Assimilation of Reduced Carbon Triggers platinum alloy saturation in mafic and ultramafic magmas [publication]
Abstract
It is generally observed that magmatic sulfide ores have higher ratios of Pd/Pt than the mantle-like values of their parental magmas. This discrepancy has defied simple explanation because the partitioning behavior of both elements between sulfide and silicate liquids is very similar. Assimilation of sulfur- and carbon-rich country rocks by mafic and ultramafic magmas is considered a critical, if not essential, step in the formation of magmatic base metal sulfide deposits. Although there is general consensus that the assimilation of external sulfur and carbon promotes sulfide saturation, the effect of carbon assimilation on the solubilities of platinum-group elements in natural S-bearing silicate melt has been overlooked. In this study, we investigate the variations of platinum and palladium solubilities during assimilation of graphite and methane through thermodynamic modeling, in comparison with data from an array of highly distinctive magmatic sulfide ore systems representing ages from Archean to Paleozoic, melt compositions from komatiite to basalt, and magmatic settings including lavas, hypabyssal intrusions, plutonic continental arc roots, and plutonic layered intrusions, namely: Raglan, Norilsk-Talnakh, Lac des Iles, and the J-M Reef of the Stillwater Complex. We model assimilation-fractional crystallization processes to estimate the reduction of oxygen fugacity (fO2) of the melt due to incorporation of graphite and methane. The simulations show that although Pd remains highly soluble during the progressive assimilation of reduced carbon, Pt solubility decreases significantly as the silicate melt becomes increasingly reduced. With less than 8% of sediment assimilation, Pt alloy may saturate and then deviate from sulfide-undersaturated silicate melts, concomitantly increasing the Pd/Pt value of the remaining melts of the Raglan and Norilsk-Talnakh systems. For the Lac des Iles and Stillwater systems, a higher extent of assimilation is needed to reach Pt saturation because of the relatively carbon-poor nature of the lower crustal rocks. The assimilation of methane volatiles is shown to be more effective than graphite assimilation, and it provides a pathway to Pt alloy fractionation in the absence of detectable amounts of bulk host-rock assimilation. High Pd/Pt values have been documented in many world-class magmatic sulfide deposits whose parental magmas have demonstrably experienced crustal contamination. Our model suggests that although anomalous Pd/Pt values may be explained by other mechanisms such as incongruent melting of preexisting sulfide or differences in the diffusivities of the metals within achieving equilibration, the assimilation of graphite or methane may play an important role in the global occurrence of magmatic sulfide ores with elevated Pd/Pt values.
Ying Zhou Lihttps://doi.org/10.5382/econgeo.5165
William D. Smith M. Christopher Jenkins Zhuosen Yao James E. Mungall; ASSIMILATION OF REDUCED CARBON TRIGGERS PLATINUM ALLOY SATURATION IN MAFIC AND ULTRAMAFIC MAGMAS. Economic Geology 2025; doi: