
APPENDIX

A. Proof of the Minimum Distance to a Spherical Cap
Let x0

i = Rr0xi and let x∗ij = Rxi be the point on the origin-centred spherical cap such that ∠
(
x0
i ,x
∗
ij

)
= β and x∗ij is

coplanar with x0
i and y′j = (yj − t0), that is x∗ij ·

(
x0
i × y′j

)
= 0.

Theorem 3. (Spherical cap distance) For the spherical cap defined by the vector (x′i + t0) constrained by ∠(x′i,x
0
i ) 6 β,

the minimum distance from a point yj to the spherical cap is given by

min ‖x′i + t0 − yj‖ =

{∣∣‖xi‖ − ‖yj − t0‖
∣∣ for α 6 β

‖x∗ij − (yj − t0)‖ for α > β
(1)

where α and β are shown in Figure A.1 and are given by

α = ∠
(
x0
i ,yj − t0

)
= arccos

x0
i · (yj − t0)

‖xi‖‖yj − t0‖
(2)

β = ∠
(
x0
i ,x
∗
ij

)
= min(

√
3δr, π). (3)

Proof. Dropping the subscripts and translating everything by (−t0), an arbitrary point x′ = Rx on the spherical cap can be
expressed as the rotation of the point x0 about the sphere centre towards y′ by an angle γ ∈ [0, β], followed by a rotation of
this intermediate vector (denoted x′′) about the axis x0 by θ, as shown in Figure A.2. Note that x′′ is coplanar with x0 and
y′, and x∗ is a special case of x′′ when γ = β. Also note that ‖x0‖ = ‖x′‖ = ‖x′′‖ = ‖x∗‖ = ‖x‖ and γ ∈ [0, β] follows
from Lemma 3. The first axis of rotation, perpendicular to the plane formed by x0 and (y − t0), is given by

û =
x0 × y′

‖x‖‖y′‖ sinα
. (4)

Therefore, by the Rodrigues’ rotation formula,

x′′ = x0 cos γ +
(
û× x0

)
sin γ + û(û · x0)(1− cos γ) (5)

= x0 cos γ +
(
û× x0

)
sin γ (6)

= x0 cos γ +
(x0 · x0)y′ − (x0 · y′)x0

‖x‖‖y′‖ sinα
sin γ (7)

=
sin(α− γ)

sinα
x0 +

‖x‖ sin γ

‖y′‖ sinα
y′ (8)

where (6) follows, after substituting in (4), from the result that the scalar triple product is zero if any two vectors involved
are equal, (7) follows from a vector triple product identity and (8) follows by expanding, simplifying and using x0 · y′ =
‖x‖‖y′‖ cosα. Therefore, by the Rodrigues’ rotation formula,

x′ = x′′ cos θ +

(
x0

‖x‖
× x′′

)
sin θ +

x0

‖x‖

(
x0

‖x‖
· x′′

)
(1− cos θ) (9)

=

(
cos γ − cosα sin γ cos θ

sinα

)
x0 +

sin γ

sinα

x0 × y′

‖y′‖
+

sin γ cos θ

sinα

‖x‖
‖y′‖

y′ (10)

where (10) follows from substituting in (8), expanding and simplifying. Now, the squared distance between point y′ and an
arbitrary point on the spherical cap is given by

‖x′ − y′‖2 = (x′ − y′) · (x′ − y′) (11)
= x′ · x′ + y′ · y′ − 2x′ · y′ (12)

= ‖x‖2 + ‖y′‖2 − 2

(
cos γ − cosα sin γ cos θ

sinα

)
x0 · y′ − 2

‖x‖ sin γ cos θ

‖y′‖ sinα
y′ · y′ (13)

= ‖x‖2 + ‖y′‖2 − 2

(
cosα cos γ − cos2 α sin γ cos θ

sinα

)
‖x‖‖y′‖ − 2

sin γ cos θ

sinα
‖x‖‖y′‖ (14)

= ‖x‖2 + ‖y′‖2 − 2 (cosα cos γ + sinα sin γ cos θ) ‖x‖‖y′‖ (15)
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(a) Case 1: yj is within the rotation cone (α 6 β).

t0

Rr0xi + t0

||xi||

α yj

||yj − t0||
β

¯
e′ij (Rr, t)
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(b) Case 2: yj is outside the rotation cone (α > β).
Figure A.1. Upper and lower bounds of the pairwise residual error, neglecting translation. A 2D cross-section in the plane defined by points
{Rr0xi + t0,yj , t0} is shown. The spherical cap cross-section is depicted as a bold curve.
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(a) Viewpoint A: the arbitrary vector (x′′
i + t0) lies on the spherical cap and

is coplanar with (x0
i + t0), yj and t0. x′′

i is defined as the rotation of the
vector x0

i towards (yj − t0) by the angle γ ∈ [0, β].

x0
i + t0

yj

x∗ij + t0

x′′i + t0
x′i + t0θ

(b) Viewpoint B: the arbitrary vector (x′
i+t0) lies on the spherical cap and is

not coplanar with the other points. x′
i is defined as the rotation of the vector

x′′
i about the axis x0

i by the angle θ.
Figure A.2. Constructions for the proof of Theorem 3. (a) The spherical cap (the bold curve) is viewed in the plane defined by points
{Rr0xi + t0,yj , t0}. (b) The spherical cap (the grey shaded circle) is viewed in the direction of the large red arrow in (a).

