
Headless mode
TSG’s “headless” or unsupervised mode is about running TSG without any windows. TSG runs
invisibly in the background, taking instruction from a script. You can’t script TSG to do everything it
normally does though. It understands only a few specific tasks in headless mode, e.g., download
from database, update dataset, run copy-processing, run downsampling. A log file is created
alongside the script file.1 The log file records what was done and is worth a look.
We introduced headless mode some years ago so that we could offer scheduled database upload &
download, and have TSG provide the business end of the NVCL TSG-dataset download service. As it
was controlled by a scheduling dialog in TSG or behind the scenes by NVCL software, its workings
were unknown to most TSG users. However it has now been expanded with new tasks. It still has a
HyLogging focus but is starting to include support for a more general production-oriented workflow.

This document starts off with some information about how to schedule a headless script. (A script
is scheduled, not run live.) Drag & drop is your friend here. After that it grinds through the script
format2. To begin with, you’ll find out about the overall script format, then two “global” script
things: the strange and avoidable “batchloop”, and the magnificent “multifile”3. Then we come to
the main items – the tasks themselves. If there’s anything I (the TSG programmer) want TSG to be
able to do in Headless mode, I have to code a task for it. Currently there are only a few tasks but I
add a new one every so often.
The quick links below skip past the general information to specific tasks.

Quick task links
UPLOAD (NVCL database upload)
DOWNLOAD (NVCL database download)
UPDATE (update dataset format / TSA calcs)
COPYPROC (copy processing / layouts)
DOWNSAMP (downsample / export spectra / scalars / imagery)
TESTROX (wavelength-calibration checking on “testrocks” items)
WVLCAL (generalised but very limited wavelength-calibration checking)
PUCKWCAL (wavelength-calibration checking on VSWIR / TIR cal-standard pucks)
852LASER (correction of the occasionally-seen 852nm HyLogger laser bump)
TPICGEN (generate HyLogger tray pictures)
SPIMPORT (super dynamic importer of ASD field spectrometer files)
CLIMPORT (insatiable batch importer of HyLogger 1/2/3 or Corescan HCI-3 drillholes)
SHELLEXEC (spawn some other program)
COPYSCLR (copy a scalar primary <-> associated)

1 If this isn’t the first time the script was run and a log file is there already, another log file is created. The log
files are numbered.
2 The scripts used here are completely different to TSG “batch scripts” that you might have encountered when
creating “batch script” or “specialist” scalars.
3 Batchloop is for repeating a whole script and I don’t expect many people to use it. Multifile is very useful
though. It’s about wildcard file matching – real batch processing – so you should get your head around it.

Invocation
The easiest way to invoke headless mode is via File -> Special -> Schedule a script for

unsupervised TSG. You will be prompted to select a script file, then you will get a scheduler
dialog like the one below. (Alternatively, just drag & drop a script file onto TSG and you will be
taken straight to this dialog.) Set the time that
you’d like it to be run and type in your Windows
login’s username and password. (Note these
credentials are not remembered by TSG.) Click
Schedule and you’ll get a message box telling
you if the job was accepted or not. After that
you can exit TSG and even log off. Just leave
your computer turned on.

Update A Run now! Button has been added (June 2018). Click it and the script will be run straight away by a
new, headless instance of TSG. You do not have to provide a time, username or password for this.
You can exit the TSG that you are using but don’t log off or switch off your computer until the run
has completed.

For the brave at heart
More conventionally, headless mode is invoked by running TSG with the command-line switch
/script=scriptfile.
Say there’s a script-file c:\mystuff\testscript.txt and the TSG executable is installed as
C:\Users\fixthis\AppData\Local\The Spectral Geologist\tsgeol8.exe.

1. Click the Windows “Start” button and begin typing the text “command prompt” in the text
box labelled “Search programs and files”. Select the tool when Windows finds it.
Alternatively, you should find the command-prompt tool in Start -> Applications. Either
way, you now have a DOS command prompt. (Handle it carefully because it could make
your hair go grey.)

2. Type in the following line (one line) at the command prompt, after adjusting the path to
work for you:
 “C:\Users\fixthis\AppData\Local\The Spectral Geologist\tsgeol8.exe”
/script=c:\mystuff\testscript.txt Mind the quotes. If that line doesn’t work
then you probably don’t have the correct TSG path. Right-click your TSG desktop icon and
look at “properties” to find out where TSG is actually installed.

Script file
A TSG headless-mode script file is a plain text file. Here’s an example:

multioptions vswir nodive nofield

multifile c:\00me\swift\0t\; c:\00me\swift\topical\ddh*.tsg

task_begin

operation copyproc

update_items all

cproc_options scalars layout

cproc_template C:\00me\swift\seddy\14993_DD88MS1_Mt_Sedgwick_tsg.tsg

task_end

task_begin

operation downsamp

downsamp_config C:\00me\swift\downsampj50.cfg

output_dir c:\00me\0ds

dstolerate scalar

task_end

Here’s some idle chatter before we get stuck in...

There’s no special header at the start to identify the file as a “headless TSG script file” but of course
the file is full of special tokens and things. Blank lines are ignored. A line starting with “#” or “;”is
treated as a comment and ignored. A long line must not be split with a (typed in) carriage-return.
Case is ignored.
Remember that this is TSG, which is... mature, so you must (as always) give it old-fashioned ASCII (7-
bit ANSI) text files and not Unicode ones. It can be almost impossible to tell the difference just by
looking in a text editor but there are clues. A Unicode text file uses about twice the disk space of an
ASCII one, and a smart text editor like Notepad++ will show you what you have if you know where to
look. If you have a script file that TSG chokes on then it might be Unicode. Open it in Notepad++
and look in the “Encoding” menu. It ought to have “Encode in ANSI” selected. If it doesn’t, select
“Convert to ANSI” and save.

Overall format
BATCHLOOP

MULTI_SPEC

TASK_SPEC

TASK_SPEC

...

TASK_SPEC

BATCHLOOP and MULTI_SPEC are both optional.
There must be at least one TASK_SPEC. Insofar as it can be common at this time, it is common to
have just one.

BATCHLOOP
BATCHLOOP seconds,loops

The BATCHLOOP line is optional and if given it must be the first line in the script. It can be used to
run (all tasks in) the script over and over. There might be occasions when it is useful.
It is given with two integer parameters, separated by a comma. The first is a wait time in seconds
between loops, and the second is the number of loops (0 for infinite).
E.g., BATCHLOOP 3600,12 will run the script 12 times with a pause of 1 hour between each run.
Looping is cancelled if a script task returns an error status.

MULTI_SPEC
MULTIOPTIONS space-delimited options
MULTIFILE semicolon-delimited items

The two MULTI_SPEC lines are optional. If given they must be at the start of the script (or
immediately after BATCHLOOP if that is given). If a multi_spec is given in the body of a script then it
is ignored.
This system is used to get the script’s tasks to run on several TSG datasets (one at a time). It’s new
(in a relative sense). In the past, each task (except the database-download task) required a
TSG_DATASET line specifying the dataset to use. That mechanism is still in place but is overridden
by the MULTI_SPEC system (if MULTI_SPEC is used).

MULTIFILE
MULTIFILE has one or more items. If there’s more than one then use semi-colons to delimit them.
In the future I might open up what an “item” can be, but currently it’s:

• a path\filename,

• a path\filename with bits of the filename“wild-carded”, or

• a path (preferably ending with ‘\’).

If you know exactly which TSG datasets you want to batch-process then you can enumerate all of
their filenames here (a rather long line) if you are so inclined. Most of us would rather use wildcard
specs or whole directories, along with MULTIOPTIONS to restrict matches.
Last notes on MULTIFILE:

• Provide full paths that start from a drive letter (e.g., d:\) or a network drive spec (e.g.,
\\clay-nm\pete\). Headless TSG probably won’t understand relative paths.

• There’s no need to restrict wildcard matching to *.tsg. Feel free to use *.* Presently the
headless system only acts on .TSG files that are found.

• path*.* is equivalent to path\

MULTIOPTIONS
MULTIOPTIONS is mostly used to restrict the multifile wildcard search and to moderate the files
passed on from the search for processing, but it can moderate all multi-spec activity4. It takes one
or more space-delimited keywords:

• NOSEARCH Do not “find” anything; pass on the MULTIFILE items as they are. (There might
be a use for this one day. Presently there isn’t.)

• NODIVE Do not search down subdirectories.

• VSWIR Do not accept any TIR (thermal) datasets that are found. (SWIR and VNIR are
equivalent keywords.)

• TIR Only accept TIR datasets.

• NOASSOC Instruct tasks not to open primary+associated. They must just open the single
dataset they’re given. (Not all tasks care about this.)
Note: NOASSOC even affects task behaviour when the MULTIFILE system isn’t used.

• NOCORE Do not accept a dataset that has the basic core-logging scalars.

• NOFIELD Do not accept a dataset that doesn’t have the basic core-logging scalars. (Maybe
you can exclude AUX datasets like this.)

• TESTROCKS Only find TestRocks datasets.

• DIRS This is a new option (November 2018). It causes the multifile wildcard search to look
for directories rather than files. It turns on NODIVE implicitly, restricting the search to the
level immediately below the given directory. Currently it is only used by the CLIMPORT task.

