
Spark processor
programming guide
Guide to creating custom processor plug-ins for Spark

James Hilton and William Swedosh

EP17523

January 2017

Spark version 0.9.3

Spark processor programming guide | 3

4 | Spark processor programming guide

Citation

Hilton JE and Swedosh W (2017) Spark processor programming guide 0.9.3. CSIRO, Australia.

Copyright

© Commonwealth Scientific and Industrial Research Organisation 2016. To the extent permitted

by law, all rights are reserved and no part of this publication covered by copyright may be

reproduced or copied in any form or by any means except with the written permission of CSIRO.

Important disclaimer

CSIRO advises that the information contained in this publication comprises general statements

based on scientific research. The reader is advised and needs to be aware that such information

may be incomplete or unable to be used in any specific situation. No reliance or actions must

therefore be made on that information without seeking prior expert professional, scientific and

technical advice. To the extent permitted by law, CSIRO (including its employees and consultants)

excludes all liability to any person for any consequences, including but not limited to all losses,

damages, costs, expenses and any other compensation, arising directly or indirectly from using this

publication (in part or in whole) and any information or material contained in it.

CSIRO is committed to providing web accessible content wherever possible. If you are having

difficulties with accessing this document please contact enquiries@csiro.au.

mailto:enquiries@csiro.au

Spark processor programming guide | 5

6 | Spark processor programming guide

Contents

1 Summary ... 8

2 Introduction .. 9

3 Prerequisites ... 10

4 Building the example .. 11

5 Processor programming ... 18

Spark processor programming guide | 7

Figures

Figure 1 - Processor plug-in for Spark solver .. 9

Figure 2 - Visual Studio Command Prompt and CMake .. 12

Figure 3 - CMake directory set-up and creation prompt. ... 13

Figure 4 - Compiler configuration in CMake. .. 13

Figure 5 - CMake creation error due to missing links. .. 14

Figure 6 - CMake configuration with CSol (Spark) and OpenCL paths set. 15

Figure 7 - Workspace configuration .. 16

Figure 8 - Spot processor test workflow. .. 17

file:///C:/Users/swe04b/Documents/CSol/trunk/bf/doc/Spark%20processor%20programming%20guide%20v0.9.3.docx%23_Toc472931568

8 | Spark processor programming guide

1 Summary

Spark is a toolkit for simulating the spread of wildfires over terrain. The toolkit consists of a

number of modules specifically designed for wildfire spread. These include readers and writers for

geospatial data, a computational model to simulate a propagating front, a range of visualisations

and tools for analysing the resulting data.

This document provides a guide to creating custom user-defined processors (Spark sub-solvers)

using C++, Workspace and the spark-tools package.

OpenCL

Spark requires OpenCL 1.2 to run. This now comes as standard with all Windows and Mac
graphics drivers. Please update your graphics driver before installing Spark to ensure that the
latest OpenCL version is installed.

Spark processor programming guide | 9

2 Introduction

Spark is a configurable system for

predicting the evolution of a fire

perimeter over a landscape based on

empirical rate-of-spread models. A key

aspect of Spark is configurability.

Spark has been designed to handle

multiple rate-of-spread models for

different fuel types. Spark has also

been designed to be compatible with

future fire models and new types of

fire behaviour.

The configurability of Spark is implemented using a modular approach. A scenario, such as a fire

event, is broken into discrete processing blocks which can be chained together. For example, input

data layers may be read by one block, the prediction of the fire perimeter calculated by a

subsequent block and the predicted fire extent written or analysed by a further set of processing

blocks.

These processing blocks can be chained together in a visual environment called the CSIRO

Workspace1. This visual environment also includes a range of visualisation and analysis tools for

interrogating and visualising data sets, making the system a powerful and easy-to-use

environment for rapid prototyping, research and data analysis. Spark and Workspace also contain

a comprehensive library of GIS processing and visualisation tools suitable for natural hazards.

A key aspect of Workspace and Spark is that the tools maintain, wherever possible, an open

development environment based on open-source software. This allows users to write custom

plug-ins and code for Workspace and Spark. These modules must be written in C++ and use the

Workspace Qt-based environment.

This document provides a detailed guide to writing a Spark sub-solver or processor. A sub-solver is

executed at every simulation time step and has free access to all of the internal data layers and

variables used within the simulation. Processors provide fine grained control of the simulation and

can be used to provide dynamic fire behaviour effects that are not modelled by the core rate-of-

spread simulation. Examples include spot-fire generation, wind field generation and application to

the fire perimeter, pressure feedback effects from the fire and disruption effects.

