
Spark user guide
User guide for the Spark software applications

James Hilton, William Swedosh, Lachlan Hetherton, Andrew Sullivan and Mahesh Prakash

EP166699

Aug 2019

Spark version 1.1.2

2 | Spark user guide

Citation

Hilton JE, Swedosh W, Hetherton L, Sullivan A and Prakash M (2019) Spark user guide 1.1.2. CSIRO,

Australia.

Copyright

© Commonwealth Scientific and Industrial Research Organisation 2019. To the extent permitted

by law, all rights are reserved and no part of this publication covered by copyright may be

reproduced or copied in any form or by any means except with the written permission of CSIRO.

Important disclaimer

CSIRO advises that the information contained in this publication comprises general statements

based on scientific research. The reader is advised and needs to be aware that such information

may be incomplete or unable to be used in any specific situation. No reliance or actions must

therefore be made on that information without seeking prior expert professional, scientific and

technical advice. To the extent permitted by law, CSIRO (including its employees and consultants)

excludes all liability to any person for any consequences, including but not limited to all losses,

damages, costs, expenses and any other compensation, arising directly or indirectly from using this

publication (in part or in whole) and any information or material contained in it.

CSIRO is committed to providing web accessible content wherever possible. If you are having

difficulties with accessing this document, please contact enquiries@csiro.au.

mailto:enquiries@csiro.au

Spark user guide | 3

4 | Spark user guide

Contents

1 Summary ... 6

2 Introduction .. 7

2.1 Spark and configurability ... 8

3 Spark-gui application .. 9

3.1 Configuration ... 14

3.2 Data input .. 18

3.3 Series Input .. 26

3.4 Initialisation model .. 29

3.5 Rate-of-spread models .. 31

3.6 Post-processing models ... 34

3.7 Ensembles .. 36

3.8 Reductions ... 37

3.9 Experimental fire behaviour models ... 38

3.10 Log ... 45

4 Spark-batch application .. 46

Appendix ... 47

References ... 48

Spark user guide | 5

6 | Spark user guide

1 Summary

Spark is a toolkit for simulating the spread of wildfires over terrain. The toolkit consists of a

number of modules specifically designed for wildfire spread. These include readers and writers for

geospatial data, a computational model to simulate a propagating front, a range of visualisations

and tools for analysing the resulting data.

This document provides an overview and user guide for a graphical user interface for Spark,

‘spark-gui’ and the command-line Spark server application ‘spark-batch’.

OpenCL

Spark requires OpenCL 1.2 to run. This now comes as standard with all Windows and Mac
graphics drivers. Please update your graphics driver before installing Spark to ensure that the
latest OpenCL version is installed.

Spark user guide | 7

2 Introduction

Wildfires are dangerous and destructive

phenomena frequently occurring in periodically

dry regions around the world. The occurrence of

fires is a natural process that has shaped

landscapes and ecosystems over time. However,

increasing urbanisation is bringing more

population into contact with wildfires along

urban boundaries. The risk to human life and

infrastructure has led to intensive research into

the prediction of wildfire behaviour. Such

predictions are used for risk reduction planning,

impact assessment or operational emergency

management in the event of a wildfire.

The physical process governing fires is very

complex, involving interactions over a range of spatial and temporal scales. Despite this

complexity, success has been achieved in predicting behaviour using empirical models. These

models predict the behaviour of a wildfire using a set of relationships between factors driving the

fire (Sullivan 2009b). These factors include weather conditions, such as wind and air temperature,

as well as fuel and landscape conditions.

These empirical models can be used to predict rate of spread of a wildfire for a set of given

conditions. They are fast to evaluate on a computer making them ideal for providing rapid large-

scale predictions for the path of a fire. Alternative computer modelling techniques include fully

physical models (Sullivan 2009a), which use a set of interconnected equations governing the

underlying dynamics of the fire. These models provide great detail in the physical processes of the

fire, but are currently unfeasible to compute at the landscape scale required for operational

purposes.

The Spark toolkit is a configurable system for predicting the spread of a fire perimeter over a

landscape based on empirical rate-of-spread models. Multiple rate-of-spread models can be

employed within the framework representing different fuel types. Different parameters and fuel

conditions governing the rate-of-spread can be defined by the user. The system supports standard

geospatial data types for fuel layers and meteorological conditions. The predicted results can be

written to standard geospatial data types or displayed and viewed within the system.

This user guide covers two particular applications of the Spark toolkit. The first, spark-gui, is a

fully-featured graphical application allowing the user to read in data layers for fuel and weather,

compute a predicted fire perimeter and view the result. The second, spark-batch, is a command

line tool suitable for running as a server application. This server application could, for example, be

used for a predictive ensemble of fire simulations based on different conditions.

Figure 1 - Experimental grassfire burn to provide

data for new rate-of-spread models.

8 | Spark user guide

2.1 Spark and configurability

A key aspect of Spark is configurability. Spark has been designed to handle multiple rate-of-spread

models for different fuel types. Spark has also been designed to be compatible with future fire

models and new types of fire behaviour.

Instead of pre-set rate-of-spread models, fire behaviour is programmed into Spark using a C script.

These scripts define the behaviour of the fire in terms of user-defined spatial fuel and

meteorological layers. Any valid OpenCL C code can be used for these scripts, along with a wide

range of additional mathematical operations.

Figure 2 - Schematic of Spark layers.

Figure 2 shows a very basic example of Spark configuration. The user has four data layers, shown

here vertically stacked for illustration. The top data layer is a fuel or land classification, containing

a number representing a fuel type. For example, classification 1 may be grassland and

classification 2 may be forest. The classification of zero is reserved as un-burnable. The other data

layers are the air temperature, the wind data (this is stored a vector but shown as a single layer for

illustration) and the land elevation.

The user also requires two fire behaviour models, one for the grassland areas and one for forest

areas. The rate of spread in the grassland (classification 1) is dependent on the temperature and

wind (Figure 2, right hand side, middle), whereas the rate of spread for the forest model

(classification 2) is dependent on elevation and temperature (Figure 2, right hand side, bottom).

The chosen rates of spread are entered as formulas in text into Spark. The framework takes care of

deciding which cell the fire is in, applying the correct rate of spread and updating the fire

perimeter accordingly. Spark also takes care of reading and writing geospatial data layers,

alignment and projection of the layers and all spatial and temporal aliasing.

The actual scripts for a particular rate of spread can be very complex. We provide a free source of

scripts on our website for the latest fire behaviour models. These can simply be cut and pasted

into Spark to provide the desired fire behaviour in different fuel types.

https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
https://research.csiro.au/spark/resources/model-library/
https://research.csiro.au/spark/resources/model-library/

Spark user guide | 9

3 Spark-gui application

Spark-gui is an implementation of the Spark toolkit behind a graphical user interface. This general-

purpose application allows:

• Up to twelve different types of fuel to be modelled.

• A fire starting condition consisting of a set of points and lines or an ESRI shapefile.

• Either point or gridded input data sets for fuel and weather conditions.

• Output data sets consisting of a raster map of arrival times, a shapefile of isochrones and a

map of user-defined variables.

Spark applications are run using an XML project file containing fields for controlling and running

the simulation. Three XML sample project files with data are included with the spark-gui

application.

Figure 3 - Spark-gui initial screen.

As an example of the usage of spark-gui we will use the project file proj1 in the following guide. To

open the project, install and run the spark-gui application. The initial screen shows an output map

in the viewer window, as shown in Figure 3. The application has a list of geospatial layers in the

project on the left-hand side, a preview map on the right-hand side and a set of tabs under the

10 | Spark user guide

toolbar for various views and configuration options. The toolbar buttons from left to right

described in Table 1.