Keep in mind that NOASSOC is a special, general option.
Think about what files you have and what you want to do with them. For example, if you have a
bunch of VSWIR+TIR datasets and you want to run an UPDATE task on all of them, my
recommendation is to leave NOASSOC unmentioned (i.e., assoc open left active) and include the
VSWIR option to stop the TIR datasets from being “found” individually. The UPDATE task knows
how to open primary+assoc dataset pairs. Given a primary VSWIR dataset, it will also open (and
update) the associated TIR dataset (provided there is one). If you did not include the
MULTIOPTIONS VSWIR filter, you’d end up putting everything through twice. A dataset pair would
be opened as VSWIR+TIR when the VSWIR file was “found”, and again as TIR+VSWIR when the TIR
file was “found”.

TASK_SPEC
TASK_BEGIN

OPERATION task-name
Task-specific lines
TASK_END

That’s the generic form of a task spec. Their contents vary. Optional task parameters are shown in
blue in this document, and there are default settings for some of these.

4 For example, if you enumerate a dozen individual TSG files (no wildcards) in MULTIFILE and use
MULTIOPTIONS VSWIR then any TIR files amongst your dozen will be rejected.

UPLOAD
TASK_BEGIN

OPERATION UPLOAD

CONNECTION_STRING database URL
USERNAME database login
PASSWORD database login
DATABASE_TYPE currently ORACLE (the usual system default) or SQLSERVER
DUTOLERATE space-delimited options
TSG_DATASET path+filename of .TSG file (overridden by MULTI_SPEC)
RENAME override for stored user-friendly dataset name
HOLENAME override for stored drillhole name
HYLOGGER override for stored HyLogger name
PUBLISHED YES or NO
LINESCAN upload linescan raster attachment again – YES or NO
UPDATEOLDFMT automatically update old-format TSG datasets (just the dataset version
not the scalars) – YES or NO
FORCESCALARS Force the upload of scalars regardless of date – NONE, TSA or ALL
TASK_END

This is the NVCL database upload task. It currently honours the NOASSOC option so wotchit.
NOASSOC is probably something that you don’t normally want to use here.

• The DATABASE_TYPE line is optional.

• If MULTI_SPEC is in use then all lines from DUTOLERATE onwards are optional and in fact any
TSG_DATASET, RENAME and HOLENAME lines are ignored. If MULTI_SPEC is not in use then
TSG_DATASET must be given. It is recommended that you consider taking control of
PUBLISHED (otherwise the dataset’s “published” setting will be used).

• DUTOLERATE is optional. If not given then TSG won’t tolerate any of the problems listed
below. If given, it takes one or more space-separated keywords that relax certain aspects of
quality control:

o LSLOST Allow the upload of a dataset that currently has no attached linescan
raster but whose internal tracking shows that it once did.

o PROFLOST Allow the upload of a dataset that currently has no attached
profilometer file but whose internal tracking shows that it once did.

o LSBAD Allow the upload of a dataset whose attached linescan raster’s internal tray
/ section metadata tables are faulty and unusable.

o TRAYPICS Allow the upload of a dataset that doesn’t have accompanying tray
pictures.

o WFS Allow the upload of a dataset that doesn’t have a recorded borehole WFS for
identifying its stuff in the elusive borehole database.

o UTSA Allow the upload of a dataset that doesn’t have user-level TSA scalars. (For a
dataset pair, both datasets ought to have user TSA scalars.)

• LINESCAN is optional, and only meaningful if the dataset was uploaded before. In the past,
a dataset’s linescan was only uploaded the first time. It was left out of subsequent uploads
of the modified dataset. Now you can include the linescan in a subsequent upload with
LINESCAN YES.

Example

task_begin
operation upload
connection_string oratest1-cdc.it.csiro.au:1534/HYLOGNR.it.csiro.au
username yournamehere
password asifiddothat

dutolerate traypic wfs utsa
tsg_dataset C:\00me\swift\BEU162 HyLogger-1\BEU-162_tsg.tsg
rename BEU-162
holename beu-162
hylogger NA or Unknown
task_end

DOWNLOAD
TASK_BEGIN

OPERATION DOWNLOAD

CONNECTION_STRING database URL
USERNAME database login
PASSWORD database login
DATABASE_TYPE currently ORACLE (the usual system default) or SQLSERVER
OUTPUT_DIR directory where the TSG dataset is to end up
UUID unique ID of dataset to download
MATCH_STRING all or part of the user-friendly name of the dataset to download
SPECTRA download spectra – YES or NO (NO gives a scalars-only dataset)
LINESCAN download linescan raster attachment – YES or NO
PROFILOMETER download profilometer attachment – YES or NO
TRAYPICS download tray pictures – YES or NO
MOSPIC download mosaic picture – YES or NO
MAPPICS download map pictures – YES or NO
TASK_END

This is the NVCL database download task. It is fiercely independent – it ignores the NOASSOC option
and currently doesn’t take part in the MULTI_SPEC system.

• The DATABASE_TYPE line is optional.

• A path must be given in OUTPUT_DIR. Subdirectories will be created as required.

• Either UUID or MATCH_STRING must be given to identify the dataset to be downloaded.
(Giving both is unacceptable.) UUID is better as it identifies the dataset unambiguously. If
MATCH_STRING is given then the database is searched on the user-friendly dataset name
field (which might not be unique) and the first match is taken.

• The remaining options (SPECTRA, LINESCAN, PROFILOMETER, TRAYPICS, MOSPIC,
MAPPICS) are for controlling which dataset components are downloaded. They are all set
to YES (on) by default.

Example

Task_begin
Operation download
Connection_string ncrisdb1-mi.vm.csiro.au/hylognr.ncrisdb1-mi.vm.csiro.au
Database_type oracle
Username meagain
Password stillnotgivingit
Uuid 6dd70215-fe38-457c-be42-3b165fd98c7
Output_dir C:\00me\swift\dataout
Task_end

UPDATE
TASK_BEGIN

OPERATION UPDATE

TSG_DATASET path+filename of .TSG file (overridden by MULTI_SPEC)
UPDATE_ITEMS space-delimited options
TASK_END

This is the dataset update task. It honours the NOASSOC option and takes part in the MULTI_SPEC
system.

• If MULTI_SPEC is in use then TSG_DATASET is ignored, otherwise it must be given.

• If UPDATE_ITEMS is given then it can include one or more of the following space-delimited
options. (If not given it defaults to ALL.)

o FORMAT Update the dataset format if necessary.
o STSAS Recalculate System SWIR TSA scalars if necessary.
o STSAV Recalculate System VNIR TSA scalars if necessary.
o STSAT Recalculate System TIR TSA scalars if necessary.
o UTSAS Recalculate User SWIR TSA scalars if necessary.
o UTSAV Recalculate User VNIR TSA scalars if necessary.
o UTSAT Recalculate User TIR TSA scalars if necessary.
o CLSS If necessary, recalculate any CLS scalars that are based on the SWIR TSA

reference library.
o CLST If necessary, recalculate any CLS scalars that are based on the TIR TSA

reference library.
o PREFS If the TSG setting “On dataset open, check spec calc settings against

defaults” in Settings -> System is on, reset the dataset’s basic spec-calc settings to
the system defaults and recalculate any affected scalars.

o ALL (Default.) Equivalent to FORMAT STSAS STSAV STSAT UTSAS UTSAV
UTSAT CLSS CLST PREFS.

For a TSA or CLS item, “if necessary” is when the corresponding TSA version has moved on since the
dataset’s scalars were last calculated. This generally means that the TSA reference library
concerned has changed. This can affect plots and, although it tries, TSG won’t resolve all possible
issues. For example, if the dataset has any scatter-screen plots that go through a class or set scope
based on a TSA class / set then they will probably get knocked around by the change and you ought
to revisit them interactively at some point.

Example

MULTIOPTIONS noassoc
multifile c:\00me\swift*.*
task_begin
operation update
update_items format UTSAS
task_end

COPYPROC
TASK_BEGIN

OPERATION COPYPROC

TSG_DATASET path+filename of .TSG file (overridden by MULTI_SPEC)
UPDATE_ITEMS space-delimited options
CPROC_TEMPLATE path+filename of .TSG template file
CPROC_OPTIONS space-delimited options
TASK_END

This is the copy-processing task. It honours the NOASSOC option and takes part in the MULTI_SPEC
system.

• If MULTI_SPEC is in use then TSG_DATASET is ignored, otherwise it must be given.

• No, I didn’t make a copy-and-paste blunder on this particular occasion. The COPYPROC task
spec includes an optional UPDATE_ITEMS line and can (first) do dataset updating just like
the UPDATE task. See above for a description of UPDATE_ITEMS.

• The CPROC_TEMPLATE line must be given. Here you give the path+filename of the
template TSG dataset – the one that has the scalars and / or plot layouts that you would like
to copy-process. Now did you know – only the template dataset’s .TSG file and (if layout
copying is to be done) .INI plot-layout files need to be around on the disk? Its .BIP,
_CRAS.BIP and _HIRES.DAT are not required.
Another thing – these days templates can come in associated VSWIR & TIR pairs, like regular
datasets. TSG knows how to deal with that automatically. Just keep both .TSG files of the
pair together.

• If CPROC_OPTIONS is given then it can include one or more of the following space-delimited
options. (If not given it defaults to SCALARS LAYOUT.)

o TSA Take the template dataset’s TSA settings and, if different, recalculate the
current dataset’s user-TSA scalars.

o SCALARS Copy-process all of the template dataset’s calculable and compatible
scalars.

o LAYOUT Adopt all of the template dataset’s layout files. (This is done after the
copy-processing of scalars.)

o ALL Equivalent to TSA SCALARS LAYOUT
If MULTI_SPEC is in use then all matched datasets are copy-processed in the same way, using the
same template dataset.

Example

MULTIOPTIONS swir nodive
multifile c:\00me\swift\0t*.*
task_begin
operation copyproc
update_items all
cproc_options scalars layout
cproc_template C:\00me\swift\0j\testrocks_tsg.tsg
task_end

DOWNSAMP
TASK_BEGIN

OPERATION DOWNSAMP

TSG_DATASET path+filename of .TSG file (overridden by MULTI_SPEC)
DOWNSAMP_CONFIG path+filename of .TSG template file
OUTPUT_DIR directory where the downsampling results end up
DSTOLERATE space-delimited options
TASK_END

This is the downsampling task. It ignores the NOASSOC option but takes part in the MULTI_SPEC
system.

• If MULTI_SPEC is in use then TSG_DATASET is ignored, otherwise it must be given.
Presently the Downsampling module only deals with one TSG dataset at a time (“primary
dataset” philosophy) and has no awareness of primary+assoc dataset pairs. So NOASSOC is
ignored and your MULTI_SPEC filtering deserves a fleeting moment’s thought.

• A downsampler configuration file must be given in DOWNSAMP_CONFIG. You can obtain a
configuration file by setting up an interactive downsampler session and clicking “Save a

downsampler configuration template” in the last page of the wizard. See page 179 of the
“what’s new” notes.

• If you like, provide a directory for the downsampled files in OUTPUT_DIR. Normally they
get saved alongside the input datasets. This mechanism lets you collect them elsewhere. It
can be handy in a specialised multi-file downsampling run where you’d like all the results to
be collected in one place.

• The optional DSTOLERATE line has one or more space-delimited options that relax TSG’s
fussiness when loading the configuration file for one of your datasets. You can tell TSG to
tolerate a load problem in any of the first five (now virtual) downsampler wizard pages: The
option keywords are:

o PAGE1 Selection of the scalar to downsample on, downsampling method, etc. I
can’t imagine why you would want to allow this page to fail, but give the option
anyway.

o PAGE2 Selection of mask, class & weight scalars, and items to downsample
(spectra, scalars, linescan). Think twice about allowing this page to fail. A linescan
issue (template wants linescan downsampling but dataset doesn’t have it) will
actually get tagged to the linescan page.

o SPEC The minimalist page with spectral downsampling options.
o SCALAR Scalar selection and handling. This is the one most likely to “fail”. The

configuration file includes a complete list of scalars to downsample and it is
considered “failure” if any of them cannot be found in the current dataset. Perhaps
you are willing to go with the subset that’s matched?

o LINESCAN Linescan downsampling options. This page will fail if the configuration
file calls for linescan downsampling but the current dataset doesn’t have linescan.

Example

MULTIOPTIONS swir nodive
multifile c:\00me\swift\0t*.*
task_begin
operation downsamp
downsamp_config C:\00me\swift\downsample.cfg
output_dir c:\00me\0ds
dstolerate scalar
task_end

TESTROX
TASK_BEGIN

OPERATION TESTROX

TSG_DATASET path+filename of .TSG file (overridden by MULTI_SPEC)
TESTROCKS_JOB space-delimited options
BKREM nothing, GLOBAL or LOCAL
REPORT_FILE path+filename of report file to generate
TASK_END

This task is about reporting on HyLogger wavelength calibration by finding absorption positions of
some TestRocks5 items. It ignores the NOASSOC option but takes part in the MULTI_SPEC system.
It is only for Vis-SWIR datasets; ideally contemporary TestRocks measurements that include a mylar-
on-teflon item.

Update In the past the only datasets handled were HyLogger 2 / 3 TestRocks measurements imported with a
4mm or 8mm pixel size, and HyLogger 1 TestRocks measurements with a 10mm pixel size. In March
2018 the method for locating target items was changed and the task was opened up to all Vis-SWIR
datasets (not just TestRocks ones). If your dataset includes one or more of the target items (mylar,
pyrophyllite, kaolinite, talc) then it can make sense to try the TESTROX task on it.

• If MULTI_SPEC is in use then TSG_DATASET is ignored, otherwise it must be given. This task
is best run on a collection of TestRocks datasets, however, so MULTI_SPEC is strongly
recommended and your MULTIOPTIONS should include these tokens (NOASSOC thrown in
for good measure):
MULTIOPTIONS TESTROCKS VSWIR NOASSOC

• TESTROCKS_JOB is mandatory and has no default. One or more of the following space-
delimited tokens must be given:

o MYLAR Calculate an average spectrum over the mylar-on-teflon item and report the
positions of 7 expected absorptions. An absorption position is found (in the average
spectrum) by first looking for a local minimum in the immediate neighbourhood
(plus or minus 2 channels) of where the feature is expected to be. If a local
minimum is found then its position is refined by a parabola fit on the 3 channels
around the minimum. If an expected feature is not found then its position is
reported as 0.

o PYRO Calculate an average spectrum over the pyrophyllite item and report the
positions of 6 expected absorptions.

o KAOLIN Calculate an average spectrum over the kaolinite item and report the
positions of 3 expected absorptions.

o TALC Calculate an average spectrum over the talc item and report the positions of
11 expected absorptions.

• BKREM is optional. It allows you to specify that continuum removal should be done before
absorptions are sought. If left out (the default) then the job is done in reflectance space,
otherwise you may select one of the following:

o GLOBAL An average spectrum is calculated from the dataset’s hull-quotient spectra
(instead of reflectance spectra).

o LOCAL An average spectrum is calculated from reflectance spectra, as normal, but a
local hull quotient is attempted for each expected feature. (This is an experimental
option.)

• REPORT_FILE is mandatory. It takes the full filename of the report that you would like the
task to put together. Take care – if the file already exists then new entries will be
appended. The task puts together a CSV table. There’s one row for each dataset that was

5 For those who aren’t familiar with the HyLogger world, “Testrocks” is a small panel of known rocks that the
HyLogger operator normally measures every day.

processed. The first column has the name of the HyLogger that measured the dataset, the
second has the scan date and the third has the filename. After that there’s one column for
each expected feature, for each TestRocks item specified in TESTROCKS_JOB.

Example

MULTIOPTIONS swir noassoc testrocks
multifile c:\00me\swift*.*
task_begin
operation testrox
testrox_job mylar pyro kaolin talc
bkrem local
report_file c:\00me\swift\0rep.csv
task_end

WVLCAL
TASK_BEGIN

OPERATION WVLCAL

TSG_DATASET path+filename of .TSG dataset (overridden by MULTI_SPEC)
HWCOPT nothing, K2206 (default), K2160, Q8625, Q12625, A9200
REPORT_FILE path+filename of report file to generate
TASK_END

This does an empirical wavelength check by finding kaolinite- or quartz-rich samples in the dataset
and reporting the position (mean and standard deviation) of a nominated kaolin or quartz
absorption. It ignores the NOASSOC option but takes part in the MULTI_SPEC system.
Kaolin checking is only for Vis-SWIR datasets, and quartz for TIR. It uses the dataset’s TSA results to
select suitable samples to check: user TSA results if present, otherwise system TSA. TSA 7.05
results (September 2015 or later) are preferred as they include the “TNorm” TSA scalar, which helps
in sample selection. For this reason you might consider running an UPDATE task before WVLCAL.
For kaolin it has four tries at sample selection and gets on with wavelength checking after the first
successful try (at least 1 sample accepted): Kaolinite WX (well crystallised) singletons; WX mixtures;
PX (poorly crystallised) singletons; PX mixtures. In the mixture tries, samples are not considered if
their minor component is from the “white-mica”, “smectite” or “other-AlOH” group. In all tries,
samples are not considered if their SRSS>=300 or TNorm<0.15 (or just SRSS>=250 if there is no
TNorm scalar).
A kaolinite sample’s elusive 2206nm (or 2160nm) absorption wavelength is unearthed by feature
extraction.
For quartz it has two tries at sample selection: quartz singletons preferably, or quartz mixtures if
there are no singletons. Quartz’ characteristic 8625nm “absorption” is sought. (Alternatively, you
can have it try the lesser 12625nm quartz feature or the 9200nm apatite feature.)

• If MULTI_SPEC is in use then TSG_DATASET is ignored, otherwise it must be given.
MULTI_SPEC is recommended and your MULTIOPTIONS should include these tokens
(NOASSOC thrown in for good measure):
MULTIOPTIONS VSWIR NOASSOC for kaolin or MULTIOPTIONS TIR NOASSOC for
quartz

• HWCOPT is optional. The task normally reports on the 2206nm kaolin absorption and
expects a VSWIR dataset. One may instead use the K2160 token (viz “HWCOPT K2160”) to
report on the 2160nm VSWIR kaolin absorption, or the Q8625 token to report on the
8625nm quartz feature in a TIR dataset. There are two other experimental TIR options:
Q12625 for the lesser 12625nm quartz feature or A9200 for the 9200nm apatite feature.
Apatite is rare though.

