
Automatic Scalar Script Builder

Peter Mason, January 2019

Introduction
TSG’s batch-script-scalar functionality is powerful in the right hands. If you know your way

around TSG’s scalar script language then you can build scalars with complex rules and built -
in thresholds.1
Many TSG users do not and will not write scalar scripts, but they will explore ideas by

creating interactive TSG scalars. Although non-trivial spectral processing ‘algorithms’ can
be developed like this, there are impediments to applying these algorithms in a production
workflow2.

TSG can now generate scalar scripts for several kinds of interactive scalars . The tool
understands complex scalars that are calculated from other scalars, not just standalone
scalars. My hope is that TSG users will be encouraged to explore more complex methods
with chained interactive scalars, knowing that their final result scalar3 can be scripted

automatically – if they follow some guidelines. I hold that this is the best way to design a
script anyway – first prototype the method with interactive TSG scalars4. That way you can
see what each component is doing and get the thresholds and other settings right.

This document
TSG’s new tool for generating scalar scripts will be presented first.

Then we’ll go through a medium-complexity MFEM5 scalar script. We’ll replicate its
functionality by creating a little squad of interactive TSG scalars. (Each of these scalars can
be viewed and tweaked in TSG. As noted above this is an important step when you design

your own scalar methods.) Then we’ll have TSG build a script for the method’s final scalar.

1 For example you could build a ‘mineral presence’ mask scalar that seeks 4 absorption features of which 3 must
be present and one must not, and has acceptance thresholds for each feature’s depth and wavelength. Given
a spectrum, this mask scalar would deliver a result ‘yes’ or ‘no’. The script, complete in a small text fi le, could
easily be given to colleagues, and easily be used by them.
2 TSG’s ‘copy processing’ can do it, but it leaves dataset recipients with a confusing and fragile assortment of
scalars. In contrast a scripted algorithm has its workings in a tidy capsule (a small text fi le) and yields just one
scalar.
3 Along with all the others that it is built from
4 It can be very hard to design a script ‘cold’ (starting with the script text fi le) when all you have to judge is the
script’s final result.
5 CSIRO researcher Carsten Laukamp is the custodian of the ‘MFEM script l ibrary’. MFEM stands for ‘Multiple
Feature Extraction Method’.

TSG8’s Scalar Script builder

From the menu: Edit -> Scalar script builder…

Select a scalar from the list and TSG will
give you a script. Edit the script if you like
(e.g., the ‘Description’ field) and save it to

disk. That’s basically it. Here comes the
long version…

TSG or NVCL Analytics?

What’s all this? NVCL analytics?

Several TSG customers work with
HyLogger data and the AuScope NVCL
(National Virtual Core Library). ‘Analytics’

is an NVCL activity that’s in development.
It allows a TSG scalar script to be run
against drillhole spectra in the NVCL

database. The main point here is that the
NVCL script engine does not recognise the
full set of methods that the TSG engine
does.

If you are preparing a script for NVCL
Analytics then select its radio button so
that TSG only shows you compatible

scalars in the list.

Supported script methods6

Method Script file Interactive TSG scalar NVCL Analytics

Profile Yes Yes Yes
PFit Yes Yes Yes

FeatEx Yes Yes Yes

Arith. Expression Yes Yes Yes

AuxMatch Yes Yes No (but coming)

Import Yes Yes No

Ratio Yes No Yes

Pseudocolour Yes No Yes

So in short:
Do not use Import or Aux-match scalar types when preparing a method for NVCL analytics.

6 I include a “script fi le” column here for interest. It shows the methods that are available when you create
scripts the old fashioned way, purely with a text editor. As you can see there are no interactive-TSG-scalar
counterparts (at this time) for the Ratio and Pseudocolour methods. In other words the automatic scalar script
builder will not use these methods in its scripts.

https://www.auscope.org.au/nvcl/
https://www.auscope.org.au/nvcl/
https://www.auscope.org.au/nvcl/
https://www.auscope.org.au/nvcl/

Scalar selection list

It’s a normal scalar selection list, like the ones in TSG’s scatterplot screen. If a primary +
associated dataset pair is open (normally VNIRSWIR + TIR) then it allows access to both
datasets.

Importantly, the list only shows scalars that are judged to be scriptable . Therefore it can be
affected by the TSG / NVCL radio-button selection.
Note that even when the TSG radio button is selected, the list will not show any Import-type

scalars. Who would want to ‘calculate’ one? TSG won’t clutter the list with the things.
However TSG will, for example, allow you to build a script for an arithmetic-expression
scalar that uses an import-type scalar as an input.

Which scalar should you select?

The system is designed to deal with scalar dependencies. If you have worked up an idea
that involves more than one interactive TSG scalar then you should select your final scalar.
(This would normally be an arithmetic-expression scalar that ‘brings it all together’.) TSG

will track down all the scalars that it depends on, directly or indirectly, and incorporate
them in the script.

Un-scriptable TSG scalars (why isn’t ‘my scalar’ on the list?)

Not all interactive TSG scalars can be scripted. These kinds are unsupported:

• Smooth

• Batch

• Core

• Class-extraction

• Stats

• PLS
In addition, import and aux-match scalars can’t be scripted if NVCL is selected.
If ‘your scalar’ depends on any unsupported scalars, directly or indirectly, then TSG won’t

show it on the list.

The text window (and things you might want to edit there)

As soon as you select a scalar, TSG will generate a script for it and display the script in the
main text window. You can edit in this window.

Now you wouldn’t want to be changing any of the calculation-related fields here7. TSG lets
you edit the script so that you can personalise it and / or make it more accessible to others
by changing ‘metadata’ fields and adding comments. If you look at the example screengrab

on page 2 you will see that TSG doesn’t give you a bare -bones script (unless you select NVCL
Analytics). It includes metadata fields Description, Author and Version with placeholder
values, and it inserts a comment line before each script method. (A comment line starts
with the # character.)

• Description: It behoves you describe your method here. You have a single line of
up to 255 characters to accomplish it. If you need more then use comment lines.

• Author: It’s your method – put your name here.

7 Rather do that at the source – modify the scalars themselves in TSG, then come back and generate the script
again. Keeping things coherent l ike this can prevent confusion at some later date.

• Version: Version numbers can be handy when a method evolves. Adjust TSG’s
default 1.0 as necessary.

• Name: TSG names the script after the selected scalar. You can change the

name here but be careful – don’t change the comma or the number after it.

• Comment lines: As noted these start with the # character. TSG comments
each method with the name of the interactive scalar that it represents. You might
want to change these comments or add some of your own. You can add as many

comment lines as you like, anywhere in the script.

Save script to file

When you click this button, TSG will parse the script to check that you didn’t break anything
with your edits, then prompt you for a filename and save the script file to disk.

A worked example
We’ll take a look at the ‘kaolin composition’ script from Carsten Laukamp’s MFEM script
collection. We’ll set about reproducing its functionality with interactive TSG scalars.
(Hopefully, seeing this process laid out will encourage TSG users to develop more complex

methods themselves, using interactive scalars.) Finally we’ll ask TSG’s script builder to
generate a script from our ‘final’ scalar.

About the script

‘Kaolin composition’ is a medium-complexity script with 23 methods. Now 23 methods
sounds like quite a lot but I call it ‘medium complexity’ because it really has just three

components: two masks and the actual composition result. Let’s take a look at the script
and then I’ll discuss its implementation some more.

name = Kaolin composition, 23

#’is it kaolin’ mask

P1 = profile, stat=mean, wcentre=2138, wradius=0, layer=ref

P2 = profile, stat=mean, wcentre=2190, wradius=0, layer=ref

P3 = profile, stat=mean, wcentre=2156, wradius=0, layer=ref

P4 = profile, stat=mean, wcentre=2179, wradius=0, layer=ref

P5 = expr, param1=P1,param2=p2,arithop=add

P6 = expr, param1=P3,param2=p4,arithop=add

p7 = expr, param1=p5,param2=p6,arithop=div

p8 = expr, param1=p7, const2=1.005, arithop= lgt, nullhandling=out

#minimum threshold on 2200D (Al-clay mask)

p9 = profile, layer=ref, stat=depth, bkrem=div, fit=3, wcentre=2183,

wradius=63

p10 = expr, param1=p9, const2=0.1, arithop=lgt, nullhandling=out

#combine the two masks (both must be on)

p11= expr, param1=p8, param2=p10, arithop=mult

kaolin composition index

P12 = profile, stat=mean, wcentre=2138, wradius=0, layer=ref

P13 = profile, stat=mean, wcentre=2173, wradius=0, layer=ref

p14 = expr, param1=p12, param2=p13, arithop=add

P15 = profile, stat=mean, wcentre=2156, wradius=0, layer=ref

p16 = expr, param1=p14, param2=p15, arithop=div

P17 = profile, stat=mean, wcentre=2155, wradius=0, layer=ref

P18 = profile, stat=mean, wcentre=2190, wradius=0, layer=ref

P19 = expr, param1=p17, param2=p18, arithop=add

P20 = profile, stat=mean, wcentre=2173, wradius=0, layer=ref

p21 = expr, param1=p19, param2=p20, arithop=div

p22 = expr, param1=p16, param2=p21, arithop=div

#return the masked composition index

return= expr, param1=p11, param2=p22, arithop=mult

‘Is it kaolin’ mask

The first part of the script builds a mask that checks if the spectrum shows kaolin. This
check is based on the MFEM ratio:

[ref(2138) + ref(2190)] / [ref(2156) + ref(2179)]
(where, for example, ref(2138) means ‘the reflectance at 2138nm’).

This ratio is put together by script methods P1 to P7.

This ratio must be 1.005 or more for the spectrum to be deemed to show kaolin. This check
is done by method P8, which finishes the yes / no kaolin mask.

‘Al-clay mask’ mask

The SWIR spectrum of an aluminium clay is expected to have a noticeable 2200nm
absorption. Method P9 calculates the relative absorption depth of the 2200nm absorption,
and P10 checks if it is greater than the acceptance threshold of 0.1 (no if not).

Combined mask

Method P11 combines our two masks. It returns yes (1) if the spectrum shows kaolin
presence and a reasonable 2200nm absorption, otherwise no (NULL).

Kaolin composition index

Methods P12 to 22 calculate the MFEM kaolin composition index, which is a ratio of two
ratios:

• A = [ref(2138) + ref(2173)] / ref(2156) (methods P12 to P16)

• B = [ref(2155) + ref(2190)] / ref(2173) (methods P17 to P21)

• Composition index = A / B (method P22)

Final result

Method P23 masks the kaolin composition in P22 with the combined mask in P11,
returning the composition index only if the spectrum shows kaolin and a reasonable

2200nm absorption (otherwise NULL).

Simulating the script with TSG scalars

Now we’ll set about making TSG scalars for each part of the script. We’ll take a few short-
cuts as a few of the Ref(x) methods are repeatedly extracted in the script. There are a
couple of other short-cuts we could take, but we won’t.

Ideally we’d create these scalars in a dataset that has a variety of kaolin spectra along with
other spectra that have some similarities to kaolins (but aren’t kaolins). That way we’d be
able to evaluate our work.

Once again the spruik: A big motive here is to encourage you to develop non-trivial spectral
techniques with interactive TSG scalars. Don’t be afraid to create a whole raft of
experimental scalars. It is best to be able to see how each and every bit of your method is

performing if you are to judge it effectively. Ultimately you will be using a scalar script
when the time comes for processing, and it will generate just one tidy scalar.

‘Is it kaolin’ mask

We’ll need to create four profile scalars and four arithmetic-expression scalars. Let’s go.

Profile scalar for
Ref(2138)

Profile scalar for

Ref(2190)

Profile scalar for
Ref(2156)

Profile scalar for
Ref(2179)

Arithmetic scalar
‘num1’, which is
Ref2138 + Ref2190

Arithmetic scalar

‘denom1’, which is
Ref2156 + Ref2179

Arithmetic scalar
‘kaolin_ratio’ which is
num1 / denom1.

