- Calorie Expenditure Estimation
- User Authentication
- Transportation Mode Detection
- Railway location tracking
- Voice-activated Hotword Detection (eg. “Hey Siri”)
- Short Range Audio Communication Receiver
All of our results are based on real data collected under natural (non-laboratory) conditions. Using KEH Recorder I (presented below), we collected extensive real data to demonstrate KEH as a potential new source of information for the previously mentioned applications. The table below summaries the data collection details, the algorithms used, and the accuracy reported in each study, confirming KEH as an efficient source of information for a wide range of wearable applications.
Application | Data Collection | Algorithm Used | Accuracy |
Human Activity Recognition | 10 subjects, 5 different activities, 2 holding positions | K-nearest neighbour (KNN) | 81% for hand and 87% for waist |
Step Counting | 4 subjects, different walking scenarios | Peak detection algorithm | 96% |
Calorie Expenditure Estimation | 10 subject, 2 different activites | Standard statistical regression | 88% for walking and 84% for running |
Hotword Detection | 8 subjects | Decision tree classifier | 73% for speaker independent and 85% for speaker dependent |
Transport Mode Detection | 3 hours of data traces for three motorized modes (car, train, bus) | Voltage peak based learning algorithm | 85% |
User Authentication | 20 subjects | Multi-Step Sparse Representation Classification | 93% |
Railway Trip Tracking | 4 distinct train routes in the Sydney metropolitan area (36 trips including 360 data point) | Ensemble classifier and a probabilistic-based trip inferring algorithm | 97.2% for a journey of 7 stations |
Audio Communication Receiver | Series of experiments for varying distances between the speaker and the VEH receiver (2cm-100cm) and varying data rates (5bps to 35bps) | ON-OFF keying (de)modulation scheme. | 5-30 bps communication depending on the distance |
Resources
KEH Modeler
This is a second-order mass spring damping system which is used to model an inertial harvester. It produces the amount of power that could be generated by an inertial harvester for a kinetic/ acceleration input.
KEH Recorder I
External appearance
Internal appearance
KEH Recorded II
To be announced soon!
References
- W. Xu, G. Lan, Q. Lin, S. Khalifa, N. Bergmann, M. Hassan, W. Hu. “KEH-Gait: Using Kinetic Energy Harvesting for Gait-based User Authentication System”, Accepted for publication in a future issue of the IEEE Transactions on Mobile Computing, 2018.
- M. Hassan, W. Hu, G. Lan, S. Khalifa, A. Seneviratne, and S. K. Das, “Kinetic-Powered Wearable IoT for Healthcare: Challenges and Opportunities”, Accepted for publication in a future issue of the Computer Magazine, 2018.
- S. Khalifa, G. Lan, M. Hassan, A. Seneviratne, and S. K. Das, “HARKE: Human Activity Recognition from Kinetic Energy Harvesting Data in Wearable Devices”, IEEE Transactions on Mobile Computing, vol. 17, no. 6, June 2018
- S. Seneviratne, Y. Hu, T. Tham Nguyen, G. Lan, S. Khalifa, K. Thilakarathna, M. Hassan, A.Seneviratne, ”A survey of wearable devices and challenges”, IEEE Communications Surveys & Tutorials, vol. 19, no. 4, 2017.
- G. Lan, W. Xu, S. Khalifa, M. Hassan, and W. Hu, “VEH-COM: Demodulating Vibration Energy Harvesting for Short Range Communication”, in proceedings of IEEE Percom 2017.
- Weitao Xu, Guohao Lan, Qi Lin, Sara Khalifa, Neil Bergmann, Mahbub Hassan, and Wen Hu , “KEH-Gait: Towards a Mobile Healthcare User Authentication System by Kinetic Energy Harvesting” , In Proceedings of the NDSS’17, San Diego, USA, February 26 – March 1, 2017.
- Marzieh Jalal Abadi, Sara Khalifa, Salil S Kanhere, and Mahbub Hassan, ” Energy Harvesting Wearables Can Tell Which Train Route You Have Taken”, in the 10th IEEE LCN Workshop On User MObility and VEhicular Networks, Dubai UAE, November 7-10, 2016.
- S. Khalifa, M. Hassan, and A. Seneviratne, “Feasibility and Accuracy of Hotword Detection using Vibration Energy Harvester”, accepted in WoWMoM 2016, Coimbra, Portugal, June 21-24, 2016.
- S. Khalifa, G. Lan, M. Hassan and W. Hu, “A Bayesian Framework for Energy-Neutral Activity Monitoring with Self-Powered Wearable Sensors”, the 12th IEEE PerCom Workshop on Context and Activity Modeling and Recognition, Sydney, Australia, 14-18 March 2016.
- G. Lan, W. Xu, S.Khalifa, M. Hassan, and Wen Hu, “Transportation Mode Detection Using Kinetic Energy Harvesting Wearables”, in proceedings of IEEE Percom WiP2016, Sydney, Australia, 14-18 March, 2016.
- S. Khalifa, M. Hassan, A. Seneviratne, and S. K. Das, “Energy harvesting wearables for activity-aware services,” IEEE Internet Computing, vol. 19, no. 5, pp. 8–16, 2015 (Impact factor :2.000)
- S. Khalifa, M. Hassan, and A. Seneviratne, “Step detection from power generation pattern in energy-lharvesting wearable devices”, in proceedings of IEEE iThings 2015, Sydney, Australia, 11-13 December, 2015.
- G. Lan, S. Khalifa, M. Hassan, and W. Hu, “Estimating calorie expenditure from output voltage of piezoelectric energy harvester – an experimental feasibility study,” in Proceedings of the 10th EAI International Conference on Body Area Networks (BodyNets), Sydney, Australia, 28-30 September, 2015
- S. Khalifa, M. Hassan, and A. Seneviratne, “Pervasive Self-powered Human Activity Recognition without the Accelerometer”, in proceedings of the (Percom 2015), St Louis, Missouri, USA, March 23-27, 2015 (Acceptance rate 14.7%)
Media Appearances
- CeBIT Australia, KEH Sens – Australian Innovation at its Finest, 11 April, 2018.
- The Conversation, The way we walk can be used to power and secure our devices, May 24 2017.
- The Sydney Morning Herald (SMH), How you could use your body to charge your smartphone, with Georgina Connery, a reporter for The Canberra Times, May 26 2017.
- CSIRO News, Using your gait to power and secure devices May 24 2017.
- Lifehacher Australia, Data 61 Opens The Gait On Authentication, May 24 2017.
- International Business Time (UK) This revolutionary new technology can use the way you walk as a password, May 24, 2017.
- The Engineer (UK), Technology promises biometric gait recognition for battery-free wearables, May 24 2017.
- IEEE Xplore Innovation Spotlight, Kinetic Energy Harvesting Lighting the Way for Urban Planning, Jan 06, 2017.