Publications

Journal Publications

2020

  • Rapson TD, Ju H, Paul Marshall P, Devilla R, Jackson CJ, Giddey S, Sutherland TD. 2020 Engineering a solid-state metalloprotein hydrogen evolution catalyst. Scientific Reports 10.1038/s41598-020-60730-y here
  • Rapson TD, Christley-Balcomb AM, Jackson CJ, Sutherland TD. 2020 Enhancement of metallomacrocycle-based oxygen reduction catalysis through immobilization in a tunable silk-protein scaffold. Journal of Inorganic Biochemistry 204:110960 here

2019

  • Sutherland TD, Vashi AV, Kardia E, Sriskantha A, Rapson TD, Hall RN, Werkmeister JA. 2019. Biocompatibility and immunogenic response to recombinant honeybee silk material. Journal of Biomedical Materials Research Part A. doi:10.1002/jbm.a.36695 here

2018

  • Sutherland TD, Sriskantha A, Rapson TD, Kaehler BD, Huttley GA. Did aculeate silk evolve as an antifouling material? PLoS One. 2018 Sep 21;13(9):e0203948. doi: 10.1371/journal.pone.0203948. PMID: 30240428; PMCID: PMC6150510. here
  • Woodhead AL, Church AT, Rapson TD, Trueman HE, Church JS, Sutherland TD. 2018 Confirmation of bioinformatics predictions of the structural domains of honeybee silk. Polymers 10: 776 here
  • Rapson TD, Hall GL, Sutherland TD. Could home based FeNO measurements breathe new life into asthma management? Journal of Asthma. here
  • Sutherland TD, Huson MG, Rapson TD. Rational design of new materials using recombinant structural proteins: Current state and future challenges. Journal of Structural Biology 201:76-83. here
  • Musameh M.M, Dunn, C.J, Uddin, M.H, Sutherland, T.D, Rapson, T.D. 2018 Silk provides a new avenue for third generation biosensors: Sensitive, stable and selective electrochemical detection of nitric oxide. ​Biosensors and Bioelectronics 103:26-31 here

2017

  • Rapson TD, Liu JW, Sriskantha A, Musameh M, Dunn CJ, Church JS, Woodhead A, Warden A, Riley MJ, Harmer JR, Noble CJ, Sutherland TD. 2017. Design of silk proteins with increased heme binding capacity and fabrication of silk-heme materials. Journal of Inorganic Biochemistry 117:219-227. here
  • Trueman HE, Sriskantha A, Qu Y, Rapson TD, Sutherland TD. 2017. Modification of honeybee silk by the addition of antimicrobial agents. ACS Omega 2:4456–4463. here
  • Rapson TD, Kusuoka R, Butcher J, Musameh M, Dunn CJ, Church JS, Warden A, Blanford CF, Nakamura N, Sutherland TD. 2017. Bioinspired electrocatalysts for oxygen reduction using recombinant silk films. Journal of Materials Chemistry A 5:10236-10243. here

2016

  • Woodhead A, Sutherland TD, Church JS. 2016. Structural analysis of hand drawn bumblebee Bombus terrestris silk. International Journal of Molecular Sciences 17:1170-1183. here
  • Horgan CC, Han Y-S, Trueman H, Jackson CJ, Sutherland TD, Rapson TD. 2016. Phosphorescent oxygen-sensing and singlet oxygen production by a biosynthetic silk. RSC Advances 6:39530 – 39533. here

