#chemistry

Quantifying methane emissions from wastewater treatment
This project aims to quantify methane emissions from wastewater treatment plants. The expected outcomes are improved understanding of methane emissions from within the plant, their spatial and temporal variability, and how they contribute to the total emissions. This may reduce emissions of methane.

Repurposing & fortification of nutrient-rich waste streams
This project investigates the potential of the combined waste streams from the two industries to develop new ingredients for food applications. The expected outcome is a framework to develop products from reclaimed and fortified nutrient-rich fractions suited to their physico-chemical properties. The potential benefit is improved nutrient upcycling, reduced food waste and carbon footprint.

Extending the shelf life of UHT plant protein beverages
This Project aims to improve understanding and overcome the negative effects of the secondary lipid oxidation products and Maillard reaction in UHT plant protein beverages. The expected outcome is a methodology to impede the negative impact of malodorous/browning reactions in high protein UHT beverages. This may lead to the extension of shelf life of these products furthering export opportunities.

Li-ion battery separator material recovery and utilisation
Sodium battery is a promising alternative for energy storage if precious metal prices for making LIB remain high. This Project will mainly focus on the recovery of LIB separator material and explore economic applications of the recovered separator materials, such as turning it into high-value hard carbon for making sodium battery anode material.

Compostable plastics
This Project aims to design and develop compostable plastics. The expected outcome is to produce new materials and compositions from sustainable sources to make plastics. This could benefit Australia to find new ways to make plastics that are sustainable and circular.