
User Script libraries

Peter Mason, March 2018

Introduction
Perhaps some of you know that you can lump two or more scalar batch-scripts into one file

and, with a little attention to the second line of the file, TSG will know how to handle it. It

will present you with a list of script methods to choose from when you create a batch-script

scalar from the file. TSG has been able to do this for years when given an external file, so

what’s all the fuss then? It’s about organising things. A user-script library is handled

differently to an ad-hoc file of scripts. Given the right attention, a user script library file can

be hooked up with TSG to work very much like TSG’s own built-in scripts, with easy access,

uniquely-identified script methods, version tracking, and documentation links.

Who is it for?
The average TSG user is not interested in creating scalar batch scripts. If that’s you then you

may have some doubts about reading on, but do read on. The first part of this document

describes how to use script libraries. The TSG distribution now includes a few user script

libraries and it is likely that more libraries will become available in the future.

If you already create scalar batch-scripts or are an advanced user who might be willing to give

it a try then also see the latter part of this manual, which describes creating your own user script

libraries. The user batch-script library system offers a way to have standard algorithm

collections. If you share scalar calculation ideas with other TSG users then it could be helpful.

Even if you don’t collaborate with other TSG users, you might find that it helps to keep things

tidy. Remember that a batch script does not have to be complicated – it can contain just one

method (e.g., a PFit). i.e., You can code normal TSG scalars as single-method batch scripts

and so have them “in the system”.

Part 1: Using script libraries

Overview
 You can set a system-wide default library for VNIRSWIR datasets and another for TIR

datasets.

o However one library can actually contain a mixture of scripts, e.g., VNIRSWIR

and TIR scripts.

o At this time the system can only be configured with these two user script

libraries. The system may be expanded in the future.

 Each TSG dataset has a user script library associated with it.

o The dataset inherits the system default library to begin with.

 The dataset’s script library is used by TSG’s Scalar Construction Wizard when a

“Batch” scalar is created.

o Select the User radio button when creating the scalar. The library’s compatible

scripts are then shown in the Script list.

System default user script libraries
Start TSG and use the File ->

Settings menu while no

dataset is open. Switch to

the Spec Calcs tab.

At the bottom you will find a

section named User batch-

script library. It has two rows

of controls. The V / S row is

for VNIRSWIR datasets and

the TIR row for TIR datasets.

Use the Pick Button(s) to

select your user script library

file(s).

Where are user script library files located?

I give up, you tell me. Just kidding. Sort of.

User script libraries that are bundled with TSG are installed alongside the TSG8 executable.

This is in a subdirectory in your “App Data Local” area. For example, my Windows login is

mas142 so my TSG8 is installed here:

C:\Users\mas142\AppData\Local\The Spectral Geologist\

Unlike the “Program files” directory that TSG7 used, you can access this directory. If you

have other user script libraries then you might consider copying them here. (Before long you’ll

get used to the clumsy directory name.) If you’d rather not then I recommend creating an

easily-located directory for your user scripts. Perhaps you could even use the directory where

you keep all your aux-match datasets1.

What user script libraries come with TSG8? (March 2018)

 mfemscripts2016.txt

A collection of “multiple feature extraction method” scripts managed by Carsten

Laukamp, CSIRO. These are at least medium-complexity scripts that carry a level of

interpretation (i.e., they target specific minerals). Some documentation is included.

 legacy_tsg7_scripts.txt

The scripts that were recently booted out of TSG’s built-in “system” collection.

 ms_tir_scripts.txt

A collection of TIR scripts by Martin Schodlok.

1 Just kidding again. That idea never took off.

Setting a dataset’s script library
This works very much like the above, only you go into File -> Settings while a dataset is open.

(You are now adjusting the dataset’s settings rather than the system global ones.)

 If the dataset consists of a VNIRSWIR + TIR pair then both the V / S and TIR script

control sets will be shown, otherwise just one set will.

 If the dataset has no script selected yet then it inherits the system default. You will see

the system default script selected here. If you change the selection now then you are

only changing it for the current dataset.

Creating a scalar from a user script library
Open a dataset and use

the Edit -> New scalar

menu to bring up the

Scalar Construction

Wizard.

If you have a

VNIRSWIR + TIR

dataset pair then (as

always) be mindful of

the Host dataset radio

buttons along the top.

(Pick the right dataset to

host the new scalar.)

Select the BATCH

item in the Method list.

Next.

Select the User radio

button in the Script

source area at the top,

then look at the Script

list. It will show all

scripts in the library that

are compatible with the

dataset. Select one.

 TSG shows some metadata describing the script.