• REPORT_FILE is mandatory. It takes the full filename of the report that you would like the
task to put together. Take care – if the file already exists then new entries will be
appended. The task puts together a CSV table. There’s one row for each dataset that was
processed. Columns: The name of the HyLogger that measured the dataset, scan date;
dataset filename; absorption-wavelength mean; absorption-wavelength standard
deviation; number of samples used; sample type (e.g., Pure WX). The first two columns
will show “n/a” for non-HyLogging datasets. If none of the sample-selection tries were
successful then the dataset’s results will be zero and the last column will show “not found”.

Examples

MULTIOPTIONS swir noassoc
multifile c:\00me\swift*.*
task_begin
operation wvlcal
report_file c:\00me\swift\0kcrep.csv

hwcopt k2206
task_end

MULTIOPTIONS tir noassoc
multifile c:\00me\swift*.*
task_begin
operation wvlcal
report_file c:\00me\swift\0q12crep.csv
hwcopt q12625
task_end

PUCKWCAL
TASK_BEGIN

OPERATION PUCKWCAL

TSG_DATASET path+filename of .TSG dataset (overridden by MULTI_SPEC)
REPORT_FILE1 path+filename of report file to generate for primary dataset
REPORT_FILE2 path+filename of report file to generate for associated dataset
TASK_END

This task used to be called “TIRPOLYCAL” and only worked on TIR datasets, but it was renamed and
upgraded to work on Vis-SWIR and/or TIR datasets.
It honours the NOASSOC option and takes part in the MULTI_SPEC system. By all means give it
primary+associated dataset pairs, but then be careful to specify two report files in the script.
It does an empirical wavelength check by finding calibration-standard samples in the dataset(s) and
reporting the positions (mean and standard deviation) of selected absorptions.

Vis-SWIR

For Vis-SWIR datasets it expects to find spectra of a puck made from spectralon doped with talc and
three rare earths, and reports on 25 absorptions.
Here are example results from puck spectra collected from 24 TestRocks measurements.

453_mean 453_stddev 488_mean 488_stddev 524_mean 524_stddev 539_mean 539_stddev

453.327 0.036667 487.784 0.0591036 524.134 0.0446672 539.014 0.0936217

654_mean 654_stddev 744_mean 744_stddev 800_mean 800_stddev 888_mean 888_stddev

653.904 0.0588956 744.871 0.0579322 799.508 0.0345616 887.658 0.0499563

975_mean 975_stddev 1196_mean 1196_stddev 1261_mean 1261_stddev 1322_mean 1322_stddev

975.459 0.23981 1195.96 0.0758734 1260.97 0.0291376 1322.13 0.262735

1392_mean 1392_stddev 1475_mean 1475_stddev 1536_mean 1536_stddev 1643_mean 1643_stddev

1391.97 0.0199514 1474.81 0.0597009 1535.57 0.0191429 1642.53 0.0407821

1683_mean 1683_stddev 1757_mean 1757_stddev 1939_mean 1939_stddev 1971_mean 1971_stddev

1682.91 0.0121566 1756.93 0.0760457 1938.58 0.0387734 1970.8 0.1111

2009_mean 2009_stddev 2289_mean 2289_stddev 2312_mean 2312_stddev 2391_mean 2391_stddev

2008.77 0.257445 2289.02 0.0418918 2311.54 0.0342101 2390.85 0.128416

2468_mean 2468_stddev

2468.46 0.110922

TIR

For TIR datasets it expects to find spectra of a polystyrene-on-gold puck (or something similar like
polystyrene film on aluminium), and reports on 8 polystyrene transmission absorptions. The last
one is particularly wide with a poorly-defined minimum so take its result with a pinch of halite.
Here are example results from puck spectra collected from 24 TestRocks measurements.

6245_mean 6245_stddev 6698_mean 6698_stddev 8655_mean 8655_stddev 9347_mean 9347_stddev

6245.3 0.138551 6698.21 0.10576 8655.25 0.134654 9346.8 0.163806

9722_mean 9722_stddev 11018_mean 11018_stddev 11874_mean 11874_stddev 13345_mean 13345_stddev

9721.83 0.17106 11018.4 0.126131 11873.5 0.379664 13342.6 3.52952

Method

First, a correlation match against an internal standard spectrum is used to locate candidate spectra
in the dataset. Having found one or more, the wavelengths of the target absorptions are calculated
using built-in script scalars. (Most of them do a traditional 3-channel fit to the reflectance
absorption’s lowest 3 points. The scalar scripts can be made available on request.) The wavelength
mean and standard deviation are reported for each feature.

• If MULTI_SPEC is in use then TSG_DATASET is ignored, otherwise it must be given.
MULTI_SPEC is recommended as a calibration report is normally prepared for several
datasets. When using MULTI_SPEC with primary+associated dataset pairs, it is important to
use MULTIOPTIONS SWIR or MULTIOPTIONS TIR to avoid handling everything twice and
mixing up the reporting.

• REPORT_FILE1 takes the full filename of the report that you would like the task to put
together, for the primary dataset(s). Take care – if the file already exists then new entries
will be appended. The task puts together a CSV table. There’s one row for each dataset
that was processed. Columns: The name of the HyLogger that measured the dataset, scan
date; dataset filename; pairs of [absorption-wavelength mean, absorption-wavelength
standard deviation]; number of samples used. The first two columns will show “n/a” for
non-HyLogging datasets. If no suitable spectra were found then the dataset’s results will be
zero.

• REPORT_FILE2 takes the full filename of the report that you would like the task to put
together, for the associated dataset(s). Do not provide it if you don’t have
primary+associated dataset pairs, or if you specified the NOASSOC keyword in
MULTIOPTIONS.

Example

MULTIOPTIONS swir
multifile C:\00me\0cust\Michael\TestRocks*.*
task_begin
operation puckwcal
report_file1 C:\00me\0cust\Michael\TestRocks\swircalrep.csv
report_file2 C:\00me\0cust\Michael\TestRocks\tircalrep.csv
task_end

852LASER
TASK_BEGIN

OPERATION 852LASER

TSG_DATASET path+filename of .TSG dataset (overridden by MULTI_SPEC)
TASK_END

This is for Vis-SWIR HyLogging datasets only. We use an 852nm laser to keep tight control over the
HyLogger2/3’s SWIR spectrometer’s rotation speed. (The SWIR spectrometer actually “sees” down
to this wavelength.) Although we take measures to inhibit it, a small fraction of the laser beam
sometimes bounces back off the lenses and beam splitter, and finds its way into the VNIR
spectrometer. So it can get added to the radiance seen by the VNIR spectrometer. When
something about as bright as Teflon (our transfer standard) is measured then the little laser bump is
normally ratioed out in the reflectance, but it can have a showing in dark reflectance spectra.
It is not common but this correction can fix it. Spectra are fixed in place, and that alone is a caution
to run the job only if you need to.
It is for Vis-SWIR datasets only. It ignores the NOASSOC option but takes part in the MULTI_SPEC
system. If MULTI_SPEC is used then TSG_DATASET is ignored, otherwise it must be given. If
MULTI_SPEC is used then MULTIOPTIONS should include these tokens (NOASSOC thrown in for good
measure): MULTIOPTIONS VSWIR NOASSOC. The NOFIELD option is recommended too.

Example

MULTIOPTIONS swir nofield
multifile c:\00me\swift*.*
task_begin
operation 852laser
task_end

TPICGEN
TASK_BEGIN

OPERATION TPICGEN

TSG_DATASET path+filename of .TSG dataset (overridden by MULTI_SPEC)
BRANDING picture title (80 chars), “plain” pictures only (def: HyLogging Systems)
LOGO_FILE left-logo-icon path (def: built-in CSIRO icon)
LOGO_RIGHT N or Y, to use “LOGO_FILE” for the right logo too (def: N for CSIRO icon)
MINDEPTH starting depth (trays before it are skipped) (def: dataset start)
MAXDEPTH end depth (trays after it are skipped) (def: dataset end)
WIDTHTRIMPC extra image width trimming in percent (def: 0)
OUT_PIXPERM output resolution in pixels-per-core-metre (def: 2000)
RESAMP_METH NN (nearest neighbour), LINEAR, CUBIC, LANCZOS or SUPER (def)
SUBDIR subdirectory to create (alongside dataset files) for the pictures (def: none)
FILENAME_EX HOLEID and/or DEPTH (“decorations” for the output filenames) (def: none)
FILE_FORMAT JPEG, BMP or PNG (def: JPEG)
JPQUAL quality factor for JPEG output, 1..100 (def: 75)
PIC_TYPE PLAIN, SCREEN or STICKS (def: PLAIN)
STICK_PER TRAY, SECTION or INTERVAL (type of image stick, def: TRAY)
STICKSPAN stick length in metres, interval stick output only (def: 1)
STICK_HORIZ N or Y, to render image sticks horizontally instead of vertically (def: N)
MASK_SCLR mask-scalar name, used for an image overlay (def: none)
MASK_COLOUR colour index for mask overlay (def: 3 and good luck changing it)
MASK_SOLID N or Y, to draw the mask overlay solid instead of semi-transparent (def: N)
WHITE_BKGND N or Y, to give the pictures a white background instead of black (def: N)
TASK_END

This task generates tray pictures for a HyLogging dataset. It honours the NOASSOC option and takes
part in the MULTI_SPEC system. If MULTI_SPEC is used then TSG_DATASET is ignored, otherwise it
must be given. If MULTI_SPEC is used then MULTIOPTIONS should include the NOFIELD token, and
the SWIR token is highly recommended to prevent the thing from doing two passes (one for the Vis-
SWIR datasets and another for the TIR ones). Indeed the only reason not to include the NOASSOC
option as well is if you are using SCREEN for PIC_TYPE and have a mix of Vis-SWIR and TIR scalars
plotted in the Tray screen.
So then, I recommend MULTIOPTIONS swir nofield noassoc or occasionally
MULTIOPTIONS swir nofield.

