A thermal battery for dish-Stirling concentrated solar power systems

December 7th, 2021

R&D Focus Areas:
Hydrides, Energy systems integration, Heat storage

Lead Organisation:
Curtin University

Partners:
Griffith University, Aarhus University (Denmark)

Status:
Completed

Start date:
January 2020

Completion date:
July 2023

Key contacts:
Project Leader:  C.E. Buckley – c.buckley@curtin.edu.au
M. Paskevicius – M.Paskevicius@curtin.edu.au

Funding:
AUD$390,000 Australian Research Council

Project total cost:
AUD$771,025

Project summary description:
A thermal battery for dish-Stirling concentrated solar power systems – this research aims to investigate new high temperature (> 600 degrees Celsius) metal hydrides and carbonates suitable for thermochemical energy storage in dish-Stirling Concentrated Solar Power systems. The intended outcome is to discover cost effective, energy dense materials that are capable of operating over a 30-year life span in a solar power plant, enabling 24/7 electricity production from renewable sources in a dispatchable solar platform, ideal for remote locations.

Related publications and key links:

  • Desage, L., McCabe, E., Viera, A.P., Humphries, T.D., Paskevicius, M., Buckley, C.E. (2023) ‘Thermochemical batteries using metal carbonates: A review of heat storage and extraction’, Journal of Energy Storage, 71, 107901. https://doi.org/10.1016/j.est.2023.107901
  • Balakrishnan, S., Humphries, T.D., Paskevicius, M., Buckley, C.E. (2023) ‘Thermodynamic and kinetic properties of calcium hydride’, International Journal of Hydrogen Energy, 48 (78), 30479-30488. https://doi.org/10.1016/j.ijhydene.2023.04.088
  • Williamson, K., Møller, K.T., D’Angelo, A.M., Humphries, T.D., Paskevicius, M., Buckley, C.E. (2023) ‘Thermochemical Energy Storage in Barium Carbonate enhanced by an Iron(III) Oxide Additive’, Physical Chemistry Chemical Physics, 25, 7268-7277. https://doi.org/10.1039/D2CP05745J
  • Adams, M., Buckley, C.E., Busch, M., Bunzel, R., Felderhoff, M., Heo, T.W., Humphries, T.D., Jensen, T.R., Klug, J., Klug, K.-H., Møller, K.T., Paskevicius, M., Peil, S., Peinecke, K., Sheppard, D.A., Stuart, A., Urbanczyk, R., Wang, F., Walker, G., Wood, B., Weiss, D., Grant, D. (2022) ‘Hydride-based thermal energy storage’, Progress in Energy, 4, 032008. https://doi.org/10.1088/2516-1083/ac72ea
  • Mathew, A., Nadim, N., Chandratilleke, T.T., Paskevicius, M., Humphries, T.D., Buckley, C.E. (2022) ‘Kinetic investigation and numerical modelling of CaCO3/Al2O3 reactor for high-temperature thermal energy storage application’, Solar Energy, 241, 262-274. https://doi.org/10.1016/j.solener.2022.06.005
  • Humphries, T.D., Paskevicius, M., Alamri, A., Buckley, C.E. (2022) ‘Thermodynamic destabilisation of SrH2 using Al for the next generation of high temperature thermal batteries’, Journal of Alloys and Compounds, 894, 162404. https://doi.org/10.1016/j.jallcom.2021.162404
  • Møller, K.T., Berger, A., Paskevicius, M., Buckley, C.E. (2022) ‘Synergetic effect of multicomponent additives on limestone when assessed as a thermochemical energy storage material’, Journal of Alloys and Compounds, 891, 161954. https://doi.org/10.1016/j.jallcom.2021.161954
  • Poupin, L., Humphries, T.D., Paskevicius, M., Buckley, C.E. (2021) ‘An operational high temperature thermal energy storage system using magnesium iron hydride’, International Journal of Hydrogen Energy, 46 (78), 38755-38767. https://doi.org/10.1016/j.ijhydene.2021.09.146