 If the script author included a documentation link then the Info button will be live.

Click it to view the script’s documentation. (TSG will normally bring up your web

browser for this.)

 If you would like to see and perhaps edit the script’s “code” then click the Edit button.

TSG will bring up a separate edit window. Any changes you make to the script code

will only apply to the scalar that you are creating now, not the script library.

 If there is a “final_mask” scalar in the dataset then (as usual) it will be selected

automatically.

 Click Finish to calculate the scalar and close the Scalar Construction Wizard.

The other buttons

 The Restore button is only enabled if you change the script via Edit. Click it to restore

the script to the original code.

o If you bring up an existing script scalar for modification then the Restore button

will be enabled if the scalar was constructed from an edited script. (TSG can

track things for a scalar that was created from a user script library.) Click it to

restore the script to the original code in the script library.

 The Upgrade button is always disabled when creating a new scalar.

o If you bring up an existing script scalar for modification then the Upgrade button

will be enabled if the script author has since released a new version of the script

concerned. Click it to upgrade the scalar to the new version.

Part 2: Making your own libraries
This document will not discuss TSG’s batch-script syntax or how to go about coding scalar

batch-scripts. Our starting point is a collection of batch-script files, each describing a single

scalar’s calculation. From there the job is to collect all the scripts in a single text file (leaving

out the first 2 lines of each script), set the first two lines of the file, and add metadata to each

script.

An example script
Here’s an example of the sort of script file that you might have now (note long lines have been

wrapped in this document):

TSG Specialist Scalar Command Set
Commands = 1
name = Hm-Go_Distr, 6
p1 = profile, layer=ref, stat=depth, bkrem=div, fit=3, wcentre=913, wradius=137
p2=ratio, wnum=450, wdenom=1650, biggest=1
p3= expr, param1=p2, mod1=set, param2=p1, arithop=mult
p4= expr, param1=p3, const2=0.025, arithop=lgt, nullhandling=out
p5= pfit, layer=ref, wunits=nm, wmin=776, wmax=1050, bktype=hull, bksub=div,
order=4, product=0, bktype=hull, bksub=div
return=expr, param1=p4, param2=p5, arithop=mult

And here is how it might appear within a script library:

TSG Specialist Scalar Command Set
Commands = 23
…
name = Hm-Go_Distr, 6
description = Continuum removed wavelength of the 900 nm absorption minimum
calculated using a fitted 4th order polynomial between 776-1150nm.
date = Thu Nov 12 22:18:35 2015
Version = 1.0
Category = published
scalargroup = mineralogy:iron oxides
uuid = AF696A4B-EE55-4EEC-B646-2AB0309CAE42
replaces = 7118dc56-6be7-4322-a08f-bba55ca5c7c5
author = CSIRO (Tom Cudahy and Erick Ramanaidou, 1997)
doclink = $TSGAPP/mfemcripts2016.htm#Hm-Go_Distr
p1 = profile, layer=ref, stat=depth, bkrem=div, fit=3, wcentre=913, wradius=137
p2=ratio, wnum=450, wdenom=1650, biggest=1
p3= expr, param1=p2, mod1=set, param2=p1, arithop=mult
p4= expr, param1=p3, const2=0.025, arithop=lgt, nullhandling=out
p5= pfit, layer=ref, wunits=nm, wmin=776, wmax=1050, bktype=hull, bksub=div,
order=4, product=0, bktype=hull, bksub=div
return=expr, param1=p4, param2=p5, arithop=mult
…

As you may notice, the script code itself (lines P1 to return) is unchanged but there are more

metadata fields in the library.

The library’s commands= line
All TSG batch-script files start with two lines like this:

TSG Specialist Scalar Command Set
Commands = N

(Where N is a number greater than 0.)

In the library example above, the second line is Commands = 23. Why 23? This tells TSG

that the library contains 23 scripts. It’s that simple.

Script metadata fields
Most of these fields are optional but the more fields you can provide the better.

Some fields have an ugly thing called a “UUID”, which is a “Universally Unique Identifier”.

UUIDs will get their own chat session later.

Name

e.g., name = Hm-Go_Distr, 6

This field is essential.

It has two parts, the name of the script and the number of methods (P1 to return) in the script.

The name should be a good one. Scalars made from the script will be named after it (by

default). The number of methods must be correct.

Description

A single line of text describing the script. Up to 256 characters long.

This field is optional but highly recommended. Users will see it when they select the script

for calculation. Tell them something.

Bounds

General format: bounds = [min=x1 [,clipmin=yn]] [,max=x2 [,clipmax=yn]]
e.g., bounds = min=0.0001, clipmin=n, max=0.275, clipmax=y

This field is optional.