This task has a vast collection of settings. They correspond with the fields that you see in the
interactive tray-picture generation dialog and won’t get further mention here. (See the vast
“What’s new in TSG” document for more info.)

Example

MULTIOPTIONS swir noassoc nofield
multifile C:\00me\swift*.*
task_begin
operation tpicgen
subdir 1msticks
out_pixperm 3000
widthtrimpc 7.5
jpqual 80
pic_type sticks
stick_per interval
stickspan 1
stick_horiz y

mindepth 100
maxdepth 150
task_end

SPIMPORT
TASK_BEGIN

OPERATION SPIMPORT

FORMAT type of files to import (currently the only option is ASD)
WATCHDIR directory where raw spectrum files will “arrive” from time to time
MOVEDIR directory where raw spectrum files get moved to after being imported
MINFILES minimum number of compatible files in WATCHDIR for an import (1)
LOOPSEC seconds to wait before doing another import round (0 meaning no looping)
NUMLOOPS number of loops to do (0 for infinite) (only for when LOOPSEC>0)
OUTFILE filename (or stub) of TSG dataset to create or append to
AUTONAME N or Y, append a timestamp number to OUTFILE to ensure a new dataset on
each import
APPEND N or Y, existing output dataset: overwrite it, or append spectra to it?
DATASETCHAIN N or Y, have the output dataset take the place of “TSG_DATASET” in
subsequent tasks?
WVLMIN resampling, start output wavelength (source)
WVLMAX resampling, end output wavelength (source)
CHANS resampling, number of output channels (source)
WSAMP resampling, method (L3 if resampling is done, otherwise none)
CORRFILE “throughput correction” CSV file, e.g., Spectralon AbsRef
CPROCFILE existing TSG dataset from which to copy scalars and layout
ASD_SMTHWVL0 short-wavelength-end smoothing, smooth up to this wavelength
ASD_SMTHWVL1 long-wavelength-end smoothing, smooth from to this wavelength
ASD_SMOOTH degree of smoothing: NONE, LOW, MED, HIGH, EXTRA.
ASD_SMTHAUTO N or Y, let TSG decide on the above 3 smoothing parameters?
ASD_DSTEP N or Y, do the inter-detector step correction?
ASD_SUNLIGHT N or Y, consider interpolating over water-vapour regions of the spectrum?
ASD_PARSEFN parse items out of each spectrum’s filename and import as scalars.
Options: NONE, DEPTH, SAMPLENO
ASD_FNDEPCH number of characters assigned to depth when PARSEFN=DEPTH (5)
ASD_SERIAL N or Y, import instrument serial number and integration count as scalars
ASD_GPS N or Y, import GPS (if present) as scalars
TASK_END

This task does unsupervised spectral imports of field-spectrometer data and it is here to help
automate certain workflows. It is a bit like the DOWNLOAD task seen earlier. Like that task, it
ignores the NOASSOC option and doesn’t take part in the MULTI_SPEC system. It imports spectra to
a new dataset or appends them to an existing one using TSG’s “dynamic import” system. Currently
it only imports field spectra and indeed only ASD binary spectrum files. It is quite a complicated task
so its parameters will be discussed in sections.

Basics

The task checks your watchdir directory for any files that may be imported. If there are any files
there then they are examined for suitability (see format). If enough pass examination (see
minfiles) then the import goes ahead: Spectra are imported to a new TSG dataset or appended to
an existing one (see append) and, if movedir is given, all of the files in watchdir are moved to
movedir. If a serious problem was encountered along the way then the task finishes, otherwise if
loopsec is not zero and numloops permits, it sleeps for the given time before trying another
import.

• FORMAT (opt) The type of spectrum file to import. Currently there is only one
option: ASD.

• WATCHDIR The directory where spectrum files are expected to arrive. This parameter
is mandatory.

o Watchdir may not include any subdirectories, and the output TSG dataset(s) must
not be created there.

• MOVEDIR (opt) The directory where all files in watchdir are moved to after an import
has been attempted.

o If movedir is not given then the files are not moved, otherwise they are moved
whether or not the import worked.

o In the case of duplicate filenames an index is appended, as necessary, to prevent
files from being overwritten.

o If there is a file that stubbornly refuses to be moved (e.g., because some program
has it open) then the task ends.

• MINFILES (opt, default 1) The minimum number of good spectrum files to be found in
watchdir for an import to go ahead (otherwise nothing is done, including file moving).

Looping

This task got its own “looping” support before the BATCHLOOP option (see page 2) was added to the
overall script system. If you only have a SPIMPORT task in your script then you can use either
looping method, but if you have a script with two or more tasks (SPIMPORT followed by another task
or two) then you will probably want the BATCHLOOP method.
With looping you can have Headless TSG camp out in the background, waking up every so often to
check if there is something to do.

• LOOPSEC (opt, default 0) The number of seconds for the task to “sleep” before trying
another import. A value of 0 turns off looping.

• NUMLOOPS (opt, default 0) The number of loops – the number of times to try an
import. 0 means infinite.

Output

These parameters are involved: OUTFILE, AUTONAME and APPEND
The task can create a new TSG dataset for imported spectra, or it can append spectra to an existing
dataset. Things can get a bit complicated when looping is in play. The following workflows are
supported for looping:

1. Always import to a new TSG dataset.

• Provide a partial filename in outfile. That is, do not include a .TSG extension.

• Set autoname=Y. For each import TSG will append _nnnnnnn.tsg to the filename
and create a new dataset (nnnnnnn being derived from a timestamp).

2. Start out with an existing TSG dataset and always append imported spectra to it.

• Provide a complete TSG dataset filename in outfile.

• Set append=Y
3. Start out with nothing. Let the first import create a new dataset (if it has to), and have

subsequent imports append to it.

• Provide a complete TSG dataset filename in outfile.

• Set append=Y
4. Let each import overwrite the same TSG dataset. (TSG won’t stop you…)

• Provide a complete TSG dataset filename in outfile.

Note

When appending spectra to an existing dataset, TSG ignores many script settings (resampling, scalar
imports etc) and takes this information from the dataset’s saved settings instead.

Output chaining

There’s this weird option DATASETCHAIN. It can be useful in a multi-task script, e.g., one that has a
SPIMPORT task followed by a DOWNSAMP task. If you have DATASETCHAIN Y then the
TSG_DATASET entries in all following tasks will be changed to be SPIMPORT’s output dataset. That
is, all tasks after the SPIMPORT task will be made to work on the dataset that SPIMPORT created /
updated. Also, if SPIMPORT didn’t actually import any spectra then all following tasks will be
skipped.

Wavelength resampling

By default the task will take the spectra as they come, preserving their full range & resolution and
only resampling if the incoming wavelength increment (from one channel to the next) is not
constant. However you can set up resampling if you like. Specify your desired output wavelength
range with wvlmin & wvlmax, and number of output channels with chans. Select the resampling
method with wsamp:

• LINEAR=linear interpolation;

• SPLINE=spline interpolation;

• GAUSS=convolution with “critically sampled” Gaussian bandpasses (Gaussian FWHM =
output channel spacing);

• L3= Lanczos resampling;

• DYNL3=dynamic-window Lanczos resampling (good for going from wavenumbers to
wavelengths or vice-versa).

Other options

• You might have seen a thing called “final correction spectrum” in TSG’s Import wizard, and
perhaps even used it. No? Well it can be handy. If your spectra are reflectance relative to
spectralon and you happen to have the spectralon’s (smoothed) absolute reflectance
calibration curve in a CSV file then you can have the import do an approximate correction to
absolute reflectance. Provide your CSV filename with CORRFILE.

• If you want calculable scalars and layouts to be “copy-processed” from some template TSG
dataset that you have, specify this template dataset with CPROCFILE.

ASD-specific options

Almost all of the ASD_ options (shown above) have counterparts in the “ASD” page of the import
wizard. See the document tsg8_importing_ASD.pdf.
The smoothing options need some words though. TSG will normally set up smoothing parameters
according to the integration time of the first spectrum file that it sees. If you want to set your own
smoothing parameters with ASD_SMTHWVL0, ASD_SMTHWVL1 and ASD_SMOOTH, you must also set
ASD_SMTHWAUTO=N.

