McArthur
The McArthur Forest Fire Wildfire model rate of spread model was developed for predicting fire spread rates in Eucalyptus Forest.
Vegetation |
Eucalypt Forest | |
Fuel inputs |
temp rel_hum D fuel_load |
|
Code |
// Dry Eucalypt model - McArthur Mk V // ------------------------------------------- // Model parameters // These must be defined below, or included as a user-defined layer // // 1. Temperature, 'temp' (input) // 2. Relative humidity, 'rel_hum' (input) // 3. Drought factor, 'D' // 4. Fuel load, 'fuel_load' (input) // ------------------------------------------- // Backing and flanking coefficients compared to head fire ROS REAL wind_speed = length(wind_vector); REAL wdot = dot(normalize(wind_vector),advect_normal_vector); // Calculate length-to-breadth ratio (LBR) REAL LBR = 1.0; if (wind_speed < 5){ LBR = 1.0; } else if (wind_speed < 25){ LBR = 0.9286 * exp(0.0505 * wind_speed); } else { LBR = 0.1143 * wind_speed + 0.4143; } // Determine coefficient for flank rank of spread, Rf = cf * Rh, using Andrew's LBR equations REAL cc = sqrt(1.0-pow(LBR, -2.0)); REAL cb = (1.0-cc)/(1.0+cc); REAL a_LBR = 0.5*(cb+1.0); REAL cf = a_LBR/LBR; // Determine shape parameters REAL f = 0.5*(1.0+cb); REAL g = 0.5*(1.0-cb); REAL h = cf; // Now calculate a speed coefficient using normal flow formula REAL speed_fraction = (g*wdot+sqrt(h*h+(f*f-h*h)*wdot*wdot)); // Calculating FFDI using McArthur and Noble et al. (1980) REAL FFDI = 2 * exp(-0.450 + 0.987*log(D) - 0.0345*rel_hum + 0.0338*temp + 0.0234*wind_speed); // Calculate spread rate in km/h using McArthur's Mk 5 and Noble et al. (1980) REAL head_speed = 0.0012 * FFDI * fuel_load; // Converting spread rate into m/s head_speed = speed / 3.6; // Adjust for calculated speed coefficient for fire flanks speed = head_speed * speed_fraction; |