2015

  • Rapson TD, Sutherland TD, Church JS, Trueman HE, Dacres H. Trowell SC. 2015. De novo engineering of solid-state metalloproteins using recombinant coiled-coil silk. Biomaterials and Engineering 1:1114-1120here
  • Walker AA, Holland C, Sutherland TD. 2015. More than one way to spin a crystallite: Multiple trajectories through liquid crystallinity to solid silk. Proceedings of the Royal Society B 282:1809-1818. here
  • Walker AA, Weisman S, Trueman HE, Merritt DJ, Sutherland TD. 2015. The other prey-capture silk: Fibres made by glow-worms (Diptera: Keroplatidae) comprise cross-β-sheet crystallites in an abundant amorphous fraction. Comparative Biochemistry and Physiology, Part B 187:78–84. here
  • Maitip, J, Trueman HE, Kaehler BD, Huttley GA, Chantawannakui P, Sutherland TD. 2015. Folding behaviour of four silks of giant honeybee reflects the evolutionary conservation of aculeate silk proteins. Insect Biochemistry and Molecular Biology 48:40-50. here

2014

  • Sutherland TD, Sriskantha S, Church JS, Strive T, Trueman HE, Kameda T. 2014. Stabilisation of viruses by encapsulation in silk proteins. 2014. Applied Materials and Interfaces 6:18189-96. here
  • Rapson, TD, Church JS, Trueman HE, Hacres H, Sutherland TD, Trowell SC. 2014. Micromolar biosensing of nitric oxide using myoglobin immobilised in a synthetic silk film. Biosensors and Bioelectronics 62:214-220. here
  • Kambe Y, Sutherland TD, Kameda T. 2014. Recombinant production and film properties of full-length hornet silk proteins. ACTA Biomaterialia 10:3590-8. here
  • Church JS, Woodhead AL, Walker AA, Sutherland TD. 2014. A comparison of convergently evolved insect silks that share β-Sheet molecular structure. Biopolymers 101:630-639. here
  • Campbell PM, Trueman HE, Zhang Q, Koijima K, Kameda T, Sutherland TD. 2014. Cross-linking in the silks of bees, ants and hornets. Insect Biochemistry and Molecular Biology 48:40-50. here
  • Sutherland TD, Trueman HE, Walker AW, Weisman S, Campbell PM, Dong Z, Huson MG, Woodhead AL, Church JS. 2014. Convergently-evolved structural anomalies in the coiled coil domains of insect silk proteins. Journal of Structural Biology 186:402–411. here

2013

  • Sutherland TD, Peng YY, Trueman HE, Weisman S, Okada S, Walker AA, Sriskantha A, White JF, Huson M, Werkmeister, JA, Glattauer V, Stoichevska V, ST, Haritos VS, Ramshaw JAM. 2013. A new class of animal collagen masquerading as an insect silk. Scientific Reports 3:2864. here
  • Poole JM, Church JS, Woodhead AL, Huson MG, Sriskantha A, Kyratzis IL, Sutherland TD. 2013. Continuous production of flexible fibers from transgenically-produced honeybee silk proteins. Macromolecular Bioscience 13:1321-1326. here
  • Walker AA, Warden AC, Trueman HE, Weisman S, Sutherland TD. 2013. Micellar refolding of coiled coil honeybee silk proteins. Journal of Material Chemistry B 1:3644-3651. here
  • Walker AA, Church JS, Woodhead AL, Sutherland TD. 2013. Silverfish silk is formed by entanglement of randomly coiled protein chains. Insect Biochemistry and Molecular Biology 43:572-579. here

2012

  • Huson MG, Church JS, Poole JM, Weisman S, Sriskantha S, Warden AC, Ramshaw JAM, Sutherland TD. 2012. Structural and physical changes of honeybee silk materials induced by heating or by immersion in aqueous methanol solutions. PLoS ONE 7:e52308. doi:10.1371/journal.pone.0052308. here
  • Walker AA, Weisman S, Kameda T, Sutherland TD. 2012. Natural templates for coiled coil biomaterials from praying mantis egg-cases. Biomacromolecules 13:4264-4272. here
  • Walker AA, Weisman S, Church JS, Merritt DJ, Mudie ST, Sutherland TD. 2012. Silk from crickets: a new twist on spinning. PLoS ONE 7:e30408. doi:10.1371/journal.pone.0030408. here
  • Sutherland TD, Weisman S, Walker AA, Mudie ST. 2012. The coiled coil silk of bees, ants and hornets. Biopolymers 97:446-454. here