ICON NAME DESCRIPTION

Open Open project. The arrow to the right of the button is a shortcut for recent projects.

Save Save the project under the current name in the current location.

Save As Save the project under a different name or in a different location.

Start Execute simulation.

Reset Reset the project.

Advanced Unlock model editing and advanced options.

About Information on the current software version.

Table 1 - Toolbar buttons

To load a project, click on Open and navigate to /appdata/spark-gui/proj1. Select and open the

proj1.xml file. While the project is loading the status bar will be active. When the project has

finished loading the status bar will display ‘Ready’.

The project is executed by clicking the Start button. The simulation should take a few seconds to

complete. After execution is complete, any output data files are written to their specified

locations. The map view will jump the location of these output data sets and display them on the

map. The default view displays isochrones of the fire progression, as shown in Figure 4. Different

display layers can be toggled on or off using the panel on the left hand side of the map. A legend

is displayed on the right for the topmost layer. Execution can be reset at any time by pressing the

Reset button. Any edits to the project (or a new project) can be saved as an XML project file using

the Save or Save As buttons.

The application working directory

Spark-gui and spark-batch set the directory containing the xml project file as the current
directory, so all filenames can be set relative to the xml project file. Alternatively, a full path
can be used.

The default directory often has no write access (if installed to Program Files), so the example
project directories should be copied somewhere with write access (e.g. Desktop or My
Documents on Windows) so these can be run and modified.

Spark user guide | 11

Figure 4 - Spark gui output.

The view toolbar (outlined in Figure 4) allow the map to be interactively queried, moved and

captured. The toolbar buttons, from top to bottom, are:

ICON DESCRIPTION

Inspect topmost layer: values for the point under the layer are displayed in a window in
the top left of the map widget.

Select layers: values for selected items are shown under the layer tree.

Measure distance: measures the distance between two points.

Write to layer: used to set fire start points or arrays of points.

Zoom to selection: zooms to a region selected by clicking and dragging.

Zoom to extent: resets view to show all visible layers.

Capture image: captures the current map view and saves to a file.

Table 2 - View toolbar buttons

 View toolbar

12 | Spark user guide

The latitude and longitude at the current mouse position, as well as the values for all toggled

layers is displayed in a table in the upper right corner. These values can be copied to the clipboard

by clicking the middle mouse button.

For multi-layer raster data sets, the visible level can be changed using a drop-down menu by

clicking on the layer name (marked as ‘Currently visible layer’ in Figure 5). To use, select the value

in the drop-down list and press ‘Enter’.

Figure 5 - Spark gui maximum flame height output.

Errors and warnings

If the status bar displays an error, please refer to the log by selecting the ‘Log’ tab.

Currently visible layer

Spark user guide | 13

If an arrival time output is present, Spark can show the fire perimeter at a specified time. The time

is controlled using the time slider bar at the bottom of the gui (outlined in Figure 6). The slider can

be manually dragged to a time, or an animation can be toggled using the ‘Play’ button on the left

hand side. The drop-down box on the right hand side controls the frequency of the update in

simulation time steps. The time stamp on the far right of the slider shows the currently selected

time.

Figure 6 - Spark gui maximum flame height output.

Output comparison

Spark can compare two different fire simulations if a second arrival time raster output is
specified in the ‘Output arrival time comparison file’ in the ‘Map display’ box within the ‘Data
input’ tab. Colouring and display options for the fire area can also be set within the ‘Map
display’ box.

Time slider bar

Fire area at
specified time

14 | Spark user guide

3.1 Configuration

After loading the project, the fields within the application will be populated with values defining

the simulation. These values include filenames, numbers and scripts. To see the values for proj1,

select the ‘Configuration’ tab. The configuration screen is shown in Figure 7.

Figure 7 - Spark-gui configuration screen

The configuration tab is divided into several groups, covered in the next sections.

Advanced editing

The custom inputs, as well as the model inputs, are locked by default (shown in grey and not
editable). To change the custom inputs as well as the initialisation and rate-of-spread-models,
click on the ‘Advanced’ button in the toolbar to unlock editing.

Spark user guide | 15

3.1.1 Simulation settings

These fields define the overall parameters for the simulation. All of the parameters must be

defined.

NAME DESCRIPTION TYPE XML

Project name An optional project name. This name is prepended to
any output files.

Text Project name

Start time (ISO8601) The start time of the simulation in the ISO8601
format. Here the start time is set to 1 pm on the 17th
October 2013 for the UTC+11 time zone.

Text Start time

End time (ISO8601) The end time of the simulation in the ISO8601
format. Here the end time is set to 10 pm on the 17th
October 2013 for the UTC+11 time zone.

Text End time

Total simulation time (hours) The length of the simulation in hours. In this example
the simulation time is set to zero, meaning the end
time string is used.

Number Simulation duration
hours

Simulation resolution (m) The raster resolution of the simulation in metres. All
input raster layers are re-sampled to this resolution
and all output layers are written at this resolution.
Here, the resolution is set to 30 m by 30 m cells.

Number Simulation resolution

Simulation projection (OGC WKT) The projection used for the simulation in the Open
Geospatial Consortium Well-Know-Text standard or
EPSG code. All output raster layers and shapefiles are
written using this projection. Here the projection is
set to the Australian Lambert projection.

Text Simulation projection
WKT

Table 3 - Field names for simulation parameters

Start and end time

It is recommended that time zones are specified for time inputs. If these are not specified the
simulation will use the local time zone, resulting in different predictions depending on the
location the simulation is computed.

Simulation projection

The projection used must be a Cartesian co-ordinate system. Mercator or Lambert projections
are recommended. For example, the Lambert projection used in proj1 is a good general-
purpose projection for anywhere in Australia.

http://www.iso.org/iso/home/standards/iso8601.htm
http://www.iso.org/iso/home/standards/iso8601.htm
http://www.iso.org/iso/home/standards/iso8601.htm
http://www.iso.org/iso/home/standards/iso8601.htm
http://www.opengeospatial.org/standards/wkt-crs
http://www.opengeospatial.org/standards/wkt-crs

16 | Spark user guide

3.1.2 Ignitions

These fields define the starting conditions used for the simulation. A starting condition can either

be a shapefile representing an initial fire perimeter or a list of points or lines representing starting

locations. If both are defined, the shapefile will be used preferentially, and the starting points will

not be used.

NAME DESCRIPTION TYPE XML

Fire sources A table of the current ignition sources, these can be points, lines or
polygons

None N/A

Python script This is a Python script defining the latitude, longitude, radii and start
times of each point source. This script must contain the following
definitions:

• long (point longitude)

• lat (point latitude)

• radius (point radius)

• time (point activation time)

These variables are defined as a Python vector and can be generated in
any manner within the script.

Optionally, the python script can use the seed variable (ensemble
simulation seed), and the startDate variable (start date-time string).

Text Start point script

GeoJSON A GeoJSON string specifying the ignition conditions. This is created based
on (in order of preference) any GeoJSON ignition conditions in the
project XML, the Python script and the input shapefile.

Text GeoJSON input
source

Ignition shapefile An ESRI shapefile (.shp) defining an initial fire perimeter. No shapefile is
used in this example.

Filename Shape file input
source

Start shapefile input
projection (OGC WKT)

The shapefile projection in the Open Geospatial Consortium Well-Know-
Text standard or EPSG code. No shapefile is used in this example.

Text Shape file input
projection WKT

Table 4 - Field names for ignition parameters

Start shapefile

The application currently uses two fields for defining the ESRI shapefile data. These are the
shapefile data (.shp) and the projection. The projection is usually stored within a projection
(.prj) file, but is not guaranteed to be compatible with the OGC WKT format. To ensure the
projection is correctly applied it must be specified in OGC WKT in the shapefile projection
field.

http://www.opengeospatial.org/standards/wkt-crs
http://www.opengeospatial.org/standards/wkt-crs

Spark user guide | 17

3.1.3 Output settings

These fields define the simulation output files.

