Automatic Scalar Script Builder

Peter Mason, January 2019

Introduction

TSG’s batch-script-scalar functionality is powerful in the right hands. [If you know your way
around TSG’s scalar script language then you can build scalars with complex rulesand built-
in thresholds.1

Many TSG users do not and will not write scalar scripts, but they will explore ideas by
creating interactive TSG scalars. Although non-trivial spectral processing ‘algorithms’ can
be developed like this, there are impedimentsto applyingthese algorithmsin a production
workflow?.

TSG can now generate scalar scripts for several kinds of interactive scalars. The tool
understands complex scalars that are calculated from other scalars, not just standalone
scalars. My hope isthat TSG users will be encouragedto explore more complex methods
with chained interactive scalars, knowing that their final result scalar? can be scripted
automatically — if they follow some guidelines. | hold that this is the best way to design a
script anyway — first prototype the method with interactive TSG scalars®. That way you can
see what each component isdoing and get the thresholds and other settings right.

This document

TSG’s new tool for generatingscalar scripts will be presented first.

Then we’ll gothrough a medium-complexity MFEMP scalar script. We’ll replicateits
functionality by creating a little squad of interactive TSG scalars. (Each of these scalars can
be viewed andtweakedin TSG. Asnoted above thisis an important step whenyou design
your own scalar methods.) Then we’ll have TSG build a script for the method’s final scalar.

! For exampleyou couldbuilda ‘mineral presence’ mask scalar that seeks 4 absorptionfeatures of which 3 must
be presentand one mustnot, and has acceptance thresholds for each feature’s depth and wavelength. Given
a spectrum, this mask scalar would delivera result ‘yes’ or ‘no’. The script, completein a small textfile, could
easilybegiven to colleagues, and easilybe used by them.

2 TSG's ‘copy processing’ can doit, but it leaves dataset recipients with a confusing and fragile assortment of
scalars. Incontrasta scripted algorithm hasits workingsina tidy capsule (a small text file) and yields just one
scalar.

3 Along with alltheothersthatitis builtfrom

4Itcanbeveryhardto design a script ‘cold’ (starting with the script text file) when all youhaveto judgeis the
script’s final result.

5> CSIRO researcher Carsten Laukamp is the custodian of the ‘MFEM scriptlibrary. MFEM stands for ‘Multiple
Feature Extraction Method'.

TSG8’s Scalar Script builder

From the menu:

Selecta scalar from the listand TSG will
giveyou a script. Edit the scriptif you like
(e.g., the ‘Description’ field) and saveit to
disk. That’s basicallyit. Here comes the
long version...

TSG or NVCL Analytics?

What's all this? NVCL analytics?

Several TSG customers work with
HyLogger data and the AuScope NVCL
(National Virtual Core Library). ‘Analytics’
isan NVCL activity that’s in development.
It allows a TSG scalar script to be run
against drillhole spectrain the NVCL
database. The main pointhere isthat the
NVCL script engine does not recognise the
full set of methods that the TSG engine
does.

If you are preparing a script for NVCL
Analytics then select its radio button so
that TSG only shows you compatible
scalars in the list.

Supported script methods®

Profile Yes
PFit Yes
FeatEx Yes
Arith. Expression Yes
AuxMatch Yes
Import Yes
Ratio Yes
Pseudocolour Yes

Soin short:

Edit -> Scalar script builder...

Automatic Scalar-Script Builder

Where will the script be run? @756 () NVCL Analytics

Script this scalar: 0 Andalusite C

Automatically generated script:

© 2|

TSG Spedalist Scalar Command Set
Commands = 1

Mame = Andalusite C, 3
Description = Generated by TSG3
Category = user

Author = TSG3

Version = 1.0

Date = Thu Jan 31 11:26:43 2019

Andalusite A

P1 = pfit, layer =TCREF, wunits=MNANOMETRES, inflex=NO, peaks=NO,

Andalusite B

P2 = pfit, layer =TCREF, wunits=MANOMETRES, inflex=NO, peaks =M,

Andalusite C

return = expr, param1=P1, param2=F2, arithop=MULT, mod 1=PLAIN, r
v

£

>

Save script to file I

Yes Yes
Yes Yes
Yes Yes
Yes Yes
Yes No (but coming)
Yes No
No Yes
No Yes

Do not use Import or Aux-match scalar types when preparing a method for NVCL analytics.