Processors provide an extra level of low-level configurability to the simulation. However, they are

intended for expert users familiar with numerical modelling as incorrect use could destabilise the

simulation or even the computational instance in which they are run.

1 Information and the latest version of Workspace can be found on the Workspace research site: https://research.csiro.au/workspace/

Figure 1 - Processor plug-in for Spark solver

https://research.csiro.au/workspace/

10 | Spark processor programming guide

3 Prerequisites

Workspace plug-ins, including Spark processors, are written in C++ and require at least general

knowledge of C. The system uses the Qt environment which adds a large amount of additional

functionality to standard C++. Knowledge of Qt is not necessary for programming processors,

although may be desirable as many common data structures and libraries are implemented in Qt.

Underlying projects are built using CMake, a freely available cross-platform build manager.

Computation within Spark uses OpenCL, a cross platform parallel processing environment.

Processors do not have to use OpenCL for their own computation but require an OpenCL

environment to be present on the system. Visualisation is carried out using OpenGL based on an

internal Workspace format. Knowledge of these are not required unless integration with

visualisation is required for the processor.

 The software requirements are:

1. A C++ development environment with C++11 support. This guide is based on Windows

Visual Studio Express 2013, which is freely available from Microsoft.

2. An installation of Workspace 4 or above. This is freely available from the CSIRO Workspace

site.

3. An installation of spark-tools 0.9.3 or above. This is free for scientific researchers and

research agencies, please contact us for details on obtaining a copy.

4. A development environment for OpenCL. Spark uses OpenCL for GPU computation and it is

necessary to link to the OpenCL libraries. There are many freely available packages

depending on your computer set-up.

 AMD OpenCL SDK, works on all platforms and supports AMD graphics cards.

 Intel OpenCL SDK, for Intel CPUs and graphics cards.

 NVIDIA CUDA toolkit, for NVIDIA graphics cards.

5. The latest version of CMake, available from the development site.

6. (Optional) example code for this draft, available from the Spark site. The code is available

as the ‘Spark processor development example’.

https://www.microsoft.com/en-au/download/details.aspx?id=44914
https://research.csiro.au/workspace/download/
https://research.csiro.au/workspace/download/
https://research.csiro.au/spark/contact-us/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
https://software.intel.com/en-us/intel-opencl
https://developer.nvidia.com/cuda-toolkit
https://cmake.org/
https://research.csiro.au/spark/download/

Spark processor programming guide | 11

4 Building the example

These steps assume that you’re using Visual Studio 2013 express, have downloaded the example

code and installed Workspace, spark-tools and CMake.

1. Unzip the example code to a suitable location. The directory contents should be as follows:

These files are:

a. site_cmake: A directory containing CMake scripts specific to Workspace. This

usually will not need to be edited.

b. CMakeLists.txt: A script for CMake to build the project.

c. csolproc.wsx: A test Workspace file for the processor.

d. csolproc_bf_test.cpp: The C++ code for the processor.

e. csolproc_bf_test.h: The C++ header file for the processor.

f. csolproc_plugn.cpp: The C++ code for integration in Workspace.

g. csolproc_plugin.h: The C++ header for integration in Workspace.

h. LICENSE.txt: The code license. Please note this is a variant of the MIT/BSD license,

please read this file for full details.

i. pkg-csolprocplugin.cmake: A project-specific CMake build script.

2. Run CMake. This must be run from within a Visual Studio command prompt to set specific

development environment variables. The tools are available on Windows under the start

menu, under the ‘Visual Studio 2013’ folder.

12 | Spark processor programming guide

In the command prompt, CMake must be launched from Workspace. Again, this is ensure

certain Workspace-specific development variables are set. CMake can be launched using

the command:

"C:\Program Files\csiro.au\workspace\bin\workspace-batch.exe" --launch

cmake-gui

If Workspace is installed under a different location the command should be modified as

necessary. CMake gui should open if successful:

Figure 2 - Visual Studio Command Prompt and CMake

3. Configure CMake. First, select the directory where the source code was unzipped under the

‘Where is the source code’ field. Next, choose a location to build the project. This can be in

any location, but has been chosen to be in the same directory as the code in a /build

directory. Once these have been chosen, press the ‘Configure’ button. A prompt will

appear if the build directory needs to be created. Click ‘Yes’ to create the directory.

Spark processor programming guide | 13

Figure 3 - CMake directory set-up and creation prompt.