NAME DESCRIPTION TYPE XML

Output arrival time GeoTIFF file If this field contains a filename a GeoTIFF
containing arrival time within the fire perimeter is
written to a file with this name. If the field is
empty no file is written.

Filename Output raster file

Output user data GeoTIFF file If this field contains a filename a GeoTIFF
containing the ten user-defined output layers is
written to a file with this name. If the field is
empty no file is written.

Filename Output data raster file

Output user data GeoTIFF file type The data type written to the output data GeoTIFF
file. The data is converted to this type before
being written. Different data types may provide
savings in space.

Selection Output data raster type

Output isochrone shapefile If this field contains a filename an ESRI shapefile
of isochrone data is written to a file with this
name. The shapefile is written with a projection
file containing the simulation projection. If the
field is empty no file is written.

Filename Output shape file

Output isochrone shapefile step (s) The spacing in time between the output
isochrones in the shapefile. If this is zero a default
value of one hour is used.

Number Output isochrone time

Output spot fire shapefile If this field contains a filename an ESRI shapefile
of spot fire starting locations is written to a file
with this name. The shapefile is written with a
projection file containing the simulation
projection. If the field is empty no file is written.

Filename Output spot fire shape file

Output projection (WKT) The projection applied to all outputs in the Open
Geospatial Consortium Well-Know-Text standard
or EPSG code. If this is blank the outputs are
written using the simulation projection.

Text Output projection WKT

Write KML to directory Write Keyhole Markup Language to specified
directory for visualisation in Google Earth and
Google Maps.

Filename KML directory

Write KML to directory step (s) The spacing in time between the output frames in
the kml directory. If this is zero a default value of
one hour is used.

Number KML time step

Table 5 - Field names for output options

The output files are compatible with all common GIS processing tools, such as QGIS (Figure 8).

http://www.opengeospatial.org/standards/wkt-crs
http://www.opengeospatial.org/standards/wkt-crs

18 | Spark user guide

Figure 8 - Output GeoTIFF (shaded by arrival time), and isochrones (black lines).

3.2 Data input

Spark supports two or three-dimensional raster layers (two spatial plus one temporal) and handles

all temporal interpolation. Raster data layers are read in using the ‘Data input’ tab (Figure 9).

Gridded input can be restricted to a sub-region, if required. This can be applied using the bounding

box configuration (Figure 9, outlined), which specifies bounds in longitude and latitude. The

bounding box can also be selected on an interactive map using the ‘Select on Map’ button. To

select a region using this tool, hold shift and drag on the map to specify the region.

If required, this sub-region can be automatically generated for a region around the starting points

or shapefile. To use this automatic feature, check the ‘Use bounding box’ and the ‘Auto-generate

bounding box’ options. A bounding box is generated in a square region with bounds given by the

starting longitude and latitude plus or minus the value in ‘Bounding box buffer’. The value in

‘Bounding box buffer’ must be in decimal degrees.

Automatic bounding boxes

Use of automatic bounding boxes can greatly increase the simulation speed when using large
geospatial input layers as only small sub-regions of the layers are read in and processed. A
reasonable value of the bounding box buffer is 0.4-0.6 decimal degrees for large scale day
long simulations. If the automatic option is selected the values in the bounding box input are
ignored.

Spark user guide | 19

Figure 9 - Spark-gui gridded input screen; meteorological input section.

3.2.1 Meteorological inputs

Meteorological input layers are configured in the ‘Meteorological inputs’ tab. There are six

meteorological input layers which can be defined as individual files or as a set of files in a

directory. The geospatial projection, along with options to control the time conversion, are

specified for all meteorological input layers using the following options:

NAME DESCRIPTION TYPE XML

Gridded projection (OGC WKT) The raster layer projection for all meteorological
raster layers in the Open Geospatial Consortium
Well-Know-Text standard or EPSG code.

Text Gridded/Layer
projection WKT

Use direction/speed If set the input wind raster layers are direction and
speed. Otherwise the wind raster layers are the x
and y components of the wind vector.

Checkbox Gridded/Wind/Use
direction speed

Gridded start time overwrite (ISO
8601)

An optional start date and time in the ISO8601
format to use instead of the values stored in the
meteorological raster layers.

Text Gridded/Start time
overwrite

Gridded time conversion
coefficient

A multiple to apply to the time-step value for the
meteorological raster layers.

Number Gridded/Time
conversion coefficient

Table 6 - Meteorological input layer projections and time conversion parameters

Bounding box

http://www.opengeospatial.org/standards/wkt-crs
http://www.opengeospatial.org/standards/wkt-crs
http://www.iso.org/iso/home/standards/iso8601.htm
http://www.iso.org/iso/home/standards/iso8601.htm

20 | Spark user guide

To set individual files, select the ‘Source file names’ tab. The inputs for this tab are:

NAME DESCRIPTION TYPE XML

Wind direction A raster layer specifying the wind direction in
degrees within each cell.

Filename Gridded/Wind/Layer direction
source file

Wind speed A raster layer specifying the wind speed within
each cell.

Filename Gridded/Wind/Layer
magnitude source file

Temperature A raster layer specifying the air temperature within
each cell.

Filename Gridded/Temperature/Layer
source file

Relative humidity A raster layer specifying the relative humidity (%)
within each cell.

Filename Gridded/Relative
humidity/Layer source file

Dew point temperature A raster layer specifying the dew point temperature
within each cell.

Filename Gridded/Dew point
temperature/Layer source file

Drought factor A raster layer specifying the drought factor within
each cell.

Filename Gridded/Drought factor/Layer
source file

Table 7 - Field names for meteorological inputs

Gridded file names can be alternatively generated by selecting a directory and specifying a name

filter for each required file. In the example shown in Figure 9 the Input directory contains six files

containing the text _Wind_Dir_, _Wind_Mag_, _T_, _RH_, _Td_ and _DF_. Once the directory and

a filter is specified, the Source file column will update with the generated file path for verification.

The inputs corresponding to the ‘Source directory’ tab are:

NAME DESCRIPTION TYPE XML

Source directory A directory containing a set of meteorological
input files.

Filename Gridded/Source directory

Wind direction A text filter specifying the wind direction input
file.

Filename Gridded/Wind/Layer direction
source filter

Wind speed A text filter specifying the wind speed input file. Filename Gridded/Wind/Layer magnitude
source filter

Temperature A text filter specifying the air temperature input
file.

Filename Gridded/Temperature/Layer
source filter

Relative humidity A text filter specifying the relative humidity (%)
input file.

Filename Gridded/Relative
humidity/Layer source file

Dew point temperature A text filter specifying the dew point temperature
input file.

Filename Gridded/Dew point
temperature/Layer source filter

Drought factor A text filter specifying the drought factor input
file.

Filename Gridded/Drought factor/Layer
source filter

Table 8 - Field names for meteorological inputs

Source files

If a directory and file filter is specified, ensure that no name is specified for the file in the
‘Source file names’ tab, otherwise this will take priority.

Spark user guide | 21

Once loaded, the gridded meteorological input data can be previewed on the map in the Viewer

tab. If the input data has a temporal component, the time used for the input layer preview can be

changed using the slider below the map.

If the input data set is a NetCDF file, the metadata within the file is parsed to generate time

information. The parsing process calculates the start time and time step of the input layer. The

parsing takes the following steps:

• Search the NetCDF metadata for time. If this is not found, stop processing.

• Search the NetCDF metadata for time#units and convert to seconds.