61 include a “script file” column here for interest.

It shows the methods that are available when you create

scripts the old fashioned way, purely with a text editor. As you can see there are no interactive-TSG-scalar
counterparts (atthis time) for the Ratio and Pseudocolour methods. In other words the automatic scalar script

builder willnot usethese methods in its scripts.

Close

https://www.auscope.org.au/nvcl/
https://www.auscope.org.au/nvcl/
https://www.auscope.org.au/nvcl/
https://www.auscope.org.au/nvcl/

Scalar selectionlist

It’s a normal scalar selectionlist, like the onesin TSG’s scatterplot screen. If a primary +
associated dataset pairisopen (normally VNIRSWIR + TIR) then it allows access to both
datasets.

Importantly, the listonly shows scalars that are judgedto be scriptable. Thereforeit can be
affected by the TSG / NVCL radio-button selection.

Note that even when the TSG radio button is selected, the list will not show any Import-type
scalars. Who would want to ‘calculate’ one? TSG won’t clutterthe listwith the things.
HoweverTSG will, for example, allow you to build a script for an arithmetic-expression
scalar that uses an import-type scalar as an input.

Which scalar should you select?

The systemis designed to deal with scalar dependencies. If you have worked up an idea
that involves more than one interactive TSG scalar then you should selectyour final scalar.
(Thiswould normally be an arithmetic-expression scalarthat ‘bringsit all together’.) TSG
will track down all the scalars that it dependson, directly or indirectly, and incorporate
them inthe script.

Un-scriptable TSG scalars (why isn’t ‘my scalar’ on the list?)
Not all interactive TSG scalars can be scripted. These kindsare unsupported:

e Smooth

e Batch

e (Core

e (Class-extraction
e Stats

e PILS

In addition, import and aux-match scalars can’t be scriptedif NVCL is selected.
If ‘your scalar’ dependson any unsupported scalars, directly or indirectly, then TSG won’t
show it on the list.

The textwindow (and things you mightwantto editthere)

As soon as you selecta scalar, TSG will generate a script for it and display the scriptin the
main textwindow. You can editin this window.
Now you wouldn’t want to be changing any of the calculation-related fields here’. TSG lets
you editthe script so that you can personalise itand / or make it more accessible to others
by changing ‘metadata’ fieldsand adding comments. If you look at the example screengrab
on page 2 you will see that TSG doesn’tgive you a bare-bones script (unlessyouselect NVCL
Analytics). Itincludes metadata fields Description, Author and Version with placeholder
values, and it insertsa comment line before each script method. (Acomment line starts
with the # character.)

e Description: It behovesyou describe your method here. You have asingleline of

up to 255 characters to accomplishit. If you need more then use comment lines.
e Author: It's your method — put your name here.

7 Rather do thatatthe source—modify thescalars themselves in TSG, then come back and generate the script
again. Keepingthingscoherentlikethiscan preventconfusion atsomelater date.

e Version: Version numbers can be handy whena method evolves. AdjustTSG's
default 1.0 as necessary.

e Name: TSG names the script after the selected scalar. You can change the
name here but be careful — don’tchange the comma or the number after it.
e Comment lines: As noted these start with the # character. TSG comments

each method with the name of the interactive scalar that it represents. You might
want to change these comments or add some of your own. You can add as many
comment lines as you like, anywhere inthe script.

Save scriptto file

When you click this button, TSG will parse the script to check that you didn’t break anything
with your edits, then prompt you for a filename and save the script file to disk.

A worked example

We’ll take a look at the ‘kaolin composition’ script from Carsten Laukamp’s MFEM script
collection. We’'ll set about reproducing itsfunctionality with interactive TSG scalars.
(Hopefully, seeingthis process laid out will encourage TSG users to develop more complex
methods themselves, usinginteractive scalars.) Finally we’ll ask TSG’s script builderto
generate a script from our ‘final’ scalar.