CMake will then ask for the compiler to use. Select ‘Visual Studio 12 2013 Win64’, ‘Use

default native compilers’ and ‘Finish’. CMake will take a few moments to build.

Figure 4 - Compiler configuration in CMake.

14 | Spark processor programming guide

4. Resolving paths. CMake will give with warnings and show several red rows. The red rows

indicate new variables that have been created and the error is because some link paths

need to be manually entered. Click OK to dismiss the error.

Figure 5 - CMake creation error due to missing links.

There are two main library paths which may cause this error, the spark-tools library path

and the OpenCL library path. Expand the CSOL and OPENCL rows in CMake (using the small

triangular arrows at the start of each row).

a. Change CSOL_INCLUDE_DIR-NOTFOUND to the directory containing the spark tools

include headers. These will be in the spark-tools installation folder, for example
C:/Program Files/csiro.au/Spark_tools_fsp-vs2013/include

b. Change CSOL_LIBRARIES-NOTFOUND to the spark-tools main library, csolplugin. This

will be in the spark-tools installation folder, for example
C:/Program Files/csiro.au/Spark_tools_fsp-vs2013/lib/Plugins/

csolplugin.dll

c. Change OPENCL_INCLUDE_DIRS-NOTFOUND to the location of the OpenCL headers

within your OpenCL development. For example the NVIDIA SDK headers are located

at:
C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v7.5/include

d. Change OPENCL_LIBRARIES-NOTFOUND to the location of the OpenCL library. For

example the NVIDIA SDK library file is located at:

Spark processor programming guide | 15

C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v7.5/lib/x64/

OpenCL.lib

Finally, you must change the OPENCL_FLOAT_TYPE to float if you are using the standard

spark-tools package.

Figure 6 - CMake configuration with CSol (Spark) and OpenCL paths set.

Once the directories are set press ‘Generate’ to generate the project. If the project is

created successfully the log will end with ‘Configuring done’, followed by ‘Generating

done’.

OpenCL floating point type

Spark uses 32-bit floating point by default for maximum compatibility across compute units.
The OPENCL_FLOAT_TYPE must be set to float to avoid linker errors.

16 | Spark processor programming guide

5. Open the project. To build a Workspace project Visual Studio must be launched by

Workspace. This is to ensure various development options are set up for the build. Visual

studio can be launched using, for example:

"C:\Program Files\csiro.au\workspace\bin\workspace-batch.exe" --launch

"C:\Program Files (x86)\Microsoft Visual Studio

12.0\Common7\IDE\WDExpress.exe"

Once launched, go to ‘FILE/Open Project’ and navigate to the build directory in which you

created your project. This is the directory specified in the ‘Where to build the binaries’ field

in CMake. Then open ‘CSOLPROC.sln’, the Visual Studio project file.

The source files are available as a tree in the ‘Solution Explorer’ in the right hand dock. To

build the plugin, ensure the Solution Configuration is ‘Release’ rather than ‘Debug’ from

the drop-down list in the toolbar. Next for to ‘BUILD” and select ‘Rebuild Solution’ (or press

F7). If the plugin is built successfully, the log should show:

========== Build: 2 succeeded, 0 failed, 0 up-to-date, 2 skipped ==========

6. Finally, to connect the plugin to Workspace, start Workspace and go to ‘Settings’,

‘Configure application’. Choose ‘Plugins’ from the list on the left-hand side and pick ‘Add’

to the right of ‘Plugin libraries and search paths. Select the library file for the processor

under your build directory. In this example the library is located at:

D:/Data/SparkProcessorExample_093/build/Install/lib/Plugins/

csolprocplugin.dll

Figure 7 - Workspace configuration

Click ‘Apply’ to apply these settings and ‘Close’ to close the configuration window. Then re-

start workspace for the plugin to load.

Spark processor programming guide | 17

If everything has worked correctly, the log should contain:

Adding CSolProc version 0.1.0

A BushfireSpottingProcessorTest operation should also appear in the Workspace catalogue.

To test the plugin, load and run the csolproc.wsx file. This should give a similar output to

the following:

Figure 8 - Spot processor test workflow.

Visual Studio

Once these steps are carried out they do not need to be repeated and the project can simply
be opened in Visual Studio. However, Visual Studio must be launched from Workspace each
time using the command given in step 5. This ensures linker paths are set correctly.

18 | Spark processor programming guide

5 Processor programming

Processors are sub-solvers scheduled and run from the main Spark solver that have complete

control over the current fields and variables within the solver. They are intended as modular

processing blocks capable of implementing advanced computational models beyond the scope of

Workspace operations.