• Search for NETCDF_DIM_time_VALUES. If this is not found, stop processing.

• Read and convert the NETCDF_DIM_time_VALUES array to seconds.

• Check the array for equal time spacing. If the time spacing is unequal, stop processing.

• Calculate the start time of the input layer and the time step.

If the data is not a NetCDF file, or the processing of the metadata fails at any stage, the time step

is set to one and the start time is set to zero. In this case, the start time and time step can be

manually specified using the Gridded start time overwrite (ISO 8601) and Gridded time conversion

coefficient fields respectively.

Conversion factors can be applied to the gridded data sets using the ‘Transform’ tab (Figure 10, a).

This can be used, for example, to convert data values between different units. A scale and an

offset can be applied to the data. The original data is multiplied by the scale factor before the

offset value is added.

Information on the data layers can be viewed using the ‘information’ button at the end of each

row (Figure 10, b). This opens a window showing the GDAL layer metadata which usually contains

a description of the data units along with other information (Figure 10, c).

22 | Spark user guide

Figure 10 - Spark-gui gridded input screen; meteorological data, data transform.

3.2.2 Terrain inputs

Fuel and topographic input layers are configured in the ‘Terrain inputs’ tab (Figure 11). The field

values for this tab are given in Table 9.

There are five pre-defined layers within the spark-gui application. These are the land classification,

a fire history layer, an elevation layer, a fuel load layer and a curing layer. If any of these are

empty, the layer is populated with the value in the ‘Default value’ column. The exception to the

default value is the fuel classification layer. If this is empty, the classification of the entire

simulation is set to one.

a
b

c

Spark user guide | 23

Figure 11 - Spark-gui gridded input screen; terrain data.

Each of the layers can be referred to in the initialisation, post-processing and rate-of-spread

models by the name given in the ‘Model name’ column.

24 | Spark user guide

NAME DESCRIPTION TYPE XML

Land classification A raster layer specifying the land type within each cell. Filename Classification/Layer
source file

Land classification
projection

The projection for the fuel classification layer in the OGC WKT
standard or EPSG code.

Text Classification/Layer
projection WKT

Fuel type mask
shapefile

If a shapefile is specified, any areas within the shapefile are set
to a value of one within a layer called mask. Outside the
shapefile the value of mask is zero. This can be used to define a
firebreak region, or a previously burnt area.

Filename Classification/Shape
mask source file

Fuel type mask
shapefile projection

The projection for the fuel classification mask in the OGC WKT
standard or EPSG code.

Text Classification/Shape
mask projection WKT

Fire history source A raster layer defining a fire history value, such as a date or
time since last burn.

Filename Fire history/Layer
source file

Fire history projection The projection for the fire history layer in the OGC WKT
standard or EPSG code.

Text Fire history/Layer
projection WKT

Fire history
interpolation

The interpolation method used for scaling the fire history data.
If the data values are integers (such as date concatenations)
‘Nearest’ should be used.

Selection Fire history/Layer
interpolation

Fire history default The default value for the fire history layer. Number Fire history/Layer
default

Elevation source A raster layer specifying land elevation with respect to a
vertical datum.

Filename Elevation/Layer source
file

Elevation projection The projection for the elevation layer in the OGC WKT standard
or EPSG code.

Text Elevation/Layer
projection WKT

Elevation default The default value for the elevation layer. Number Elevation/Layer default

Elevation
interpolation

The interpolation method used for scaling the elevation data. Selection Elevation/Layer
interpolation

Fuel load source A raster layer specifying fuel load values. Filename Fuel load/Layer source
file

Fuel load projection The projection for the fuel load layer in the OGC WKT standard
or EPSG code.

Text Fuel load/Layer
projection WKT

Fuel load default The default value for the fuel load layer. Number Fuel load/Layer default

Fuel load
interpolation

The interpolation method used for scaling the fuel load data. Selection Fuel load/Layer
interpolation

Curing source A raster layer specifying curing values. Filename Curing/Layer source file

Curing projection The projection for the curing layer in the OGC WKT standard or
EPSG code.

Text Curing/Layer projection
WKT

Curing default The default value for the curing layer. Number Curing/Layer default

Curing interpolation The interpolation method used for scaling the curing data. Selection Curing/Layer
interpolation

Table 9 - Field names for terrain inputs

http://www.opengeospatial.org/standards/wkt-crs
http://www.opengeospatial.org/standards/wkt-crs
http://www.opengeospatial.org/standards/wkt-crs
http://www.opengeospatial.org/standards/wkt-crs
http://www.opengeospatial.org/standards/wkt-crs
http://www.opengeospatial.org/standards/wkt-crs
http://www.opengeospatial.org/standards/wkt-crs
http://www.opengeospatial.org/standards/wkt-crs
http://www.opengeospatial.org/standards/wkt-crs

Spark user guide | 25

3.2.3 Custom inputs

Rate-of-spread models typically require a range of additional input layers, for example, fuel

parameters or wind reduction factors. Up to twenty additional named layers can be specified in

the ‘Custom inputs’ tab. These layers are initialised to the value given in the ‘Default value’ column

and are available in all models with the name given in the ‘Model name’ column. Optionally, the

layers may be read from any GDAL-compatible file. If the source filename is empty, an empty layer

initialised to the default value is created.

NAME DESCRIPTION TYPE XML

Source files The source file for the layer (optional). Filename Custom/Layer file name [1-20]

Projection (OGC WKT) The projection for the fuel classification mask in
the OGC WKT standard or EPSG code.

Text Custom/Layer projection [1-20]

Model name The name of a custom layer. Text Custom/Layer name [1-20]

Default value The default value for the layer. Number Custom/Layer default [1-20]

Interpolation The interpolation method used. Selection Custom/Layer interpolation [1-20]

Table 10 - Input parameters to define custom layer names

In the proj1 example, three additional layers are created: fuel_hazard_score_surface,

fuel_hazard_score_near_surface and fuel_height_near_surface for the dry eucalypt model.

Figure 12 - Spark-gui gridded input screen; custom input layers.

http://www.opengeospatial.org/standards/wkt-crs

26 | Spark user guide

3.3 Series Input

The applications can use either gridded input data sets (spatial raster maps of parameters) or

series inputs (a time series representing the change in a particular parameter). The example

project proj1 uses series input for weather conditions, which can be defined and previewed in the

‘Series input’ tab. This window is shown in Figure 13.

The fields in the series input window are:

NAME DESCRIPTION TYPE XML

Script file A filename which can be used within the Python script. A
variable is created within the Python script called ‘fileName’
containing the contents of this field.

Filename Series/Script

Time zone A time zone string which can be used within the Python script.
A variable is created within the Python script called ‘timeZone’
containing the contents of this field.

Text Series/Time zone

Wind variation speed
distribution

If non-zero a random variation is imposed on the wind speed.
The wind speed from the series is used as a mean value and a
random value is drawn from a normal distribution with the
specified width around this mean value.

Number Series/Wind speed
stdev

Wind variation direction
distribution

If non-zero a random variation is imposed on the wind
direction. The wind direction from the series is used as a mean
value and a random value is drawn from a normal distribution
with the specified width around this mean value. The value is
wrapped between 0-360 degrees.

Number Series/Wind bearing
stdev

Time series Python script
definition

A Python script defining vectors used for time series. This
python script also has access to seed and count variables.

Text Series/Source file

Table 11 - Field names for series input

The window is divided into an input Python script in the upper half and a preview of the generated

time series in the lower half. The spark-gui application pre-defines seven time series, given in

Table 12. A preview of each of these can be displayed using the appropriate tab at the bottom of

the preview. These time series are populated using the Python script field.