It is tempting to do the
masking right here by
putting 1.005 in the

higher result-
acceptability bound
but that would inhibit

interactive exploration.

Arithmetic scalar
‘kaolin_mask’ which is

or first mask. It
returns 1 if the
spectrum shows kaolin

and NULL if not.

‘Al-clay’ mask

For this we’ll need a profile scalar and an arithmetic-expression scalar.

Profile scalar ‘D2200’,
which gives the

relative absorption
depth of the dominant
feature around
2183nm +- 63nm.

Arithmetic scalar
‘Al_Clay_Mask’, which
is our second mask. It

returns 1 if D2200 is
greater than 0.1,
otherwise 0.

Combined mask

Now we’ll combine the two masks that we’ve made. Both must be 1 for the combined

mask to be 1.

Arithmetic scalar
‘Combined_mask’,
which is our final mask

in the method.
Note we could have
used the operation
‘Boolean AND’ and

received the same
result.

Interlude

At this point we could do some useful interactive checking, given that we have created

these scalars in a suitable dataset. Is our masking strategy working? Are any kaolin spectra
getting masked off? Are any non-kaolin spectra staying masked on?
We could plot all the scalars we created (e.g., in the Log screen) but the most useful ones

are kaolin_ratio, kaolin_mask, D2200, al_clay_mask and combo_mask. The masking
thresholds in kaolin_mask and al_clay_mask might need adjustment.
We’d judge using other TSG plots (e.g., spectral floater plots) and could drag in some other
scalars to help, e.g., TSA scalars and imported assays that might be available.

Kaolin composition index

A = [Ref(2138) + Ref(2173)] / R2156

We have Ref(2138) and Ref(2156) already.

Profile scalar for
Ref(2173)

Arithmetic scalar
‘num2’, which is
Ref2138 + Ref2173

Arithmetic scalar
‘ratio_A’, which is

num2 / Ref(2156)

B = [Ref(2155) + Ref(2190)] / R2173

We have Ref(2190) and Ref(2172) already. Ref(2155) is going to be the same as Ref(2156)
when given 4-nm-spacing spectra (e.g., HyLogger) but we’ll create it anyway.

Profile scalar for

Ref(2155)

Arithmetic scalar
‘num3’, which is
Ref2155 + Ref2190

Arithmetic scalar
‘ratio_B’, which is

num3 / Ref(2173)

Finishing off

Arithmetic scalar
‘comp_unmasked’,

which is ratio_A /
ratio_B. This is our
result but it is

unmasked. It returns
an index for any
spectrum.

Arithmetic scalar
‘kaolin_comp’, which is
comp_unmasked times
combined_mask. It is

our final masked
result.

Redux

Now we have our method exposed in the form of individual TSG scalars. Exploring the host

dataset, we can see when the method is returning false positives and when it’s missing its
target, and we should have a good indication why. We can tweak it by adjusting any of the
scalars. Like a spreadsheet, TSG will automatically recalculate all relevant scalars if we
modify an ‘earlier’ one.

Generating the script

Bring up the script builder using
the Edit->Scalar script builder

menu.

Select the final scalar

kaolin_comp from the list.

TSG displays an automatically-

generated script (see opposite,
and below).

Given just our final scalar, TSG
has generated a script with 19
methods. The script calculates

everything it needs – all the
Ref(x) extractions, ratios and
masks. It’s all right here.
…But why 19 methods and not

23, like in the original script?
This is because four of the Ref(x)
profile extractions were repeated in the original script, but we didn’t make duplicate profile

scalars.

The automatically-generated script

The method order isn’t the same as the script builder has its own peculiar opinion on how to
order its methods8. However the comment (source TSG scalar name) before each method

helps one to follow what’s going on. You should find that it has the same logic as the
original. If you calculate a batch-script scalar from this script then you should find that it
looks identical to our final kaolin_comp scalar.