Aboutthe script

‘Kaolin composition’ isa medium-complexity script with 23 methods. Now 23 methods
sounds like quite a lot but | call it ‘medium complexity’ because itreally has just three
components: two masks and the actual compositionresult. Let’s take a look at the script

and then I'll discussits implementation some more.
name = Kaolin composition, 23

#’is it kaolin’ mask

Pl = profile, stat=mean, wcentre=2138, wradius=0, layer=ref

P2 = profile, stat=mean, wcentre=2190, wradius=0, layer=ref

P3 profile, stat=mean, wcentre=2156, wradius=0, layer=ref

P4 profile, stat=mean, wcentre=2179, wradius=0, layer=ref

P5 = expr, paraml=Pl,param2=p2,arithop=add

P6 expr, paraml=P3,param?2=p4,arithop=add

p7 expr, paraml=p5,param2=p6,arithop=div

p8 = expr, paraml=p7, const2=1.005, arithop= lgt, nullhandling=out

#minimum threshold on 2200D (Al-clay mask)

P9 = profile, layer=ref, stat=depth, bkrem=div, fit=3, wcentre=2183,
wradius=63

pl0 = expr, paraml=p9, const2=0.1, arithop=lgt, nullhandling=out

#combine the two masks (both must be on)
pll= expr, paraml=p8, param2=pl0, arithop=mult

kaolin composition index

P12 = profile, stat=mean, wcentre=2138, wradius=0, layer=ref
P13 = profile, stat=mean, wcentre=2173, wradius=0, layer=ref
pld = expr, paraml=pl2, param2=pl3, arithop=add

P15 = profile, stat=mean, wcentre=2156, wradius=0, layer=ref
pl6 = expr, paraml=pl4, param2=pl5, arithop=div

P17 = profile, stat=mean, wcentre=2155, wradius=0, layer=ref
P18 = profile, stat=mean, wcentre=2190, wradius=0, layer=ref
P19 = expr, paraml=pl7, param2=pl8, arithop=add

P20 = profile, stat=mean, wcentre=2173, wradius=0, layer=ref
p21l = expr, paraml=pl9, param2=p20, arithop=div

p22 = expr, paraml=pl6, param2=p2l, arithop=div

#return the masked composition index
return= expr, paraml=pll, param2=p22, arithop=mult

‘Is it kaolin’ mask

The first part of the script builds a mask that checks if the spectrum shows kaolin. This
check is based on the MFEM ratio:
[ref (2138) + ref(2190)] / [ref(2156) + ref(2179)]
(where, for example, ref (2138) means ‘the reflectance at 2138nm’).
This ratio is put together by script methods P1 to P7.

This ratio must be 1.005 or more for the spectrum to be deemedto show kaolin. This check
is done by method P8, which finishesthe yes/ no kaolin mask.

‘Al-clay mask’ mask

The SWIR spectrum of an aluminium clay is expected to have a noticeable 2200nm
absorption. Method P9 calculates the relative absorption depth of the 2200nm absorption,
and P10 checks ifitis greater than the acceptance threshold of 0.1 (no if not).

Combined mask

Method P11 combines our two masks. It returnsyes (1) if the spectrum shows kaolin
presence and a reasonable 2200nm absorption, otherwise no (NULL).

Kaolin composition index
Methods P12 to 22 calculate the MFEM kaolin compositionindex, whichis a ratio of two
ratios:

e A=[ref(2138) + ref(2173)] / ref(2156) (methodsP12 to P16)

e B=[ref(2155) + ref(2190)] / ref(2173) (methodsP17 to P21)

e Compositionindex=A / B (method P22)

Final result

Method P23 masks the kaolin compositionin P22 with the combined mask in P11,
returningthe compositionindex onlyif the spectrum shows kaolinand a reasonable
2200nm absorption (otherwise NULL).

Simulatingthe script with TSG scalars

Now we’ll setabout making TSG scalars for each part of the script. We’ll take a few short-
cuts as a few of the Ref (x) methods are repeatedly extractedinthe script. There are a
couple of other short-cuts we could take, but we won’t.

Ideally we’d create these scalars in a dataset that has a variety of kaolin spectra along with
other spectra that have some similaritiesto kaolins (butaren’t kaolins). That way we’d be
able to evaluate our work.

Once again the spruik: A big motive hereis to encourage you to develop non-trivial spectral
techniqueswithinteractive TSG scalars. Don’t be afraid to create a whole raft of
experimental scalars. It isbest to be able to see how each and every bit of your methodis
performingif you are to judge it effectively. Ultimately you will be using a scalar script
whenthe time comes for processing, and it will generate just one tidy scalar.

‘Is it kaolin’ mask
We’ll need to create four profile scalars and fourarithmetic-expressionscalars. Let’s go.

PROFILE: a spectral index from the spectral curves themselves >
Profile scalar for
Ref(2138) Wavelength units: | Nanometres v
Spectral layer: | Reflectance w Smoacthing: | Nane w

Centre wavelength: (2138 Radius: I:I

Local continuum removal [
Profile type: | Mean value &4

Mask output through: [[None] @

< Back Cancel

PROFILE: a spectral index from the spectral curves themselves >
Profile scalar for
Ref(2190) Wavelength units: | Nanometres w
Spectral layer: | Reflectance w Smoothing: | Mone w

Centre wavelength: |2130 Radius: ICI

Local continuum removal [
Profile type: | Mean value A

Mask output through: 3] [None] @

< Back Cancel

PROFILE: a spectral index from the spectral curves themselves >
Profile scalar for
Ref(2156) Wavelength units: | Nanometres v
Spectral layer: | Reflectance e Smoathing: | Mone e

Centre wavelength: (2156 Radius: ICI

Local continuum removal [
Profile type: | Mean value A

Mask output through: [[None] o

< Back Cancel

Profile scalar for
Ref(2179)

Arithmeticscalar
‘numl’, which is
Ref2138 + Ref2190

Arithmeticscalar
‘denom1’, which is
Ref2156 + Ref2179

PROFILE: a spectral index from the spectral curves themselves

Wavelength units: | Nanometres

Spectral layer: | Reflectance

Cor waveet

Local continuum removal [
Profile type: | Mean value

Mask output through: @ [Mone]

< Back

Smoothing: | Mone

St

St

@

ARITH: an arithmetic expression on existing scalars

Scalar Az |(Plain) ~ | { |Ful scalar

Operation: Plus

Scalar B: |({Flain) ~| (| Fullscalar

Output: | (Plain)

w| |3 Ref2138

S

«| . [§DRef2190

Cancel

%
@)

@)

[] Treat incoming MULL as zero

Result acceptabilty bounds ||

Mask output through: ﬁ [Mone]

< Back

@

ARITH: an arithmetic expression on existing scalars

Scalar A2 |{Plain) ~ | (|Full scalar

Operation: Flus

Scalar B: |{Plain) ~| { |Ful scalar

Output: |(Plain)

v | : |32 Ref2156

S

v | : D Rf2179

Cancel

Pt

@)

@)

[] Treat incoming MULL as zero

Result acceptability bounds |

Mask output through: @ [Mone]

< Back

@

Cancel

ARITH: an arithmetic expression on existing scalars >

Arithmeticscalar Scalar A: |(Plain) | (| Full scalar v| - @num @)
’kaolin/_ratio' whichis Operation: Divided by ~
numl /denoml.

Scalar B: |(Plainp ~ | (| Full scalar v| ¢ @ denom? @)
Itis temptingto do the Output: | (Plain}) [] Treat incoming MULL as zero

masking right here by
putting 1.005 in the

higherresult- Mask output through: 23] [None] o
acceptability bound

but that would inhibit
< Back Cancel

interactive exploration.

Result acceptabilty bounds | | : | |

ARITH: an arithmetic expression on existing scalars >
Arithmeticscalar Scalar A: |(Plain) ~ | (|Full scalar v |) kaolin_ratio @)
‘kaolin_mask’ whichis Opertion: fagas)
or firstmask. It

. Scalar B: | {Plai o Constant be ~ | : [1.005
returns 1 if the (Plain) ((Bt | |)
spectrum shows kaolin Zero resutts go NULL [Treat incoming NULL as zero
and NULL if not.
E[Nune] @

< Back Cancel

‘Al-clay’ mask
For this we’ll need a profile scalar and an arithmetic-expression scalar.

PROFILE: a spectral index from the spectral curves themselves >
Profile scalar ‘D2200, Wavelength units: | Nanometres et
which givesthe Spectral layer: | Reflectance ~ | Smocthing: | None >

relative absorption

depth of the dominant Centre wavelength: | 2183 Radius:

feature around Local continuum remaval Divide W Min. depth: ICI
2183nm +- 63nm.
Profile type: | Relative absomption depth ~ | Fit:|3Channels -~

Mask output through: 23] [None] @

< Back Cancel

ARITH: an arithmetic expression on existing scalars >

Arithmeticscalar Scalar A: |(Plain) ~ { |Ful scalar w| §DD2200 @)
‘Al_Clay_Mask’, which Operation:
is our second mask. It

Logical = e

. . Scalar B: | (Plai ~ | | |Constant be ~| : |01
returns 1 if D2200 is calar 5| (Plain) | | Constant fumbe | |)
greater than 0.1, [F]iZero resuits go ML [] Treat incoming NULL as zero
otherwise 0.

E[Nune] @

< Back Cancel

Combined mask

Now we’ll combine the two masks that we’ve made. Both must be 1 for the combined
mask to be 1.

ARITH: an arithmetic expression on existing scalars >
Arithmeticscalar Scalar A: |(Plain) ~ | { |Full scalar v | @ kaolin_mask o
‘Combined_mask’, Operation: | Times v
which is our final mask R - i QA . ©)
. calar B: i s wl o ay_mas
in the method. (Plain} g i -
Note we could haVe Output: |(Plain) [] Treat incoming NULL as zero
used the operation N
‘Boolean AND’ and Result acceptability bounds | | : | |
received the same Mask output through: [0 [None] &)
result.

< Back Cancel

Interlude

At this point we could do some useful interactive checking, given that we have created
these scalars ina suitable dataset. Is our maskingstrategy working? Are any kaolin spectra
getting masked off? Are any non-kaolin spectra staying masked on?

We could plot all the scalars we created (e.g., inthe Log screen) but the most useful ones
are kaolin_ratio, kaolin_mask, D2200, al_clay_mask and combo_mask. The masking
thresholdsin kaolin_mask and al_clay_mask might need adjustment.

We’d judge using other TSG plots (e.g., spectral floater plots) and could drag in some other
scalars to help, e.g., TSA scalars and imported assays that might be available.

Kaolin composition index

We have Ref(2138) and Ref(2156) already.

PROFILE: a spectral index from the spectral curves themselves >
Profile scalar for Wavelength units: | Nanometres ~
Ref(2173) Spectral layer: | Reflectance w Smoathing: | Mone w
Centre wavelength: Radius: I:I
Local continuum removal [
Profile type: | Mean value =
Mask output through: @ [None] 9
<Bo
ARITH: an arithmetic expression on existing scalars >
Arithmeticscalar Scalar A: | (Plain) w | { |Ful scalar w| o 5 Ref2138 @]
‘num?2’, which is Operstion: | Plus -
Ref2138 + Ref2173
Scalar B: |(Plain) | (|Full scalar ~| @ Ref2173 @)
Output: | {Plain) v [] Treat incoming NULL as zero

Result acceptability bounds | | 3| |

Mask output through: 23] [None] @

< Back Cancel

ARITH: an arithmetic expression on existing scalars >
Arithmetic scalar Scalar A: |(Plain) ~ (| Ful scalar v o E&um? @)
ratlo_/A, which is Tro— Divided by »
num?2 / Ref(2156
(2136) Scalar B: |(Plain) ~ | (|Full scalar v| (P Ref2156 @)
Owtput: | (Plain) [| Treat incoming NULL as zero

Result acceptability bounds | | 3| |

Mask output through: [[None] o

< Back Cancel

We have Ref(2190) and Ref(2172) already. Ref(2155) is goingto be the same as Ref(2156)
when given 4-nm-spacing spectra (e.g., HyLogger) but we’ll create it anyway.

PROFILE: a spectral index from the spectral curves themselves >
Profile scalar for Wavelength units: | Nanometres >
Ref(2155)
Spectral layer: | Reflectance e Smoothing: | Mone w
Centre wavelength: |2155 Radius: ICI
Local continuum removal [
Profile type: | Mean value A
Mask output through: 23] [None] @
=
ARITH: an arithmetic expression on existing scalars >
Arithmeticscalar Scalar A: |(Plain) ~| (| Full scalar v | : |3 Ref2155 @)
lnum3', which is Oiperation: Flus e
Ref2155 + Ref2190
Scalar B: |(Plain) ~ (|Full scalar v | 9 Ref2190 @)
Output: |(Plain) ~ (] Treat incoming NULL as zero

Result acceptability bounds | | : | |

Mask output through: [[None] @

< Back Cancel

ARITH: an arithmetic expression on existing scalars >
. . Scalar A: | (Plai ~ Full scal o num3
Arithmetic scalar (Plain) { o @)
‘ratio_B’, which s Operation: | Divided by v
num3 / Ref(2173) ScalarB: |(Plain) | { |Ful scalar v| - @ Ref2173 ®)
Output: |(Plain) ~ (] Treat incoming NULL as zero

Result acceptability bounds | | : | |

Mask output through: [[None] @

< Back Cancel

ARITH: an arithmetic expression on existing scalars >

Arithmeticscalar Scalar A [(Plain) ~| (|Ful scalar v | : & Ratio_A @)
‘comp_unmasked’, Operation: | Divided by v
which isratio A/
ratio_B. This is our Scalar B: |(Plain) ~ (|Ful scalar v| Eratio_B @)
resultbutitis ; o

Output: | {Plain) w [] Treat incoming NULL as zero

unmasked. It returns
an indexforany

spectrum. Mask output through: [} [None] @

Result acceptability bounds | | : | |

< Back Cancel

ARITH: an arithmetic expression on existing scalars >
Arithmeticscalar Scalar A: |(Plainp | (| Full scalar v @ comp_unmasked @)
‘kaolin_comp’, which is Operation: | Times v
comp_unmasked times Sonlar B . © Combined_mask @
combined_mask. Itis calar B: |(Plain) ~| { |Full scalar o ombined_mas }
our final masked Output: | (Plain) [| Treat incoming NULL as zero
result.
Result acceptabilty bounds | | : | |
Mask output through: [[None] @
=
Redux

Now we have our method exposedinthe form of individual TSGscalars. Exploring the host
dataset, we can see when the method is returning false positivesand when it’s missingits
target, and we should have a good indication why. We can tweak it by adjustingany of the
scalars. Like a spreadsheet, TSG will automatically recalculate all relevantscalars if we
modify an ‘earlier’ one.

Generatingthe SCI'ipt Automatic Scalar-Script Builder ®
Where will the script be run? @ TS (JMVCL Analytics

Brin he scri ilderusin
& L!pt e script t?u de_ using Script this scalar: ekanlin_cnmp @ ? |
the Edit->Scalar script builder
menu. Automatically generated script:
TG Spedalist Scalar Command Set ~

Selectthe final scalar Commands = 1
kaolin_comp from the list. Mame = kaolin_comp, 19
Description = Generated by T5G3
Category = user

TSG displays an automatically- Author = TSGA
d . . Version = 1.0
generatedscript (see opposite, | pate - Tue Feb 05 09:36:28 2019

and below).
#Ref2133

P1 = profile, stat=MEAM, wcentre=2138.00, wradius=0.00, layer=REF,
Given just our final scalar, TSG
#Ref2173

has generated a script with 19 P2 = profile, stat=MEAM, weentre=2173.00, wradius=0.00, layer=REF,
methods. The script calculates
L # Ref2156
everythingitneeds—all the P3 = profile, stat=MEAN, weentre=2156.00, wradius=0.00, layer=REF,
Ref(x) extractions, ratios and v
£ >

masks. It’sall right here.
...But why 19 methods and not
23, like in the original script? Save saript o file | Close
This is because four of the Ref(x)

profile extractions were repeated in the original script, but we didn’t make duplicate profile
scalars.

The automatically-generated script

The method orderisn’tthe same as the script builder has its own peculiaropinion on how to
order its methods8. Howeverthe comment (source TSG scalar name) before each method
helpsone to follow what’sgoing on. You shouldfind that it has the same logicas the
original. Ifyou calculate a batch-script scalar from this script then you should find that it
looksidentical to our final kaolin_comp scalar.

TSG Specialist Scalar Command Set
Commands = 1

Name = kaolin comp, 19
Description = Generated by TSGS8
Category = user

Author = TSGS8

Version = 1.0

Date = Tue Feb 05 09:36:28 2019

Ref2138
Pl = profile, stat=MEAN, wcentre=2138.00, wradius=0.00, layer=REF,
smooth=NONE, fit=SEVEN, bkrem=NONE, minrad=0.000000

Ref2173

8 |t works backwards from the final scalarand writes out methods as they becomeready. A methodis ‘ready
ifitdoes notdepend on anyothers, orifthe other(s)itdepends on have been written out.

P2 = profile, stat=MEAN, wcentre=2173.00, wradius=0.00, layer=REF,
smooth=NONE, fit=SEVEN, bkrem=NONE, minrad=0.000000

Ref2156
P3 = profile, stat=MEAN, wcentre=2156.00, wradius=0.00, layer=REF,
smooth=NONE, fit=SEVEN, bkrem=NONE, minrad=0.000000

Ref2155
P4 = profile, stat=MEAN, wcentre=2155.00, wradius=0.00, layer=REF,
smooth=NONE, fit=SEVEN, bkrem=NONE, minrad=0.000000

Ref2190
P5 = profile, stat=MEAN, wcentre=2190.00, wradius=0.00, layer=REF,
smooth=NONE, fit=SEVEN, bkrem=NONE, minrad=0.000000

numl
P6 = expr, paraml=Pl, param2=P5, arithop=ADD, modl=PLAIN, mod2=PLAIN,
mainmod=PLAIN, nullhandling=NONE

Ref2179
P7 = profile, stat=MEAN, wcentre=2179.00, wradius=0.00, layer=REF,
smooth=NONE, fit=SEVEN, bkrem=NONE, minrad=0.000000

D2200
P8 = profile, stat=DEPTH, wcentre=2183.00, wradius=63.00, layer=REF,
smooth=NONE, fit=THREE, bkrem=DIV, minrad=0.000000

num?
P9 = expr, paraml=Pl, param2=P2, arithop=ADD, modl=PLAIN, mod2=PLAIN,
mainmod=PLAIN, nullhandling=NONE

num3
P10 = expr, paraml=P4, param2=P5, arithop=ADD, modl=PLAIN, mod2=PLAIN,
mainmod=PLAIN, nullhandling=NONE

denoml
P11 = expr, paraml=P3, param2=P7, arithop=ADD, modl=PLAIN, mod2=PLAIN,
mainmod=PLAIN, nullhandling=NONE

Al Clay mask
P12 = expr, paraml=P8, const2=0.10000000149011612000, arithop=LGT,
modl=PLAIN, mod2=PLAIN, mainmod=PLAIN, nullhandling=0UT

Ratio A
P13 = expr, paraml=P9, param2=P3, arithop=DIV, modl=PLAIN, mod2=PLAIN,
mainmod=PLAIN, nullhandling=NONE

ratio B
P14 = expr, paraml=P10, param2=P2, arithop=DIV, modl=PLAIN, mod2=PLAIN,
mainmod=PLAIN, nullhandling=NONE

kaolin ratio
P15 = expr, paraml=P6, param2=Pl1l, arithop=DIV, modl=PLAIN, mod2=PLAIN,
mainmod=PLAIN, nullhandling=NONE

comp unmasked
P16 = expr, paraml=P13, param2=P14, arithop=DIV, modl=PLAIN, mod2=PLAIN,
mainmod=PLAIN, nullhandling=NONE

kaolin mask

P17 = expr, paraml=P15, const2=1.00499999523162840000, arithop=LGT,
modl=PLAIN, mod2=PLAIN, mainmod=PLAIN, nullhandling=0UT

Combined mask
P18 = expr, paraml=P17, param2=P12, arithop=MULT, modl=PLAIN, mod2=PLAIN,
mainmod=PLAIN, nullhandling=NONE

kaolin comp
return = expr, paraml=P16, param2=P18, arithop=MULT, modl=PLAIN,
mod2=PLAIN, mainmod=PLAIN, nullhandling=NONE