Examples

This example just has one task, a SPIMPORT task that does its own looping. It creates (if necessary)
or appends to a named dataset (0try.tsg).

task_begin
operation spimport
loopsec 30
numloops 100
minfiles 10
watchdir C:\00me\asd\0w
movedir C:\00me\asd\0m
outfile C:\00me\asd\0try.tsg
append y
cprocfile c:\00me\swift\repo1.tsg

ftp://ftp.csiro.au/MMTG/tsg8_importing_ASD.pdf

corrfile C:\CProjects\0tsg\devbits\those\spectralon.csv
wunits nm
wvlmin 380
wvlmax 2500
chans 531
wsamp L3
format asd
asd_parsefn sampleno
asd_serial y
task_end

This example has a spimport task followed by a downsamp task. If the spimport task actually does
any importing then it comes up with a unique filename suffix to create a new dataset (each time)
thanks to autoname. Because of datasetchain, the downsamp task works on the TSG dataset that
gets created by the spimport task (its tsg_dataset parameter is effectively ignored), but is
automatically skipped if the spimport task does nothing. The whole script is looped according to
batchloop at the start.

batchloop 30,20
task_begin
operation spimport
minfiles 10
watchdir C:\00me\asd\0w
movedir C:\00me\asd\0m
outfile C:\00me\asd\0hltry
autoname y
datasetchain y
cprocfile c:\00me\swift\0t\testrocks_1_tsgtray.tsg
corrfile C:\CProjects\0tsg\devbits\SWIR_upd\monica_2018\spectralon.csv
wunits nm
wvlmin 380
wvlmax 2500
chans 531
wsamp L3
asd_smthauto y
asd_parsefn sampleno
task_end
task_begin
operation downsamp
tsg_dataset C:\00me\anything.tsg
downsamp_config C:\00me\swift\downsample.cfg
output_dir c:\00me\0ds
dstolerate scalar
task_end

CLIMPORT
TASK_BEGIN

OPERATION CLIMPORT

FORMAT type of files to import (currently HCI3, SDF or SDS)
INPUT_DIR directory containing a drillhole’s worth of files to import
OUTPUT_DIR directory where the import’s TSG dataset should be created
CPROCFILE existing TSG dataset from which to copy scalars and layout
DATASETCHAIN N or Y, have the output dataset take the place of “TSG_DATASET” in
subsequent tasks?
HCIXMM (HCI import) width (across scan) in mm of spectral extraction tile (8)
HCIYMM (HCI import) length (along scan) in mm of spectral extraction tile (8)
HCIOMM (HCI import) horizontal shift away from centre-of-scan for extraction tile (0)
JPQUAL JPEG image compression quality factor (0..100; 75)
HLSCREATE list of commonly-used core-logging scalars to create on import (system)
SEMSTART number of samples to mask off at section start (SecEndMask scalar; system)
SEMEND number of samples to mask off at section end (SecEndMask scalar; system)
FMDIL final-mask-scalar dilation amount (FinalMask scalar; system)
WVLMIN resampling, start output wavelength (source)
WVLMAX resampling, end output wavelength (source)
CHANS resampling, number of output channels (source)
WSAMP resampling, method (L3 if resampling is done, otherwise none)
TWVLMIN TIR resampling, start output wavelength, HyLogger-3 SDS import (system)
TWVLMAX TIR resampling, end output wavelength, HyLogger-3 SDS import (system)
TCHANS TIR resampling, number of output channels, HyLogger-3 SDS import (system)
TWSAMP TIR resampling, method, HyLogger-3 SDS import (system)
SDSCHUNK spectrum “chunking up” factor for the HyLogger-2/3 SDS import (system)
SDFREPAV N or Y, repeat-measurement averaging for the (chip mode) HyLogger-1 SDF
import (system)
SDFOPT image handling and other general options for the HyLogger-1 SDF import (system)
SDSOPT image handling and other general options for the HyLogger-2/3 SDS import
(system)
SDSCRIT which errors are critical in the HyLogger-2/3 SDS import (system)
SDSTHRESH various error thresholds for the HyLogger-2/3 SDS import (system)
SDSTEFALB reference Teflon albedi for the HyLogger-2/3 SDS import (system)
SDSTHERMC TIR diag thresholds for the HyLogger-3 SDS import (system)
SDSDNOISE noise thresholds for the HyLogger-3 SDS import (system)
SDSALBRAT Vis/SWIR albedo ratio threshold for the HyLogger-2/3 SDS import (system)
SDSSHARP image sharpening factor for the HyLogger-2/3 SDS import (system)
SDXPANHT “Vampire Snail Attack” height threshold for a HyLogger SDF/SDS import
(system)
SDXGAMMA image adjustment gamma for a HyLogger SDF/SDS import (system)
SDXIMGRATE image output rate (lines per spectrum) for a HyLogger SDF/SDS import
(system)
SDSPDTRAY N or Y, generate tray datasets (one per tray) instead of a drillhole dataset,
HyLogger-2/3 SDS import
TASK_END

This task does unsupervised spectral imports of core-logging data. It has a different flavour to the
SPIMPORT task above. While SPIMPORT focuses on dynamic imports where a few spectra at a time
are imported to one growing dataset, CLIMPORT only creates new datasets. Given that it normally
takes quite a long time to import just one core-logging drillhole dataset, CLIMPORT’s purpose is to

batch up unsupervised imports of several datasets, freeing you up to do other things. (This could
even be your chance to finish writing that paper.)

Defaults

The majority of the parameters listed above include the orange text (system), indicating that their
defaults come from “the system”. Moving on then. No? Well, “the system” means what your TSG
remembers from the last time you did an interactive core-logging import, especially a HyLogging
import. You can also get at these “system” settings via TSG’s File -> Special -> Defaults for SDS and
SDF imports menu. So think about it. Do you trust your system settings, or would it be better to
write a detailed, self-contained headless script for churning through the import of a few dozen drill-
holes? Also note that settings defined in a CLIMPORT headless script will only be “live” for the script
– they will not be saved back over the system defaults.

Input and output

This task deals with directories rather than files.

Input

As input the task is given a directory which is expected to contain one drillhole’s worth of files. You
can either provide this directory explicitly with the INPUT_DIR parameter, or you can let the multi-
spec system take care of things instead: Here you use MULTIOPTIONS DIRS to make the system look
for directories rather than files, and you tell it where to start looking with MULTIFILE.
For example I have many drillhole directories in e:\image_data\corescan\ and I would like to
import each drillhole to a TSG dataset of its own. I use this multi-spec (which overrides any
INPUT_DIR):

MULTIOPTIONS dirs
MULTIFILE e:\image_data\corescan*.*

Caution: By default the multifile system will keep on ‘diving’ down every subdirectory that it comes
across. If you want it to look only one level below your spec then use its nodive option.

Output

The task expects to be run with a multi-spec, normally, and doesn’t let you provide a name for the
output TSG dataset. It names this dataset according to the input directory. E.g., say the drillhole
directory e:\image_data\corescan\ddh131\ is currently being dealt with. The output

dataset will be named e:\image_data\corescan\ddh131_prof.tsg.
What you can do is (keep the automatic output filename but) have it a different directory, using the
OUTPUT_DIR parameter, e.g.,
 OUTPUT_DIR d:\profile_data\cs_import\
This output directory must exist. It can be on a different drive to the input.
Another thing you can do (like with the SPIMPORT task) is pass the name of the created TSG dataset
on to other tasks in your script by using DATASETCHAIN Y For example, say you would like to
import a number of datasets (using multi-spec) and you would like tray pictures to be generated for
each imported TSG dataset. You would have two tasks on your script – first a CLIMPORT task and
then a TPICGEN task. Having DATASETCHAIN Y in the CLIMPORT task would pass the name of the
newly-created TSG dataset on to the TPICGEN task.

Common parameters

Spectral resampling

If you like you can resample the spectra using some or all of the WVLMIN, WVLMAX, CHANS and WSAMP
parameters. (See in SPIMPORT above for details.)

• For HyLogger-1 SDF the incoming spec is 350:2500@1 nm and the normal default is
resampling to 380:2500@4 nm using the L3 method.

• HyLogger-2/3 SDS the incoming spec is 380:2500@4 nm and the normal default is to take it
as-is.

• For Corescan HCI-3 the incoming spec is commonly 448:2500@4 nm and it is all taken by
default.

HyLogger TIR

There are separate TWVLMIN, TWVLMAX, TCHANS and TWSAMP parameters for resampling HyLogger
TIR spectra, should you have them. Incoming spectra are in wavenumbers and the exact coverage
varies between instruments. The normal default is to resample to 6000:14500@25 nm using the
Dynamic L3 method.

Scalar creation

The import will always create the basic set of core-logging scalars: Tray, Section, SecDist, Depth and
so on.
If you like you can have some other common scalars created at import time by using the HLSCREATE
parameter with one or more options:

• ProfMin Creates the “prof_min” scalar – profilometer minimum (used in masking)

• SecEndMask Creates the “sec_end_mask” scalar (used for masking). This scalar is off for
samples at the start and / or end of a core section, otherwise on. Use the SEMSTART
parameter to control how many samples get masked off at the start of a section (default 1),
and SEMEND to control how many at the end (default 1).