NAME DESCRIPTION

wind_speed Wind speed.

wind_dir Wind bearing in degrees.

temp Air temperature.

rel_hum Relative humidity (%).

dew_temp Dew point temperature.

drought_fac Drought factor.

fuel_state Fuel state parameter.

Table 12 - Pre-defined time series names for spark-gui

The Python script, if used, must create vectors containing any or all of the time series names given

in Table 12. Additionally, it must create a time vector which defines the time values in ISO 8601

format. Optionally, a time series for a particular variable can be specified using the series name

with ‘_time’ appended. For example, temp_time will create a time series for the temperature

vector temp.

Spark user guide | 27

Figure 13 - Spark-gui series input screen.

In the proj1 example, the Python script uses the Python CSV parser to read a CSV file and append

the values within the CSV file to vectors of the temperature, relative humidity, wind speed and

wind direction. The script performs an additional check to make sure an entry in the CSV is not

blank, and only adds values to the series if data is present.

Multi-level wind field can be specified using an array of arrays in the Python time series script for

the wind_speed and wind_dir variables. The first array for this is a vector of timestamps, the

second array is a vector of wind speeds or directions at the first vertical level, the third array is a

vector of wind speeds or directions at the second vertical level, and so on. The wind field for the

particle is interpolated from the three-dimensional wind field, so the local wind vector for the

particle will smoothly vary between the wind fields specified at various levels.

For example, a multi-level wind field can be specified using the definition:

wind_dir = [['2013-10-17T13:00:00', '2013-10-17T14:00:00'], [90, 180] ,[100,

190]]

wind_speed = [['2013-10-17T13:00:00', '2013-10-17T14:00:00'], [25, 30], [30,

35]]

The above code would give a wind from a 90 bearing at the ground level and a wind from a

bearing of 180 at the first layer at 1pm. This would shift to a wind from a 100 bearing at the

ground level and a wind from a bearing of 190 at the first layer at 2pm. Similarly, the wind speed

28 | Spark user guide

would be 25 km/h at the ground level and 30 km/h at the first layer at 1pm. This would shift to

30 km/h at the ground level and 35 km/h at the first layer at 2pm.

Note the code requires multi-level winds to be enabled, this is currently specified in the firebrand

experimental module, see section 3.9.1 for details.

Time vector

A ‘time’ vector must be defined in the Python script. This defines the time values for all series.
To define a time for a particular series this time vector can be overwritten using the series
name with ‘_time’ appended.

Series definitions

If the Python script does not define a series the series will not be created and will not be
available in the rate-of-spread models within Spark.

Units

No units are defined within the framework. The user must take care of unit conversion within
rate-of-spread models.

Spark user guide | 29

3.4 Initialisation model

The initialisation model is a powerful pre-processing step run over all data layers after they are

created and used in the simulation. The use of an initialisation model is entirely optional, but it

allows for manipulation and population of the data layers. The model allows values in the data

layers to be re-written or populated according to any user-defined function. The final initialisation

script must be in OpenCL C code.

Figure 14 - Spark-gui initialisation model.

The processing in proj1 shows a typical use of an initialisation model. The raw data layer for the

classification uses a three digit Australia land use classification code (ALUM). This three-digit code

must be converted into the four classifications used within this example: un-burnable (0),

grassland (1), forest (2) and urban (3). For example, the first step converts any ALUM code starting

with ‘6’ into an un-burnable region, as codes starting with ‘6’ are water regions.

The second step of the processing carries out a different processing function. In this step, the

layers fuel_hazard_score_surface, fuel_hazard_score_near_surface and fuel_height_near_surface

for the dry eucalypt model are populated within each cell using an exponential growth curve

based on the fuel age layer.

The initialisation model can be used to carry out any such processing of this type. For flexibility the

model is split within the Spark applications into three steps. The full model script is built up from

three blocks: a starting script (Figure 14, a), a script generated by Python (Figure 14, b) and an

ending script (Figure 14, c). For reference the entire initialisation script is shown in a separate tab

a b c d

https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.agriculture.gov.au/abares/aclump/land-use/alum-classification-version-7-may-2010/alum-classification-version-7-may-2010

30 | Spark user guide

(Figure 14, d). This structure allows, for example, a Python script to automatically generate

mappings between multiple fuel types and the fuel types used within the application.

The fields in this tab are:

NAME DESCRIPTION TYPE XML

Script input file A filename which can be used within the Python script. A
variable is created within the Python script called ‘fileName’
containing the contents of this field.

Filename Initialisation Python
input file

Script input file 2 A second filename which can be used within the Python script.
A variable is created within the Python script called ‘fileName2’
containing the contents of this field.

Filename Initialisation Python
input file 2

Initialisation start A script specifying the starting block of the initialisation model. Text Initialisation start string

Initialisation Python
script

A Python script defining a generated block of text to append to
the initialisation model. The text must be added to a string
named ‘initString’ within the Python script. This python script
also has access to the seed variable.

Text Initialisation Python
script

Initialisation end A script appended to the end of the start block and the
generated Python script.

Text Initialisation end string

Table 13 - Field names for initialisation model

The user-defined output layers can be named in the ‘Initialisation Python script’ by setting an

outputJSON variable. The JSON much contain an array named ‘Layers’ consisting of strings for each

of the output layers in order from ouput0 onwards. An example script naming the first three layer

is:

JSON = {

 "Layers": [

 {

 "Name": "Arrival time (s)"

 },

 {

 "Name": "Speed (m/s)"

 },

 {

 "Name": "Maximum intensity (kW/m)"

 }

]

}

outputJSON = json.dumps(JSON)

Initialisation and optimisation

For optimisation it is best to put as much calculation as possible within the initialisation
model, rather than the rate-of-spread models.

Spark user guide | 31

3.5 Rate-of-spread models

The rate-of-spread models are the core of the Spark application. These define the local rate of

spread of a fire perimeter based on an empirical relationship. For the example proj1 three rates-

of-spread are defined: the CSIRO grasslands model, the Dry Eucalypt model and a placeholder

urban model. The rate-of-spread model scripts must be in OpenCL C code.

There are twelve input tabs within this window corresponding to fuel classifications 1-12. The rate-

of-spread model in the ‘Class 1’ tab is used to calculate the rate of spread within any cells with a

fuel classification value of 1, the rate-of-spread model in the ‘Class 2’ tab is used to calculate the

rate of spread within any cells with a fuel classification value of 2, and so on.

Figure 15 - Spark-gui rate-of-spread models.

The grassland and dry eucalypt models are complex models containing a fair amount of code. A

much simpler example illustrating the rate of spread scripts is the urban rate of spread model in

the Class 3 tab. This rate-of-spread model is given by:

speed = 0.01*wind;

All rate-of-spread models must contain a speed = definition. This defines the outward speed of

the fire perimeter. Sets of isochrones for three different speed definitions are shown in Figure 16.

In each case the initial fire is a circle of diameter 20 metres, shown as the inner isochrone at zero

time. Isochrones are shown at 25 second intervals.

https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/

32 | Spark user guide

• In the first case (Figure 16, a) the speed definition is speed = 1. The initial circular

perimeter spreads with a radial speed of 1 m/s in all directions, ending as a circle of

diameter 220 metres.

• The second case (Figure 16, b) uses the wind vector defined in the simulation. The wind

vector in these examples is in the vertical direction with respect to the figure, from the

bottom to the top, with magnitude 1 m/s. The speed definition here is speed = 1 + wind,

where wind is specially defined quantity1 representing the component of the wind in the

direction of the fire front. In this case the fire grows outwards at a rate of 1 m/s and moves

forward at an additional rate of 1 m/s, resulting in a stretched obround fire perimeter.

• The final example (Figure 16, c) is an example of a non-linear rate of spread. The speed

definition here is speed = 1 + wind2, resulting in a pointed fire perimeter.

Figure 16 - Speed definition examples.

In the case of the urban model, the fire perimeter is simply moved in the direction of the wind at

1% of the wind speed.

The other two models in the example use a much more complex relationship for the rate of spread

which is coupled with factors such as fuel moisture and the topography of the terrain. For

example, the CSIRO grasslands model calculates the rate-of-spread in a number of steps.

• Firstly, the two-dimensional shaping of the fire is determined by calculating the length to

breadth ratio of the spreading fire, based on the current wind speed. This is then used to

figure out the fraction of the head fire rate of spread to be used around the fire perimeter.

1 Mathematically the variable wind is defined as 𝑤𝑖𝑛𝑑 = max(�̂� ∙ 𝐰, 0), where 𝐰 is the wind vector and �̂� is the normal vector to the fire perimeter.

Spark user guide | 33

• Next, the curing coefficient used in the model is calculated using an empirical formula

given by Cruz 2015. The curing variable corresponds to the value defined either in the

terrain input layer, or the curing time-series. Note that local variables, such as

curing_coeff, can be defined and used in the script.

// Calculate curing coefficient from Cruz et al. (2015)

REAL curing_coeff;

if (curing < 20)

curing_coeff = 0;

else

curing_coeff = 1.036/(1+103.989*exp(-0.0996*(curing-20)));

• Next, the grassland fuel moisture is calculated using a relationship given by McArthur 1966,

based on the local temperature, temp, and relative humidity, rel_hum. These two layers

correspond to

// Fuel moisture content approximated using McArthur (1966)

REAL GMf = 9.58-(0.205*temp) + (0.138*rel_hum);

• The fuel moisture is used to calculate the grassland moisture coefficient:

// Calculate moisture coefficient from Cheney et al. (1998)

REAL moisture_coeff;

if (GMf <= 12)

 moisture_coeff = exp(-0.108*GMf);

else if (wind_speed <= 10)

 moisture_coeff = 0.684-0.0342*GMf;

else

 moisture_coeff = 0.547-0.0228*GMf;

• Finally, the speed is calculated using the CSIRO grassland model (Cheney 1998). Note the

spread rate is converted to m s-1 from km hr-1:

// Calculate spread rate from Cheney et al. (1998)

if (wind_speed >= 5.0)

 head_speed = (1.4+0.838*pow((wind_speed-5),0.844))*moisture_coeff*

curing_coeff/3.6;

else

 head_speed = (0.054+0.269*wind_speed)*moisture_coeff*curing_coeff/3.6;

• The model then applies the Kataburn (Sullivan 2014) slope correction:

// Calculate slope effect

REAL slope_in_normal_dir =

degrees(atan(dot(normal_vector,grad(elevation))));

slope_in_normal_dir = min(max(slope_in_normal_dir,-20),20);

REAL slope_coeff = pow(2.0, 0.1*fabs(slope_in_normal_dir));

if (slope_in_normal_dir >= 0)

 speed *= slope_coeff;

else

 speed *= slope_coeff/(2*slope_coeff-1.0);

Similar processing is carried out for the Dry Eucalypt model to calculate the rate of spread.

34 | Spark user guide

3.6 Post-processing models

The post-processing models are key to creating user defined output in Spark. Without any post-

processing models, Spark will only output the arrival time raster and a shapefile of isochrones.

The post-processing models are used to calculate the output variables (output0, output1, …,

output9) based on user defined empirical relationships of propagation/solver variables (such as

speed and fuel_load) and other user defined data layers. After the simulation has been completed,

these output variables are saved as layers 0 to 9 respectively in the Output user data GeoTIFF file

specified in the Configuration tab.

Figure 17 - Post-processing.

There are twelve input tabs within this window corresponding to fuel classifications 1-12. The

post-processing model in the ‘Class 1’ tab is used to calculate the outputs within any cells with a

fuel classification value of 1, the rate-of-spread model in the ‘Class 2’ tab is used to calculate the

outputs within any cells with a fuel classification value of 2, and so on. There is also a Post

processing common code script which applies the code to all classes before the individual class

code is run. The post-processing model scripts must be in OpenCL C code. It should also be noted

that the post-processing models run at the end of each time step on the entire burned region

unless specified otherwise.

For the example proj1, all of the post-processing is completed in the Post processing common code

script as there is no difference in post-processing models for different classes in this case. The first

https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/

Spark user guide | 35

few lines are for calculating ‘one time’ variables, in other words, outputs that you only wish to

calculate at the time when the fire enters that cell. In this case, arrival time is being saved to

ouput0 and propagation speed is being saved to output1:

if (output0 == nodata){

 output0 = arrival;

 output1 = speed;

 output2 = 0;

 output3 = 0;

}

The following lines use empirical models to calculate the fireline intensity and flame height. In this

case, the maximum intensity and flame height experienced in a cell are being saved to outputs 2

and 3 respectively:

// Calculate intensity and flame height

REAL intensity = 18600.0*speed*fuel_load*0.1;

REAL flame_height = 0.0775*pow(intensity, 0.46);

output2 = max(output2, intensity);

output3 = max(output3, flame_height);

The various parameters accessible in the post-processing models are given in the Appendix.

36 | Spark user guide

3.7 Ensembles

Spark can run multiple simulations and calculate statistics using results from these simulations

with the Output ensemble statistics script. This script is run at the end of each simulation and

allows a running variable R to be updated. Variables available values to this script are the output

user data grids, A, the count of times the cell has burnt over all simulations, B, the output layer

number, kpos, and the current run count, v. The output statistic is stored in the variable R. This is

initialised to nodata and holds the same value between simulations allowing, for example, running

averages to be calculated. The output from this analysis can be written to a multi-layer GeoTIFF

file specified using the GeoTIFF file parameter.

An example of an ensemble simulation is the proj1_ensemble project. This calculates impact

probability (count of number of simulations reaching the cell as a percentage):

R = 100.0*B/v;

Or the cumulative average arrival time:

if (A != nodata)

 R = (A+(B-1)*R)/B;

NAME DESCRIPTION TYPE XML

Number of ensemble
simulations

This variable sets the number of ensembles to run. Number Number of simulations

Ensemble layers The number of output layers (starting from zero) to run the
Output ensemble statistics script on.

Number Output stats layers

GeoTIFF file The path and filename of a GeoTIFF file containing the
calculated statistic.

Filename Output stats raster file

GeoTIFF type The data type written to the output data GeoTIFF file. The data
is converted to this type before being written. Different data
types may provide savings in space.

Selection Output stats raster type

Random seed The random seed for the OpenCL code within the application.
This affects the initialisation, rate of spread, post-processing
models and any fire behaviour modules.

Number Random seed

Output ensemble
statistics unit type

Sets the displayed unit type for the statistic calculated by the
ensemble script.

Selection Output stats unit type

Output ensemble
statistics script

An OpenCL script for spatially combining arrival time values
from multiple simulations.

Text Output stats script

Simulation control
script

This Python script controls the number of simulations, N. The
projectName string can also be set here. The ignition point can
also be set by defining lat, long, radius and time arrays.

Text Simulation number
script

Table 14 - Ensemble options

If the Number of ensemble simulations input is larger than 1, then an ensemble number input will

appear in the top right corner of the main toolbar. Changing this input allows the user to toggle

between outputs of individual simulations in the Viewer tab and time series in the Series input tab.

Spark user guide | 37

3.8 Reductions

Spark can perform a reduction on up to three particular layers in the user-defined outputs. For

example, the layer representing maximum flame height can be reduced to a single number for the

maximum flame height found anywhere in the simulation. A Python script to carry out this

processing is shown in Figure 18.

Figure 18 - Reduction script.

