Resolving the impact of pressure on hot and low-oxygen combustion

November 26th, 2021

R&D Focus Areas:
Industrial heat processes, Gas networks and appliances, Mobility

Lead Organisation:
The University of Adelaide

Partners:
Not applicable

Status:
Active

Start date:
May 2020

Completion date:
May 2025

Key contacts:
Paul Medwell – paul.medwell@adelaide.edu.au

Funding:
AUD$944,000 – Australian Research Council

Project total cost:
AUD$1 million combined cash and in-kind contribution

Project summary description:
This project will deliver new understanding of flames in a hot and low-oxygen environment. The results will be of relevance to both the research and industrial communities, with a view to enabling breakthroughs in reliable and predictive design tools. This is an essential step in the future development of engines, primarily for the transportation sector. The resultant impact will be to lower pollutant emissions and to reduce the cost of design of new engines.

Related publications and key links

  1. Predictions of instantaneous temperature fields in jet-in-hot-coflow flames using a multi-scale U-Net model 
    Kildare, J.A.C., Chung, W.T., Evans, M.J., Tian, Z.F., Medwell, P.R., Ihme, M.
    Proceedings of the Combustion Institute (2024) 40, 105330.
  2. Radiating biofuel-blended turbulent nonpremixed hydrogen flames on a coaxial spray burner  
    Yin, Y., Medwell, P.R., Dally, B.B.
    Fuel (2024) 366, 131381.
  3. Estimation and testing of single-step oxidation reactions for hydrogen and methane in low-oxygen, elevated pressure conditions  
    Kildare, J., Evans, M.J., Tian, Z.F., Medwell, P.R.
    Fuel (2024) 360 130589.
  4. Performance of biogas blended with hydrogen in a commercial self-aspirating burner  
    Gee, A.J., Smith, N., Chinnici, A., Medwell, P.R.
    International Journal of Hydrogen Energy (2024) 54, pp. 1120-1129.
  5. Characterisation of turbulent non-premixed hydrogen-blended flames in a scaled industrial low-swirl burner  
    Gee, A.J., Smith, N., Chinnici, A., Medwell, P.R.
    International Journal of Hydrogen Energy (2024) 49, pp. 747-757.
  6. Hydrogen addition to a commercial self-aspirating burner and assessment of a practical burner modification strategy to improve performance  
    Gee, A.J., Chinnici, A., Smith, N., Proud, D.B., Medwell, P.R.
    International Journal of Hydrogen Energy (2024) 49, pp. 59-76.
  7. Hydrogen turbulent nonpremixed flames blended with spray or prevapourised biofuels  
    Yin, Y., Medwell, P.R., Dally, B.B.
    International Journal of Hydrogen Energy (2023) 48, pp. 25563-25580.
  8. The reactor-based perspective on finite-rate chemistry in turbulent reacting flows: A review from traditional to low-emission combustion  
    Pequin, A., Evans, M.J., Chinnici, A., Medwell, P.R., Parente, A.
    Applications in Energy and Combustion Science (2023) 16, 100201.
  9. Pressurised combustion in hot and low-oxygen environments: chemiluminescence imaging and modelling  
    Proud, D.B., Evans, M.J., Kildare, J., Chan, Q.N., Medwell, P.R.
    Fuel (2023) 349, 128538.
  10. Characteristics of ethylene and methane combustion in a range of high temperature and low oxygen environments  
    Shaw, I.J., Evans, M.J., Chin, R., Medwell, P.R.
    Experimental Thermal and Fluid Science (2023) 147, 110929.
  11. Characterisation of hydrogen jet flames under different pressures with varying coflow oxygen concentrations  
    Kildare, J., Evans, M.J., Proud, D.B., Tian, Z.F., Chin, R., Medwell, P.R.
    International Journal of Hydrogen Energy (2023) 48, pp. 20059-20076.
  12. Characterisation of ethylene flames under a range of low-oxygen concentrations  
    Shaw, I.J., Evans, M.J., Chin, R., Medwell, P.R.
    Fuel (2023) 334, 126495.
  13. Fundamental insights into the effect of blending hydrogen flames with sooting biofuels  
    Yin, Y., Medwell, P.R., Gee, A.J., Foo, K.K., Dally, B.B.
    Fuel (2023) 331, 125618.
  14. Characteristics of turbulent flames in a confined and pressurised jet-in-hot-coflow combustor  
    Proud, D.B., Evans, M.J., Chan, Q.N., Medwell, P.R.
    Journal of the Energy Institute (2022) 105, pp. 103-113.
  15. Toluene addition to turbulent H2/natural gas flames in bluff-body burners  
    Gee, A.J., Smith, N., Chinnici, A., Medwell, P.R.
    International Journal of Hydrogen Energy (2022) 47, pp. 27733-27746.
  16. Dilute spray flames of ethanol and n-heptane in the transition to mild combustion  
    Proud, D., Evans, M.J., Chan, Q.N., Medwell, P.R.
    Combustion and Flame (2022) 238, 111918.
  17. Experimental investigation of the flame structure of dilute sprays issuing into a hot and low-oxygen coflow  
    Proud, D.B., Evans, M.J., Medwell, P.R., Chan, Q.N.
    Combustion and Flame (2021) 230, 111439.
  18. Numerical and experimental investigation of turbulent n-heptane jet-in-hot-coflow flames  
    Li, Z., Evans, M.J., Ye, J.J., Medwell, P.R., Parente, A.
    Fuel (2021) 283, 118748.
  19. The effect of fuel composition and Reynolds number on soot formation processes in turbulent non-premixed toluene jet flames  
    Kruse, S., Medwell, P.R., Davidovic, M., Sun, Z., Ye, J.J., Pitsch, H., Dally, B.B.
    Proceedings of the Combustion Institute (2021) 38, pp. 1395-1402.
  20. Highly radiating hydrogen flames: effect of toluene concentration and phase  
    Evans, M.J., Proud, D.B., Medwell, P.R., Pitsch, H., Dally, B.B.
    Proceedings of the Combustion Institute (2021) 38, pp. 1099-1106.

Higher degree studies supported:
Two PhD students at The University of Adelaide are supported by this project.

 

Reviewed: August 2024