2011

  • Wittmer CR, Hu X, Gauthier P-C, Weisman S, Kaplan DL, Sutherland TD. 2011. Production, structure and in vitro degradation of electrospun honeybee silk nanofibres. Acta Biomaterialia 7:3789-3795.
  • Sutherland TD, Jeffrey S. Church JS, Hu X, Huson MG, Kaplan DL, Weisman S. 2011. Single honeybee silk protein mimics properties of multi-protein silk. PLoS ONE 6:e16489. doi:10.1371/journal.pone.0016489.

2010

  • Haritos VS, Niranjane A, Weisman S, Trueman HE, Sriskantha A, Sutherland TD. 2010. Harnessing disorder: onychophorans use highly unstructured proteins, not silks, for prey capture. Proceedings of the Royal Society B 277:3255-3263.
  • Xu M., Seago A., Sutherland TD, Weisman S. 2010. Dual structural color mechanisms in a scarab beetle. Journal of Morphology 271:1300-1305
  • Weisman S, Haritos VS, Church JS, Huson MG, Mudie ST, Rodgers AJW, Dumsday GJ, Sutherland TD. 2010. Honeybee silk: Recombinant protein production, assembly and fiber spinning. Biomaterials 31:2695-2700.
  • Sutherland TD, Young J, Weisman S, Hayashi CY and Merrit D. 2010. Insect silk: one name, many materials. Annual Review of Entomology 55:171-88.

2009

  • Weisman S, Okada S, Mudie ST, Huson MG, Trueman HE, Sriskantha A, Haritos VS, Sutherland TD. 2009. Fifty years later: the sequence, structure and function of lacewing cross-beta silk. Journal of Structural Biology 168:467-475.

2008

  • Sehnal F, Sutherland TD. 2008. Silks produced by insect labial glands. Prion 2:1-9.
  • Weisman S, Trueman HE, Mudie ST, Church JS, Sutherland TD, Haritos VS. 2008. An unlikely silk: the composite material of green lacewing cocoons. Biomacromolecules 9:3065-3069.
  • Okada S, Weisman S, Trueman TE, Mudie ST, Haritos VS, Sutherland TD. 2008. An Australian webspinner species makes the finest known insect silk fibers. International Journal of Biological Macromolecules 43:271–275.

2007

  • Sutherland TD, Weisman S, Trueman TE, Sriskantha A, Trueman JWH, Haritos VS. 2007. Conservation of essential design features in coiled coil silks. Molecular Biology and Evolution 24:2424-2432.
  • Sutherland TD, Young JH, Sriskantha A, Weisman S, Okada S, Haritos VS. 2007. An independently evolved Dipteran silk with features common to Lepidopteran silks. Insect Biochemistry and Molecular Biology 37:1036-43.

2006

  • Sutherland TD, Campbell PM, Weisman S, Trueman HE, Sriskantha A, Wanjura WJ, Haritos VS. 2006. A highly divergent gene cluster in honeybees encodes a novel silk family. Genome Research 16:1414-1421.

Book chapters

  • Sutherland TD, Rapson TD, Huson MG, Church JS. 2017. Recombinant structural proteins and their use in future materials. In: Fibrous Proteins: Structures and Mechanisms (eds Parry, D.A.D. and Squire, J.M.) vol. 82, pp 491-526, Springer International Publishing Switzerland. here
  • Kameda T, Walker AA, Sutherland TD. 2014. Evolution and application of coiled coil silks. in “Biotechnology of Silk”. Biologically inspired systems Vol 5. pp 87-106. Editor: Prof. Tomas A Miller, University of California, Riverside. Publisher: Springer; Dordrecht, The Netherlands
  • Sehnal F, and Sutherland TD. 2008. Silks Produced by Insect Labial Glands In Fibrous Proteins. Ed: Thomas Scheibel Eurekah URL: http://eurekahcom/chapter/3989