  • Møller, K.T., Humphries, T.D., Berger, A., Paskevicius, M., Buckley, C.E. (2021) ‘Thermochemical Energy Storage System Development utilising Limestone’, Chemical Engineering Journal Advances, 8, 100168. https://doi.org/10.1016/j.ceja.2021.100168
  • Vieira, A. P., K. Williamson, T. D. Humphries, M. Paskevicius, and C. E. Buckley. 2021. “A new strontium based reactive carbonate composite for thermochemical energy storage. Journal of Materials Chemistry A 9 (36): 20585-20594.
  • Mathew, A., Nadim, N., Chandratilleke, T.T., Humphries, T.D., Paskevicius, M., Buckley, C.E. (2021) ‘Performance Analysis of a High-Temperature Magnesium Hydride Reactor Tank with a Helical Coil Heat Exchanger for Thermal Storage’, International Journal of Hydrogen Energy, 46 (1), 1038-1055. https://doi.org/10.1016/j.ijhydene.2020.09.191
  • Balakrishnan, S., Sofianos, M.V., Humphries, T.D., Paskevicius, M., Buckley, C.E. (2020), ‘Thermochemical Energy Storage Performance of Zinc Destabilised Calcium Hydride at High-Temperatures’, Physical Chemistry Chemical Physics, 22, 25780-25788. https://doi.org/10.1039/D0CP04431H
  • Balakrishnan, S., Sofianos, M.V., Paskevicius, M., Rowles, M.R., Buckley, C.E. (2020) ‘Destabilised calcium hydride as a promising high-temperature thermal battery’, Journal of Physical Chemistry C, 124 (32), 17512-17519. https://doi.org/10.1021/acs.jpcc.0c04754
  • Møller, K.T.M., Williamson, K., Buckley, C.E., Paskevicius, M. (2020) ‘Thermochemical Energy Storage Properties of a Barium Based Reactive Carbonate Composite’, Journal of Materials Chemistry A, 8, 10935-10942. https://doi.org/10.1039/D0TA03671D
  • Møller, K.T.M., Ibrahim, A., Buckley, C.E., Paskevicius, M. (2020) ‘Inexpensive thermochemical energy storage utilising additive enhanced limestone’, Journal of Materials Chemistry A, 8, 9646-9653. https://doi.org/10.1039/D0TA03080E
  • Humphries, T.D., Yang, J., Mole, R., Paskevicius, M., Bird, J., Rowles, M.R., Tortoza, M.S., Veder, J.-P., Sofianos, M.V., Buckley, C.E. (2020) ‘Fluorine substitution in magnesium hydride as a tool for thermodynamic control’, Journal of Physical Chemistry C, 124 (17), 9109-9117.    https://doi.org/10.1021/acs.jpcc.9b11211
  • Humphries, T.D., Rawal, A., Rowles, M.R., Prause, C.R., Bird, J.E., Veder, J.-P., Paskevicius, M., Sofianos, M.V., Buckley, C.E. (2020) ‘Physicochemical characterisation of a Na-H-F thermal battery material’, Journal of Physical Chemistry C, 124 (9), 5053-5060. https://dx.doi.org/10.1021/acs.jpcc.9b10934
  • Bird, J.E., Humphries, T.D., Paskevicius, M., Poupin, L., Buckley, C.E. (2020) ‘Thermal Properties of Thermochemical Heat Storage Materials’, Physical Chemistry Chemical Physics, 22, 4617-4625. https://doi.org/10.1039/C9CP05940G
  • Sofianos, M.V., Randall, S., Paskevicius, M., Aquey-Zinsou, K.-F., Rowles, M., Humphries, T.D., Buckley, C.E. (2020) ‘High temperature thermochemical energy storage using halide destabilised calcium hydride’, Journal of Alloys and Compounds, 819, 153340. https://doi.org/10.1016/j.jallcom.2019.153340
  • Poupin, L., Humphries, T.D., Paskevicius, M., Buckley, C.E. (2020) ‘An experimental high temperature thermal battery coupled to a low temperature metal hydride for concentrating solar power plants’, Sustainable Energy & Fuels, 4, 285-292.              https://doi.org/10.1039/C9SE00538B

Higher degree studies supported:
Not applicable

 

Reviewed: August 2024