Processors have two main functions:

init(CSol::CSol_Solver &solver)

which is called to initialise the processor and overloaded

operator(CSol::CSol_Solver &solver, std::map<long long, CSol::BF_Tile *> &tiles)

which is called at each time step. Both functions pass the current solver handle, solver, as the

first argument. The required time-step can be polled from this solver handle; processors are free

to implement as many sub-steps or operations as required as long as their internal time state

matches the solver time state at the end of execution.

The execution function additionally passes a std::map of the tiles in the solver, tiles. The map

key is a unique ID for the tile and the map value is a pointer to the tile. Usually all tiles should be

iterated over to process the entire fire domain. Tiles that are completely burnt are flagged and

may not need to be used. The processor can check is a tile is completely burnt using the

isAlive() function on a tile. If this is false, the tile is burnt.

A typical processor will:

1. Get simulation variables from the solver.

2. Iterate over the file tiles, running a sub-solver on each tile.

3. Modify a solver buffer or variable.

4. Return control to the solver after processing all tiles.

One final function that must be implemented for processors is the getPosition() operation,

which returns where the processor should be executed within the solver time step. The choices

are given in Table 1.

NAME DESCRIPTION

ProcPosition::None Processor is skipped.

ProcPosition:: Before_Time_Integration Processor is run at the start of the time step.

ProcPosition:: After_Time_Integration Processor is run at the end of the time step.

Table 1 - Processor operation positions

Information about the simulation variables can be requested from the solver instance passed in

the initialisation and operation functions. A summary of the solver functions and information

types that can requested are given in Table 2.

Spark processor programming guide | 19

NAME DESCRIPTION

getMetrics(hx, hy, ox, oy) The layer cell size, hx and hy, and the global offset of
the layer, ox and oy.

getDimensions(xTiles, yTiles, tileSize, localSize) The number of fire tiles in the x (xTiles) and y (yTiles)
directions, the number of cells in each (square) tile and
the recommended size of an OpenCL work-group
(localSize).

getVar(CSol::CSol_Solver::Var_Type_TimeStep, dt) The current time step, dt.

getVar(CSol::CSol_Solver:: Var_Type_Time, time) The current solver time in seconds since simulation
start.

getVar(CSol::CSol_Solver:: Var_Type_Seed, seed) The current random seed for the simulation.

std::vector<double> &getVect(CSol_Solver::Vect_Type_x)

std::vector<double> &getVect(CSol_Solver::Vect_Type_y)

std::vector<double> &getVect(CSol_Solver::Vect_Type_r)

std::vector<double> &getVect(CSol_Solver::Vect_Type_t)

Four std::vector<double> variables representing the x
and y positions of spot fire sources started at time t
with radius r.

Table 2 - Solver information functions

The layer data for each tile can be read directly from the tiles using the functions given in Table 3.

NAME DESCRIPTION

cl::Buffer *const get_pbf0() Returns tile front buffer

cl::Buffer *const get_pba() Returns arrival time buffer

cl::Buffer *const get_pbs() Returns speed buffer

cl::Buffer *const get_pbrand() Returns tile random buffer

cl::Buffer *const get_pbc() Returns tile classification buffer

cl::Buffer *const get_pbpoi() Returns points-of-interest raster buffer

cl::Buffer *const get_pbw_u() Returns tile wind u (x-component) buffer

cl::Buffer *const get_pbw_v() Returns tile wind v (y-component) buffer

cl::Buffer *const get_pbdata() Returns tile data buffer

cl::Buffer *const get_pbconst() Returns tile constant buffer

cl::Buffer *const get_pbx() Returns user-defined buffers

Table 3 - Tile data buffer functions

Further information on the CSol data types can be found in the Spark toolkit user guide.

Memory access

Layer data from tiles are passed as direct pointers for maximum efficiency. Care must be
taken not to deallocate or re-map this pointer.

https://research.csiro.au/static/spark/docs/annotated.html

20 | Spark processor programming guide

CONTACT US

t 1300 363 400
 +61 3 9545 2176
e csiroenquiries@csiro.au
w www.data61.csiro.au

AT CSIRO WE SHAPE THE FUTURE

We do this by using science and
technology to solve real issues. Our
research makes a difference to industry,
people and the planet.

 FOR FURTHER INFORMATION

James Hilton
Senior Research Scientist
t +61 3 9518 5974
e james.hilton@csiro.au

w www.data61.csiro.au

mailto:james.hilton@csiro.au