• Kahuna Creates the “kahuna” junk mask scalar. It requires coverage of the
[1304,2496] nm wavelength interval, and should be given ProfMin and SecEndMask.

• FinalMask Creates the “final mask” scalar as a copy of kahuna (requires Kahuna).

Also, passing a number greater than 0 in FMDIL will cause the final-mask scalar to be dilated
(more ‘off’ samples) by that amount.

• IDL Initialises the depth-logging system (likes FinalMask).

• RecRate Creates the “recovery_rate” scalar (Likes IDL).

• VirtSec Creates the “virtual_section” scalar (good for image-style scatterplots).

• RelRange Creates the “relative range” spectral-contrast scalar.
If you do not specify HLSCREATE then you will get the defaults: ProfMin, SecEndMask,
Kahuna, VirtSec
You can also use the CPROCFILE parameter to copy layouts and calculable scalars from a template
dataset.

HyLogger SDF and SDS parameters

Common

• SDXIMGRATE is the desired output image rate in lines per output spectrum. The normal
default is to take the full incoming resolution. If you use this in an SDS import then take
care if also using SDSCHUNK.

• SDXPANHT is the height above tray bottom, in mm, below which the “Vampire Snail Attack”
correction starts taking effect. (The actual correction is enabled separately.)

• SDXGAMMA is the image colour stretch gamma power. (The actual correction is enabled
separately.)

HyLogger-1 SDF

SDFREPAV

This is a Boolean with value Y or N. e.g., SDFREPAV Y
It controls what to do when importing chip-tray data where there’s more than one spectrum per
chip bucket. N=preserve the multiple spectra; Y=average down to one spectrum per bucket.

SDFOPT

This one includes one or more items (in any order) to enable various SDF import options. The full
set looks like this:

SDFOPT DEPEX BLACK WHITE TTCOR WTRIM OLADJ DOZER REVLON PANNY COMNT

DOGAM DOTIR TIRCAL DOIMG
You must either leave this parameter out entirely (for defaults), or provide it with all the options
that you’d like enabled. Here’s a brief summary of what each option does.

• DEPEX gets the import to create from-depth and to-depth scalars. (Handy for chip trays.)

• BLACK enables the image dark correction.

• WHITE enables the image white correction (important).

• TTCOR enables the image “tan theta” correction, which standardises the pixel size across
scan.

• WTRIM enables automatic width trimming of the output linescan raster.

• OLADJ enables the main image-frame-overlap correction.

• DOZER enables a correction that smooths image albedo across frame joins.

• REVLON enables a cross-fade tweak to further conceal frame joins.

• PANNY enables the Vampire Snail Attack correction, which isn’t quite as genial as it sounds.

• COMNT gets the import to create a class scalar containing any per-tray comments entered by
the HyLogger operator.

• DOGAM enables the image gamma correction.

• DOTIR is the master switch for importing accompanying TIR spectra, should you have them.

• TIRCAL enables TIR temperature correction when importing TIR spectra.

• DOIMG is the master switch for importing imagery.

HyLogger-2/3 SDS

SDSCHUNK

It takes a number. e.g., SDSCHUNK 2
It causes the import to “chunk up” (average) incoming spectra. You get fewer output spectra of
course but they have better SNR. The normal setting is 2 – chunk up by 2 – yielding an 8mm-per-
sample output datastream from a 4mm-per-sample input one.

SDSSHARP

It takes a number 1 to 100. e.g., SDSSHARP 44
It’s the sharpening amount for when the image sharpening adjustment is enabled (see below).

SDSOPT

It includes one or more items (in any order) to enable various SDS import options. The full set looks
like this:

SDSOPT DOIMG BLACK WHITE OLADJ REVLON PANNY WTRIM SHARP TTCOR DOGAM

DOLOC DOTIR TIRCAL DSTEP
You must either leave this parameter out entirely (for defaults), or provide it with all the options
that you’d like enabled. Here’s a brief summary of what each option does.

• DOIMG is the master switch for importing imagery.

• BLACK enables the image dark correction.

• WHITE enables the image white correction (important).

• OLADJ enables the main image-frame-overlap correction.

• REVLON enables a cross-fade tweak to further conceal frame joins.

• PANNY enables the Vampire Snail Attack correction.

• WTRIM enables automatic width trimming of the output linescan raster.

• SHARP enables an image sharpening adjustment.

• TTCOR enables the image “tan theta” correction.

• DOGAM enables the image gamma correction.

• DOLOC enables an important image-synchronisation step that locates a known edge in the
incoming imagery.

• DOTIR is the master switch for importing accompanying TIR spectra, should you have them.

• TIRCAL enables TIR temperature correction when importing TIR spectra.

• DSTEP enables a VNIR-SWIR step correction. It should only be enabled if you know that the
data have been measured with the HyLogger’s own step correction turned off.

SDSCRIT

This one works like SDSOPT above. It includes one or more items (in any order) to enable “fail on
error” for various SDS diags, and you must either leave it out entirely (for defaults) or specify all of
the items you want enabled. The full set looks like this:

SDSCRIT MAXCL DARKMAX WHITEMINA WHITEMINM MAXSAT WHITESTEP WHITECLIP

TEFALB ALBRAT TIRGEN TIRSCAT TIRBKTMP TIRTMTMP TIRTDTMP TIRTMP DNOISE

• MAXCL fail on too many crystal-lock errors.

• DARKMAX fail if the dark image cal isn’t dark enough.

• WHITEMINA fail if the white image cal isn’t white enough (average DN).

• WHITEMINM fail if the white image cal isn’t white enough (minimum DN).

• MAXSAT fail if the imagery over Teflon is too coloured.

• WHITESTEP fail if there’s too big a local DN difference in the white cal.

• WHITECLIP fail if the imagery over the white cal is clipped.

• TEFALB fail if the raw instrument response over Teflon is out of bounds.

• ALBRAT fail if the VNIR/SWIR albedo ratio is out of bounds.

• TIRGEN fail if the TIR temperature-correction stage reports a general error.

• TIRSCAT fail if the TIR temperature-correction stage reports too much source scattered into
the background.

• TIRBKTMP fail if the TIR temperature-correction stage reports too much change in
background temperature.

• TIRTMTMP fail if the TIR temperature-correction stage reports too much change in tray
temperature (median).

• TIRTDTMP fail if the TIR temperature-correction stage reports too much change in tray
temperature (standard deviation).

• TIRDTMP fail if the TIR temperature-correction stage reports too much change in tray
temperature (any sample).

• DNOISE fail if the (new) noise-on-dark-calibration check finds that a tray’s noise measure is
too high.

SDSTHRESH

This one accesses some of the SDS import diag thresholds. It has one or more name=value pairs,
e.g., MAXSAT=17 DARKMAX=25. Items can be in any order, and unlike with the fussy SDSOPT and
SDSCRIT above, you can specify just the items that you want to change from their defaults. Any
items that you don’t specify will be left at their defaults.

• MAXCL= gives the maximum number of crystal-lock errors (%) per section.

• DARKMAX= gives the brightest allowed dark image cal (max DN).

• WHITEMINA= gives the darkest allowed white image cal (average DN).

• WHITEMINM= gives the darkest allowed white image cal (minimum DN).

• MAXSAT= gives the maximum allowed image colour saturation % over Teflon.

• WHITESTEP= gives the maximum allowed step (local DN difference) in the white cal.

• WHITECLIP= is really a toggle (value 0 or 1) that snuck in as a “threshold”. If enabled
(WHITECLIP=1) then TSG checks for DN clipping over the white cal.

SDSTEFALB

Use this to specify your HyLogger’s typical raw spectral albedo over Teflon. It takes up to three
name=value pairs (with V=for VNIR, S= for SWIR and T= for TIR):

SDSTEFALB V=15273.8 S=0.03233 T=0.0345
Only the ones you specify will be changed – the others will be left at their default values.
Special note: If you give a value of 0 for any of these then the corresponding albedo will be drawn
from the first tray of each drillhole that you import. This is probably the best course of action when
re-importing historic data, scanned when the HyLogger’s albedo thresholds were different to its
current ones.

SDSTHERMC

This item accesses diag thresholds to do with TIR correction. It takes up to five name=value pairs,
e.g.,

SDSTHERMC TIRSCAT=0.02 TIRBKTMP=10 TIRTMTMP=10 TIRTDTMP=15 TIRDTMP=20
Only the ones you specify will be changed – the others will be left at their default values.
The thresholds are:

• TIRSCAT: max source scattered into the background.

• TIRBKTMP: max change in background temperature.

• TIRTMTMP: max change in tray temperature (median).

• TIRTDTMP: max change in tray temperature (standard deviation).

• TIRDTMP: max change in tray temperature (any sample).