The layers to perform the reduction on is specified in the ‘Reduction output’. A choice of reduction

operations is available from the ‘Reduction type’ drop-down list.

The available variables in the reduction script are:

NAME DESCRIPTION

seed The random seed number of the current ensemble.

area The final fire area in m2.

perimeter The final fire perimeter in m.

reduction The result from the reduction operation on output 1.

reduction2 The result from the reduction operation on output 2.

reduction3 The result from the reduction operation on output 3.

Table 15 - Reduction script inputs

38 | Spark user guide

3.9 Experimental fire behaviour models

Currently, four experimental fire behaviour modules are currently available:

1. Firebrand transport for long range spotting.

2. Disruption layers for roads and rivers.

3. Wind-terrain correction for wind flow modelling over terrain.

4. Near field modelling for fire line attraction and coalescence effects.

These models are experimental as they rely either in part or wholly on parameters which have not

been calibrated to wildfire simulations. As such these models and any examples provided of

these models should be used with caution for operational and risk predictions, and should not

be used without careful consideration and calibration of necessary parameters.

Details on the terrain correction and near field model will be supplied in future version of the

software as these are currently in research and development stage.

Experimental examples

Any examples supplied using the experimental options are for demonstration only, these
models and parameters should not be applied to wildfire scenarios without careful
consideration and understanding of the models, parameters and limitations of the models
used.

Experimental models

The experimental processing and fire behaviour modules in the ‘Experimental’ tab are liable
to change or move to different locations in future versions.

Spark user guide | 39

3.9.1 Firebrand transport

The firebrand model allows the life cycle of a firebrand to be modelled. This is made up of three

components:

Figure 19 - Stages in the firebrand lifecycle.

1. Creation. The creation of firebrands is controlled using the Firebrand creation script.

Creation is limited to one firebrand per time step per grid cell. To create a firebrand the

specified radius must be greater than a minimum radius of 0.5 mm and the specified

lifetime must be greater than zero. Firebrands exist until either the radius or lifetime of the

firebrand is zero (or lower), or when they have landed and been mapped into the fire

solver as a new spot fire.

2. Transport. The transport and updates to the firebrand while airbourne are controlled using

the Firebrand update and Firebrand airbourne growth scripts. The Firebrand update is used

to apply acceleration to the firebrand while airbourne. Typically this will be a wind drag

model with gravity, but can be modified to apply any local acceleration. To apply wind drag

and gravity a script such as the following can be used:

// Drag coefficient

REAL cd = 0.42;

// Ratio of air to particle densities

REAL rho_diff = 1.2/250.0;

// Relative velocity, wind vector must be in m/s

REALVEC3 rel_velocity = wind_vector-velocity;

// Set firebrand acceleration:

// a = F = 0.5*rho_gas*cd*area*u^2

// - -----------------------

// m rho_particle*volume

acceleration = (0.375*rho_diff*cd/radius)*length(rel_velocity)*rel_velocity;

// Apply gravity

acceleration.z -= 9.8;

The above script calculates the acceleration on the particle from the relative wind velocity,

then subtracts the vertical gravitational component. The Firebrand airbourne growth script

can modify firebrand parameters, such as the radius or local wind vector, before the

position of the particle is updated. Although possible it is not recommended that the

position or velocity are updated in this script.

40 | Spark user guide

3. Spot fire ignition. The firebrand is checked for intersection with the ground plane. If it

reaches the ground the firebrand processing switches to the ground growth model,

controlled by the Firebrand surface growth script. This is a basic model allowing only

increase in the firebrand radius until it is above the size in which it can be modelled as a

new spot fire in the fire spread solver. The Firebrand surface growth script has limited

access to the data for the fire spread model, including the state, class, subclass and output

layers from the main solver. Note that the lifetime of the firebrand still applies on the

ground, and if the lifetime of a firebrand on the ground reaches zero it is extinguished.

NAME TYPE DESCRIPTION AVAILABILITY*

position 3D vector The 3D position of the firebrand (m). CR, UP, AG, GG

velocity 3D vector The 3D velocity of the firebrand (ms-1) CR, UP, AG

acceleration 3D vector The 3D acceleration applied to the firebrand (ms-2) UP

wind_vector 3D vector The wind vector (ms-1). CR, UP, AG

cell 3D vector The centroid of the current grid cell (m). CR

radius scalar The radius of the firebrand (m), this is limited to a minimum of 0.5 mm.
If lower than the minimum radius the firebrand is extinguished.

CR, UP, AG, GG

lifetime scalar The lifetime of the firebrand. CR

time scalar The current lifetime of the firebrand (s). This is reduced from the initial
value of lifetime to zero. When zero the firebrand is extinguished.

UP, AG, GG

q scalar A general-purpose user defined variable CR, UP, AG, GG

state scalar Whether the cell is currently un-burnable (value 0) or burnable (value
1).

CR, GG

class scalar The fuel classification value. CR, GG

subclass scalar The fuel sub-classification, can be 0-255. CR, GG

distance scalar The distance to the perimeter from the point on the ground below the
firebrand (m).

CR, UP, AG, GG

speed scalar The normal speed of the fire at the perimeter (ms-1). CR

speed scalar The speed of growth of the firebrand (ms-1), this is used to update the
radius.

UP, AG, GG

elevation scalar The land elevation at the point on the ground below the firebrand (m). UP, AG, GG

height scalar The vertical height of the firebrand above ground (m). UP, AG, GG

output[0-9] scalar Internal user-defined data layer, written to ‘output grid’ layer [0-9]. CR, AG, GG

Table 16 - Firebrand script inputs

* CR: Creation script, UP: Update script, AG: Airborne growth script, GG: Growth script

The airbourne transport component is not required to implement firebrands. If required

firebrands landing locations can be directly specified. The example project proj1_firebrand, shown

in Figure 20, uses Ellis’ maximum spotting distance model to create new spot fires at a given

distance from the fire front. Note this only uses a creation script and a ground growth script.

Spark user guide | 41

Figure 20 - Maximum spotting distance model implemented using the firebrand processor.

The firebrand model is three-dimensional, and can use a three-dimensional wind field if available.

A three-dimensional wind field can be applied as multiple vertical levels using a different time

series in each. The number of vertical levels and the spacing between each of the levels is set using

the Number of vertical levels and Vertical spacing between levels input fields on the Firebrands

processor tab.

An example of a simulation with multi-level winds is shown in Figure 21. Firebrands are created

and lofted into a cross-stream causing them to fall to the south of the front. The model assumes

that the firebrand is buoyantly lofted for 1 minute after creation, allowing the firebrands to rise

and enter the cross-stream. It should be emphasised that many of the characteristics of firebrand

transport is still under research and parameters such as lofting times are unknown.

Implementation of the firebrand model should consider such factors before use and rely on

researched parameters or careful calibration to existing fire data.

42 | Spark user guide

Figure 21 - Spot fires created parallel to the fire due to firebrand transport in a high level cross-wind. Note this is an

example of the model and not representative of realistic fire conditions.

Firebrand parameters

The behaviour of lofted firebrands is still an active scientific research area. The models
supplied with Spark are intended to show utility of the modelling system and are not designed
to be used for fire predictions without substantial consideration of the underlying model.

Many of the parameters used in these models, including the firebrand creation probability,
lofting time and aerodynamic characteristics of the firebrands, should be carefully researched
before implementation and use in the system.

Spark user guide | 43

3.9.2 Disruption modelling

Spark can read a vector line network from a shapefile and use it to impose a barrier to fire spread

or change the classification of the fuel type under the vector. All vectors are imposed as a one cell

wide line within the fuel classification layer.

Figure 22 - Disruption options.