You can use it to set lower and / or upper acceptability bounds for the script’s results. x1 and

x2 are numbers; yn is either “y” (yes) or “n” (no).

Examples:

 Min=0.2: If the script’s result is less than 0.2 then it is changed to NULL (clipmin

wasn’t given).

 Min=0.2, clipmin=n: Same as above.

 Min=0.2, clipmin=y: If the script’s result is less than 0.2 then it is clipped to 0.2.

 Min=0.2, clipmin=y, max=10.0: If the script’s result is less than 0.2 then it is clipped

to 0.2, and if it is greater than 10 then it is changed to NULL.

 Min=0.2, clipmin=y, max=10.0, clipmax=y: If the script’s result is less than 0.2 then

it is clipped to 0.2, and if it is greater than 10 then it is clipped to 10.

 max=10.0: If the script’s result is greater than 10 then it is changed to NULL.

Uuid

e.g., uuid = AF696A4B-EE55-4EEC-B646-2AB0309CAE42

Consider this field is essential in a user script library.

A script’s UUID uniquely identifies it and is used for change and version tracking. UUIDs

are discussed more below.

Category

e.g., category = base

This field is essential. Your choices are: user published base utility unvalidated

This field controls the “folder” where the script appears in the Scalar Construction Wizard’s

script list.

Version

e.g., version = 2.1

This field is optional but recommended. A 16-character string is accepted. Scripts with

version numbers look impressive.

Author

e.g., author = Tommy Edison

This field is optional but recommended. 64 characters. It shows the script’s author(s). Users

will see it when they select the script for calculation.

Scalargroup

e.g., scalargroup = mineralogy:iron oxides

This field is optional. Scalars created from the script will appear in this scalar group. Your

choices are restricted to the scalar groups that are defined within TSG. See TSG’s Edit ->

Scalar names and groups dialog.

Replaces

e.g., replaces = 7118dc56-6be7-4322-a08f-bba55ca5c7c5

This field is optional – use it when necessary.

It gives the UUID of the (older version) script that the current script replaces.

This is how versioning is done. If you come up with a modification to a script in your library

then you don’t modify the script’s code in the library. Instead, you add a whole new script for

the new version. Having done that, you include a replaces= field to connect the new script to

the old script that it replaces, and you add a replacedby= field to the old script to connect it to

the new script.

Replacedby

e.g., replacedby = af696a4b-ee55-4eec-b646-2ab0309cae42

This field is optional – use it when necessary.

It gives the UUID of the (newer version) script that replaces the current script.

See “Replaces” above.

Seealso

e.g., seealso = 5bea6a9a-5c9a-4980-84c5-e4d0690d728c

This field is optional.

It gives the UUID of some other script that has some relationship with the current script.

Currently it is only used cosmetically in the Scalar Construction Wizard.

Date

e.g., date = Thu Nov 12 22:18:35 2015

This field is optional.

It gives the date when the script was authored. Currently it is only used cosmetically in the

Scalar Construction Wizard.

Doclink

e.g., http://mega.script.server.com/intermediate_725B.htm#platinum_grade_estimator
This field is optional, but it’s bound to be appreciated if you can supply it. It is hooked up to

the Info button in the script Scalar Construction Wizard.

It gives the URL2 to the script’s documentation. It would normally be an http:// or https:// web

link as a file:// link is too specific to be useful for general TSG users.

A couple of TSG-specific symbols can be used here:

 $TSGWEB refers to the TSG website and is a “shortcut” for:

https://research.csiro.au/thespectralgeologist

 $TSGAPP is a “shortcut” for the TSG installation directory.

E.g., $TSGAPP/mfemcripts2016.htm#Hm-Go_Distr

o You might find this one useful if you copy TSG script files (and their help files)

to the TSG installation directory, as discussed earlier.

UUIDs
UUIDs are a necessary part of user script libraries. The format used in TSG’s scripts consists

of 36 characters. It has 5 parts separated by “minus” characters and looks like this:

af696a4b-ee55-4eec-b646-2ab0309cae42

Case doesn’t matter – the letters can be upper- or lower-case.

UUIDs are used to uniquely identify scripts. Each UUID that you get from a proper UUID

generator is unique. There are websites that will generate UUIDs for you, e.g.,

https://www.uuidgenerator.net/ Otherwise, contact me (peter.mason@csiro.au) and I can

supply them.

2 “Uniform Resource Locator” or “Unapproachable Raving Lunatic” depending on context

https://www.uuidgenerator.net/
mailto:peter.mason@csiro.au