SDSDNOISE

This item accesses spectrometer noise thresholds. For each tray, a noise measure is estimated over
the tray’s dark calibration target. This is done for both the SWIR and TIR spectrometers, although
only the SWIR spectrometer has raised concerns to-date. (The default TIR threshold should not
trigger.)
An over-threshold noise measure will stop the import with an error if the DNOISE critical bit is set.
SDSDNOISE takes up to two name=value pairs, with S= for SWIR and T= for TIR. The example below
sets both of the thresholds to TSG’s default values:

SDSDNOISE S=0.0.00004 T=0.0001

SDSALBRAT

Use this to specify the VNIR/SWIR albedo sanity ratio for your HyLogger.
E.g., SDSALBRAT 3.5

SDSPDTRAY

This is a Boolean with value Y or N. e.g., SDSPDTRAY Y
When enabled, the importer does not create a TSG dataset for the drillhole, or follow the output
dataset naming convention discussed earlier. Instead, it creates a dataset (or dataset pair) for each
tray, named after the .SDS file and ending with “_tsgtray”. So it essentially recreates the little
single-tray TSG datasets that one normally gets from the HyLogger operator.
Note this option is not compatible with the DATASETCHAIN option.

Corescan HCI-3 parameters

Profile extraction

TSG’s Corescan import makes a HyLogger-like profile dataset from a Corescan HCI-3 hyperspectral
image dataset. (A profile dataset is just a single spectrum wide.) You can control the sampling
window – how much hyperspectral imagery is averaged down to one profile spectrum:

• HCIXMM gives the width in mm of the sampling window (across scan) in mm (default 8)

• HCIYMM gives the length in mm of the sampling window (along scan) in mm (default 8)

• HCIOMM gives the offset in mm of the sampling window (across scan from the middle of the
scan, plus or minus) in mm (default 0 meaning middle of scan)

For example:
 HCIXMM 16
 HCIYMM 10
 HCIOMM -8

This configuration will give a sampling window that’s 16mm wide and 10mm long. Instead of being
positioned at the centre of the scan, it’ll be positioned left of centre – the right edge of the window
will be at the centre of the scan. Given that the normal HCI-3 spectral cell size is 0.5mm, this
window will take 16*2*10*2 = 640 HCI-3 spectra and average them down to 1 profile spectrum.
HCI-3 2D profilometer data get sampled through the same window across scan, but preserved along
scan. (As in a normal HyLogger dataset there will be many profilometer points per spectrum along
scan.)
HCI-3 RGB image data are kept at full resolution, but compressed.

Examples

This script has two tasks. The first imports a HCI-3 drillhole dataset and the second generates image
sticks (one per metre) for the imported dataset. It does this for all drillhole directories that it finds
in the MULTIFILE spec.

MULTIOPTIONS dirs
MULTIFILE E:\corescan\area52*.*
task_begin
operation climport
format hci3
output_dir C:\00me\swift\csprof
hcixmm 8
hciymm 4
jpqual 80
datasetchain y
task_end
task_begin
operation tpicgen
subdir 1msticks
out_pixperm 3000
widthtrimpc 7.5
jpqual 80
pic_type sticks
stick_per interval
stickspan 1
stick_horiz y
task_end

This script does a HyLogger3 SDS import of one specific drillhole. To be independent of system-
remembered SDS settings it includes all relevant SDS import options, settings and thresholds except
– notably – the SDSTEFALB raw-albedo values. It has these set to zero to instruct the import to
derive their actual values from the first input tray.

task_begin
operation climport
format sds
input_dir c:\00me\swift\0t
output_dir C:\00me\swift\0i
sdschunk 2
sdxgamma 0.72
jpqual 80
sdsopt doimg black white oladj revlon wtrim ttcor dogam doloc dotir tircal
sdscrit maxcl whitestep albrat
sdsthresh maxcl=20 darkmax=17 whitemina=160 whiteminm=125 maxsat=17 whitestep=40
whiteclip=1
sdstefalb v=0 s=0 t=0
sdsthermc tirscat=0.02 tirbktemp=10 tirtmtmp=10 tirtdtmp=15 tirdtmp=18
sdsalbrat 3.5
task_end

SHELLEXEC
TASK_BEGIN

OPERATION SHELLEXEC

VERB operation / action for the ShellExecute command (default is OPEN)
FILE file or object on which to execute the given VERB (mandatory)
PARAMS If FILE specifies an executable file, PARAMS is a string that specifies the
parameters to be passed to FILE (optional, default none)
DIRECTORY default working directory (optional, default none meaning current directory)
SHOW N or Y, allow the application concerned to show its window. (Why you want to have
this turned on in headless mode is beyond me, but do it if you must.)
WAIT N or Y, have Headless TSG wait for the application concerned to finish / close
TASK_END

This task spawns another process from headless TSG using the ShellExecute command. It was put
into the headless system mainly to allow you to pick up where TSG left off, e.g., to handle (with
some other program that you have) a CSV file produced by the DOWNSAMP task.

• The most commonly-used verb is open (the default). Allowed verbs will depend on file,
and will generally be shown in file’s right-click menu.

• File will normally be the path+filename of an executable to run, but can instead be a
document that Windows knows how to open. E.g., Windows knows how to open .html, .txt
and .csv files (amongst others).

• If file is an executable then you can use params to pass space-separated arguments to it.
If file is a document then do not specify params.

• Normally, headless TSG will move on after launching the SHELLEXEC task, allowing the
launched process to carry on in parallel. If you would prefer headless TSG to wait for the
process to finish before moving on, specify wait y.

Dataset filename substitution

There may be times when you’d like to use the SHELLEXEC task on some TSG dataset file that a
previous task has worked on, but you don’t have the dataset’s filename handy. The cases currently
handled are multi-spec scripts and the SPIMPORT task (which might have autoname y). In these
cases you can use the special keyword $TSGFILE for file and / or in params. TSG will then
substitute the current dataset’s actual filename for this keyword.
If you use it in params then it is good practice to put it in quotes, i.e., "$TSGFILE". (If you don’t,
TSG will attempt to insert quotes itself if the actual filename includes spaces.)
e.g., (for some imaginary program) params –archive "$TSGFILE"

Example

This (dumb) example runs a PUCKWCAL task and opens the resulting report file in the notepad++
text editor. Notepad++ is opened in “topmost” mode. TSG waits until Notepad++ has been closed.

task_begin
operation puckwcal
tsg_dataset C:\00me\TestRocks\swirstandard.tsg
report_file1 C:\00me\0look.csv
task_end
task_begin
operation shellexec
verb open
file C:\Program Files\Notepad++\notepad++.exe
params –alwaysOnTop C:\00me\0look.csv
show y
wait y

http://www.ml-consult.co.uk/foxst-26.htm

task_end

COPYSCLR
TASK_BEGIN

OPERATION COPYSCLR

TSG_DATASET path+filename of primary dataset file (overridden by MULTI_SPEC)
SOURCE primary or assoc, which dataset in the pair currently hosts the scalar
NAME the name of the scalar to copy (mandatory)
TYPE The named scalar’s type. One of: ANY MASK IMPORT PROF FEATX ARITH CLASSX
SMOOTH BATCH CORE AUXM PFIT STAT PLSP

This task is only for primary+assoc dataset pairs. It copies one scalar from the primary to the
associated dataset, or vice-versa. It works for numeric, class, mask and RGB-colour scalars. The
scalar to be copied is identified by name, and this name matching can optionally be reinforced by
type matching. If the scalar already exists in the target dataset then it is overwritten, otherwise it is
created. Whatever its type in the source dataset, the copied scalar ends up as an IMPORT (not
recalculable) type in the target dataset.

COPYSCLR takes part in the MULTI_SPEC system but ignores the NOASSOC option. When using
MULTI_SPEC, it is necessary to qualify it with MULTIOPTIONS swir or MULTIOPTIONS tir. It is
crucial that you are clear on which dataset of the pair currently has the scalar to be copied across.
If COPYSCLR is given a dataset that does not have a paired counterpart then it does nothing.

Why this task? TSG has some restrictions on what can be done with scalars in a paired-dataset
environment. For example the expression and batch scalar methods can only work with scalars
from the same dataset, and the downsampler deals exclusively with one dataset. So (for example) if
you create a mask in the VSWIR dataset of a VSWIR-TIR pair, you can use the COPYSCLR method to
copy the mask to the TIR dataset and then use this mask in TIR downsampling.

Why optional type matching? Identifying a scalar by name is usually good enough but sometimes
maybe not. Say you create class-extraction scalars called ‘plag’ in your TIR datasets and would like
to use the scalars in VSWIR work. Now you’re thinking that although ‘plag’ is indeed an excellent
name for this class-extraction scalar, perhaps you have used it for other scalars sometimes. To
prevent some accidents you can tell headless TSG to look for a class-extraction scalar named ‘plag’.
Taking this to a more interesting level, say you’ve done a round of work and copied your ‘plag’
scalar, and now you have refined your TIR analysis, updated ‘plag’ in the TIR datasets, and want to
copy the updates over to the VSWIR datasets. For whatever reason you write a new script and
make a mistake with the MULTIOPTIONS line, specifying swir instead of tir. Type matching will save
you. TSG won’t obliterate the TIR ‘plag’ class-extraction scalars with the stale old copies from the
VSWIR datasets because the ones in the VSWIR datasets have import type.

Example

This example copies a mask scalar called SWIR_ASPECTRAL from VSWIR datasets to their TIR
counterparts.

MULTIOPTIONS swir
multifile c:\00me\swift*.*
task_begin
operation copysclr
source primary
name swir_aspectral
type mask
task_end