TSG Specialist Scalar Command Set

Commands = 1

Name = kaolin_comp, 19

Description = Generated by TSG8

Category = user

Author = TSG8

Version = 1.0

Date = Tue Feb 05 09:36:28 2019

Ref2138

P1 = profile, stat=MEAN, wcentre=2138.00, wradius=0.00, layer=REF,

smooth=NONE, fit=SEVEN, bkrem=NONE, minrad=0.000000

Ref2173

8 It works backwards from the final scalar and writes out methods as they become ready. A method is ‘ready’
if it does not depend on any others, or if the other(s) it depends on have been written out.

P2 = profile, stat=MEAN, wcentre=2173.00, wradius=0.00, layer=REF,

smooth=NONE, fit=SEVEN, bkrem=NONE, minrad=0.000000

Ref2156

P3 = profile, stat=MEAN, wcentre=2156.00, wradius=0.00, layer=REF,

smooth=NONE, fit=SEVEN, bkrem=NONE, minrad=0.000000

Ref2155

P4 = profile, stat=MEAN, wcentre=2155.00, wradius=0.00, layer=REF,

smooth=NONE, fit=SEVEN, bkrem=NONE, minrad=0.000000

Ref2190

P5 = profile, stat=MEAN, wcentre=2190.00, wradius=0.00, layer=REF,

smooth=NONE, fit=SEVEN, bkrem=NONE, minrad=0.000000

num1

P6 = expr, param1=P1, param2=P5, arithop=ADD, mod1=PLAIN, mod2=PLAIN,

mainmod=PLAIN, nullhandling=NONE

Ref2179

P7 = profile, stat=MEAN, wcentre=2179.00, wradius=0.00, layer=REF,

smooth=NONE, fit=SEVEN, bkrem=NONE, minrad=0.000000

D2200

P8 = profile, stat=DEPTH, wcentre=2183.00, wradius=63.00, layer=REF,

smooth=NONE, fit=THREE, bkrem=DIV, minrad=0.000000

num2

P9 = expr, param1=P1, param2=P2, arithop=ADD, mod1=PLAIN, mod2=PLAIN,

mainmod=PLAIN, nullhandling=NONE

num3

P10 = expr, param1=P4, param2=P5, arithop=ADD, mod1=PLAIN, mod2=PLAIN,

mainmod=PLAIN, nullhandling=NONE

denom1

P11 = expr, param1=P3, param2=P7, arithop=ADD, mod1=PLAIN, mod2=PLAIN,

mainmod=PLAIN, nullhandling=NONE

Al_Clay_mask

P12 = expr, param1=P8, const2=0.10000000149011612000, arithop=LGT,

mod1=PLAIN, mod2=PLAIN, mainmod=PLAIN, nullhandling=OUT

Ratio_A

P13 = expr, param1=P9, param2=P3, arithop=DIV, mod1=PLAIN, mod2=PLAIN,

mainmod=PLAIN, nullhandling=NONE

ratio_B

P14 = expr, param1=P10, param2=P2, arithop=DIV, mod1=PLAIN, mod2=PLAIN,

mainmod=PLAIN, nullhandling=NONE

kaolin_ratio

P15 = expr, param1=P6, param2=P11, arithop=DIV, mod1=PLAIN, mod2=PLAIN,

mainmod=PLAIN, nullhandling=NONE

comp_unmasked

P16 = expr, param1=P13, param2=P14, arithop=DIV, mod1=PLAIN, mod2=PLAIN,

mainmod=PLAIN, nullhandling=NONE

kaolin_mask

P17 = expr, param1=P15, const2=1.00499999523162840000, arithop=LGT,

mod1=PLAIN, mod2=PLAIN, mainmod=PLAIN, nullhandling=OUT

Combined_mask

P18 = expr, param1=P17, param2=P12, arithop=MULT, mod1=PLAIN, mod2=PLAIN,

mainmod=PLAIN, nullhandling=NONE

kaolin_comp

return = expr, param1=P16, param2=P18, arithop=MULT, mod1=PLAIN,

mod2=PLAIN, mainmod=PLAIN, nullhandling=NONE