Uses for the disruption layer include implementing the effect of roads, waterways or fire breaks in

the simulation. Disruptions can be made to permanently affect the spread of the fire (for example,

by setting the land classification under the disruption vectors to zero), temporarily halting the

spread of the fire (for example, by clearing the state flag and making the cell burnable at random

in a rate of spread model), or changing the fuel type under the vector layer.

The inputs for the disruption model are shown in Table 17 while example inputs for the disruption

model are shown in Figure 22. The example inputs shown are from proj3 which is supplied with

the software. In this example the VicRoads_Width.shp shapefile is read in as the disruption

shapefile. The land classification is overwritten to class 4 in this case so that the disruption can be

handled specifically in that rate-of-spread model. The state has also been set to zero, meaning

that the fire will not be able to burn that cell unless the state is switched back to one. The inputs

also specify that the Shapefile state name or field of SEAL_WIDTH should be read from the

shapefile and its value applied to the user data layer road_width so that it can be accessed in both

the rate-of-spread models and post-processing models. In this project, an example disruption

model is implemented in class 4 where the failure probability of the disruption decreases with a

larger road width, and the cell becomes burnable (state = 1) if a random probability is exceeded.

44 | Spark user guide

NAME DESCRIPTION TYPE XML

Disruption shapefile An ESRI shapefile for the vector representing the
disruption network (e.g. roads, waterways or fire
breaks). Only polylines are used from the shapefile.

Filename Disruption shape
source file

Disruption shapefile projection
(OGC WKT)

The projection for the shapefile in the Open
Geospatial Consortium Well-Know-Text standard.

Text Disruption shape
projection WKT

Mark disruption cells as
unburnable (set state flag to zero)

Sets the state flag of any cells under the disruption
vectors to zero, making them currently un-burnable.

Checkbox Disruption clear
state

Overwrite classification Option to overwrite land classification values under
the disruption vectors with a new value.

Checkbox Disruption overwrite
classification

Classification overwrite value The new value for the fuel classification under the
disruption vectors.

Number Disruption overwrite
classification value

Overwrite user data layer with
disruption shapefile state

Option to write any numeric field from the shapefile
to a user-defined layer in Spark.

Checkbox Disruption overwrite
user layer

User data layer name The names of the user-defined layer in Spark. Text Disruption overwrite
user layer name

Shapefile state name The name of the field in the shapefile to use. Text Disruption overwrite
network state name

Table 17 - Field names for disruption behaviour module

http://www.opengeospatial.org/standards/wkt-crs
http://www.opengeospatial.org/standards/wkt-crs

Spark user guide | 45

3.10 Log

The log provides output and information on the simulation. On simulation completion similar text

to that shown in Figure 23 should appear.

Figure 23 - Spark-gui simulation log.

Any warnings or errors are highlighted in red with a description of the error encountered.

46 | Spark user guide

4 Spark-batch application

The spark-batch package is a stand-alone command-line application. The application is configured

to be deployed to multi-CPU or GPU servers. The input to the application is an XML project file for

the configuration of the solver and a series of input data sets. XML project files created using the

spark-gui application are compatible with spark-batch.

The application must be run in a project directory containing the XML project file. This XML file is

supplied to the application as a command line argument, for example, if the input XML file is

proj1.xml the application is executed using the command:

spark-batch ./proj1.xml

Outputs will be written to the files defined within the XML file. The batch application also contains

a test to ensure the application is working correctly. To carry out the test, execute the command:

spark-batch --test

If all is working correctly, an image called spark-batch_test_result.png will be written to the

current directory. The image is shown in Figure 24.

Figure 24 - spark-batch test result

The XML project file can either be generated using the spark-gui application or automatically

created. The XML must be contained by an <operation> tag. The fields within the file have the

following form:

<input globalname="Start time">2013-10-17T11:59:00+11:00</input>

The globalname tag for each of the inputs is given under the ‘XML’ column in each of the tables in

the spark-gui section.

XML composition

XML contains escape characters, for example the less than sign ‘<’ is encoded using the string
‘<’. Care must be taken to use these escape characters when manually writing code in XML.

Spark user guide | 47

Appendix

Spark contains a number of internally defined variables which provide access to information

required for fire modelling. These are given in Table 18, with the availability of the variable shown

in the last column.

VARIABLE TYPE DESCRIPTION AVAILABILITY*

area scalar The current total fire size in m2 IRP

easting scalar The cell easting value (m). I

northing scalar The cell northing value (m). I

speed scalar Required: sets the normal speed at the perimeter (m/s). RP

distance scalar The distance to the perimeter. R

wind scalar The dot product of the wind and front normal, limited by zero. R

wind_vector vector The wind vector. RP

normal_vector vector The normal vector of the perimeter. R

class scalar The fuel classification value. IRP

subclass scalar The fuel sub-classification, can be 0-255. IRP

mask scalar The mask region, with a value of 1 within the mask and 0 outside. IRP

state scalar Whether the cell is currently un-burnable (value 0) or burnable (value 1). IRP

random scalar A random number from a uniform distribution between 0-1. IRP

output[0-9] scalar Internal user-defined data layer, written to ‘output grid’ layer [0-9]. IRP

arrival scalar The ignition (arrival) time of the perimeter at the cell (s). No-data values indicate no
recorded arrival time.

P

year scalar The current year in simulation time. IRP

month scalar The current month in simulation time. IRP

day scalar The current day in simulation time. IRP

hour scalar The current hour in simulation time. IRP

time scalar The current solver time (s). RP

layername scalar The interpolated value within the cell from the user-defined layer or time series
named layername.

IRP

dx(layername) scalar The x-spatial derivative of the user-defined layer named layername. IR

dy(layername) scalar The y-spatial derivative of the user-defined layer named layername. IR

grad(layername) vector The gradient of the user-defined layer named layername. IR

nodata scalar The no-data value. IRP

Table 18 - Internal variables used in Spark models.

* I: Initialization script, R: Rate-of spread scripts, P: Post-processing scripts

48 | Spark user guide

References

Cheney NP, 1998, Prediction of fire spread in grasslands. International Journal of Wildland Fire 8,

1-15.

Cruz MG, 2015a, Effects of curing on grassfires: II. Effect of grass senescence on the rate of fire

spread. International Journal of Wildland Fire 24, 838-848

McArthur AG, 1966, Weather and grassland fire behaviour. Commonwealth Department of

National Development. Forestry and Timber Bureau, Leaflet 100, Canberra, ACT. 23 pp.

Sullivan AL, 2009a, Wildland surface fire spread modelling, 1990–2007. 1: Physical and quasi-

physical models, International Journal of Wildland Fire, 18, 349–368

Sullivan AL, 2009b, Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-

empirical models, International Journal of Wildland Fire, 18, 369–386

Sullivan AL, 2014, A downslope fire spread correction factor based on landscape-scale fire

behaviour. Environmental Modelling and Software 62, 153-163.

Spark user guide | 49

50 | Spark user guide

CONTACT US

t 1300 363 400
 +61 3 9545 2176
e csiroenquiries@csiro.au
w www.data61.csiro.au

AT CSIRO WE SHAPE THE FUTURE

We do this by using science and
technology to solve real issues. Our
research makes a difference to industry,
people and the planet.

 FOR FURTHER INFORMATION

James Hilton
Senior Research Scientist
t +61 3 9518 5974
e james.hilton@csiro.au

Mahesh Prakash
Group Leader
t +61 3 9545 8010
e mahesh.prakash@csiro.au

Andrew Sullivan
Team Leader
t +61 2 6246 4051
e andrew.sullivan@csiro.au

w www.data61.csiro.au

mailto:james.hilton@csiro.au
mailto:mahesh.prakash@csiro.au
mailto:andrew.sullivan@csiro.au