where (13) follows from substituting in (10) and noting that the scalar triple product is zero if any two vectors involved are
equal and (15) follows from the identity cos2 α = 1− sin2 α. The squared distance is minimised when θ = 0 and is given by

min ‖x′ − y′‖2 = ‖x‖2 + ‖y′‖2 − 2 (cosα cos γ + sinα sin γ) ‖x‖‖y′‖ (16)

= ‖x‖2 + ‖y′‖2 − 2 cos(α− γ)‖x‖‖y′‖. (17)

When α 6 β (Case 1), (17) is minimised when γ = α, giving

min ‖x′ − y′‖2 = ‖x‖2 + ‖y′‖2 − 2‖x‖‖y′‖ (18)

= (‖x‖ − ‖y′‖)2 (19)

∴ min ‖x′ − y′‖ =
∣∣‖x‖ − ‖y′‖∣∣ for α 6 β. (20)

When α > β (Case 2), (17) is minimised when γ = β, giving

min ‖x′ − y′‖2 = ‖x‖2 + ‖y′‖2 − 2 cos(α− β)‖x‖‖y′‖ (21)

= ‖x∗ − y′‖2 (22)

∴ min ‖x′ − y′‖ = ‖x∗ − y′‖ for α > β. (23)
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(a) Two 1D point-sets, both with a single outlier
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(b) L2 Distance and L2E Estimator (σ = 0.2)
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(c) Negative Log-Likelihood and Maximum Likelihood Estimator (σ = 0.2)
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(d) L2 Distance and L2E Estimator (σ = 1.0)
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(e) Negative Log-Likelihood and Maximum Likelihood Estimator (σ = 1.0)

Figure B.3. Toy example demonstrating the robustness of the L2E estimator. (a) Two 1D point-sets A and B which overlap exactly, except
for a single outlier in each. As point-set B translates with respect to point-set A, the L2 distance between Gaussian mixtures (constructed
from the point-sets using kernel density estimation) and the negative log-likelihood is evaluated and plotted for different scales σ. (b) At a
scale of σ = 0.2, the L2E estimator is globally-optimal and multiple local minima exist. (c) At the same scale (and below), the Maximum
Likelihood Estimator (MLE) is severely biased by the outliers and finds the incorrect translation. It also has multiple local minima. (d, e)
At larger scales (such as σ = 1.0), the MLE is still biased, but less so. As the scale increases further, both estimates converge towards
aligning the centres-of-mass of the point-sets. The translation estimates (L2E and MLE) and their values are marked as black dots.

B. Robustness of the L2E Estimator
The robustness of the L2E estimator to outliers has been demonstrated both empirically and from its connection with M-

estimators [1, 6]. While counter-intuitive, it arises from the Gaussian attenuation of outlying values. Scott [6] demonstrates
that L2E is an “inherently robust” estimator that has the advantage of not requiring any additional tuning factors, unlike many
other robust functions. A toy example demonstrating that the L2E estimator is not biased by systematic outliers, unlike the
estimator from Maximum Likelihood Estimation (MLE), is shown in Figure B.3. In contrast, Figure B.4 shows that, in the
absence of outliers, the alignment task is adequately (and perhaps preferably) handled by MLE.
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(a) Two 1D point-sets, both without any outliers
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(b) L2 Distance and L2E Estimator (σ = 0.05)
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(c) Negative Log-Likelihood and Maximum Likelihood Estimator (σ =
0.05)

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Translation

L
2
 D

is
ta

n
c
e

(d) L2 Distance and L2E Estimator (σ = 0.2)
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(e) Negative Log-Likelihood and Maximum Likelihood Estimator (σ = 0.2)

Figure B.4. Toy example demonstrating the alignment of two point-sets without outliers. (a) Two 1D point-sets A and B which overlap
exactly. As point-set B translates with respect to point-set A, the L2 distance between Gaussian mixtures (constructed from the point-sets
using kernel density estimation) and the negative log-likelihood is evaluated and plotted for different scales σ. (b) At a scale of σ = 0.05,
the L2E estimator is globally-optimal and the profile of the L2 distance function contains many local minima. (c) At the same scale, the
MLE estimator is also globally-optimal, but the negative log-likelihood profile has fewer, much shallower local minima. (d, e) At larger
scales (σ = 0.2), both profiles smooth out and both still find the global-optimum. The translation estimates (L2E and MLE) and their
values are marked as black dots.
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Figure C.5. Evolution of the upper and lower bounds for the reconstructed DRAGON and BUNNY models. The normalised objective function
value is plotted against time.

C. Additional Experimental Results
In this section, we present additional figures from the experimental results section. In Figure C.5, Figure 4 has been re-

plotted at a larger scale without using a logarithmic scale. This scale was necessary to visualise the conceptually critical BB
and GMA steps, which were almost invisible in the figure otherwise. However, the bound evolution is clearer in Figure C.5.

In Figure C.6, the results from Tables 3 and 4 are shown as box-plots. It can be clearly seen that GOGMA [*] and GOGMA
with refinement [*]+ outperform Go-ICP [7] with a loose ε threshold [52]a and a tighter ε threshold [52]b, particularly with
regard to robustness. That is, GOGMA produced few outliers, all of which are in the vicinity of the correct transformation.
In contrast, Go-ICP produced many outliers, most of which are incorrect even by the coarsest success criterion. This is likely
due to the partially-overlapping nature of the point-sets. Under the Go-ICP framework, trimming would be required to handle
these missing correspondences. However, any trimming made the runtime prohibitive for these datasets.
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Figure C.6. Box plots of the translation and rotation errors for the STAIRS and WOOD-SUMMER datasets.
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