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1 Summary 

Spark is a toolkit for simulating the spread of wildfires over terrain. The toolkit consists of a 

number of modules specifically designed for wildfire spread. These include readers and writers for 

geospatial data, a computational model to simulate a propagating front, a range of visualisations 

and tools for analysing the resulting data. 

This document provides an overview and user guide for a graphical user interface for Spark, 

‘spark-gui’ and the command-line Spark server application ‘spark-batch’. 

OpenCL 

Spark requires OpenCL 1.2 to run. This now comes as standard with all Windows and Mac 
graphics drivers. Please update your graphics driver before installing Spark to ensure that the 
latest OpenCL version is installed. 
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2 Introduction 

Wildfires are dangerous and destructive 

phenomena frequently occurring in periodically 

dry regions around the world. The occurrence of 

fires is a natural process that has shaped 

landscapes and ecosystems over time. However, 

increasing urbanisation is bringing more 

population into contact with wildfires along 

urban boundaries. The risk to human life and 

infrastructure has led to intensive research into 

the prediction of wildfire behaviour. Such 

predictions are used for risk reduction planning, 

impact assessment or operational emergency 

management in the event of a wildfire. 

The physical process governing fires is very 

complex, involving interactions over a range of spatial and temporal scales. Despite this 

complexity, success has been achieved in predicting behaviour using empirical models. These 

models predict the behaviour of a wildfire using a set of relationships between factors driving the 

fire (Sullivan 2009b). These factors include weather conditions, such as wind and air temperature, 

as well as fuel and landscape conditions. 

These empirical models can be used to predict rate of spread of a wildfire for a set of given 

conditions. They are fast to evaluate on a computer making them ideal for providing rapid large-

scale predictions for the path of a fire. Alternative computer modelling techniques include fully 

physical models (Sullivan 2009a), which use a set of interconnected equations governing the 

underlying dynamics of the fire. These models provide great detail in the physical processes of the 

fire, but are currently unfeasible to compute at the landscape scale required for operational 

purposes. 

The Spark toolkit is a configurable system for predicting the spread of a fire perimeter over a 

landscape based on empirical rate-of-spread models. Multiple rate-of-spread models can be 

employed within the framework representing different fuel types. Different parameters and fuel 

conditions governing the rate-of-spread can be defined by the user. The system supports standard 

geospatial data types for fuel layers and meteorological conditions. The predicted results can be 

written to standard geospatial data types or displayed and viewed within the system. 

This user guide covers two particular applications of the Spark toolkit. The first, spark-gui, is a 

fully-featured graphical application allowing the user to read in data layers for fuel and weather, 

compute a predicted fire perimeter and view the result. The second, spark-batch, is a command 

line tool suitable for running as a server application. This server application could, for example, be 

used for a predictive ensemble of fire simulations based on different conditions.  

Figure 1 - Experimental grassfire burn to provide 

data for new rate-of-spread models. 
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2.1 Spark and configurability 

A key aspect of Spark is configurability. Spark has been designed to handle multiple rate-of-spread 

models for different fuel types. Spark has also been designed to be compatible with future fire 

models and new types of fire behaviour. 

Instead of pre-set rate-of-spread models, fire behaviour is programmed into Spark using a C script. 

These scripts define the behaviour of the fire in terms of user-defined spatial fuel and 

meteorological layers. Any valid OpenCL C code can be used for these scripts, along with a wide 

range of additional mathematical operations. 

 

 

Figure 2 - Schematic of Spark layers. 

Figure 2 shows a very basic example of Spark configuration. The user has four data layers, shown 

here vertically stacked for illustration. The top data layer is a fuel or land classification, containing 

a number representing a fuel type. For example, classification 1 may be grassland and 

classification 2 may be forest. The classification of zero is reserved as un-burnable. The other data 

layers are the air temperature, the wind data (this is stored a vector but shown as a single layer for 

illustration) and the land elevation. 

The user also requires two fire behaviour models, one for the grassland areas and one for forest 

areas. The rate of spread in the grassland (classification 1) is dependent on the temperature and 

wind (Figure 2, right hand side, middle), whereas the rate of spread for the forest model 

(classification 2) is dependent on elevation and temperature (Figure 2, right hand side, bottom). 

The chosen rates of spread are entered as formulas in text into Spark. The framework takes care of 

deciding which cell the fire is in, applying the correct rate of spread and updating the fire 

perimeter accordingly. Spark also takes care of reading and writing geospatial data layers, 

alignment and projection of the layers and all spatial and temporal aliasing. 

The actual scripts for a particular rate of spread can be very complex. We provide a free source of 

scripts on our website for the latest fire behaviour models. These can simply be cut and pasted 

into Spark to provide the desired fire behaviour in different fuel types. 

https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
https://research.csiro.au/spark/resources/model-library/
https://research.csiro.au/spark/resources/model-library/
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3 Spark-gui application 

Spark-gui is an implementation of the Spark toolkit behind a graphical user interface. This general-

purpose application allows: 

• Up to twelve different types of fuel to be modelled. 

• A fire starting condition consisting of a set of points and lines or an ESRI shapefile. 

• Either point or gridded input data sets for fuel and weather conditions. 

• Output data sets consisting of a raster map of arrival times, a shapefile of isochrones and a 

map of user-defined variables. 

Spark applications are run using an XML project file containing fields for controlling and running 

the simulation. Three XML sample project files with data are included with the spark-gui 

application.  

 

Figure 3 - Spark-gui initial screen. 

As an example of the usage of spark-gui we will use the project file proj1 in the following guide. To 

open the project, install and run the spark-gui application. The initial screen shows an output map 

in the viewer window, as shown in Figure 3. The application has a list of geospatial layers in the 

project on the left-hand side, a preview map on the right-hand side and a set of tabs under the 
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toolbar for various views and configuration options. The toolbar buttons from left to right 

described in Table 1. 

ICON NAME DESCRIPTION 

 
Open Open project. The arrow to the right of the button is a shortcut for recent projects. 

 
Save Save the project under the current name in the current location. 

 
Save As Save the project under a different name or in a different location. 

 
Start Execute simulation. 

 

Reset Reset the project. 

 
Advanced Unlock model editing and advanced options. 

 
About Information on the current software version. 

Table 1 - Toolbar buttons 

To load a project, click on Open and navigate to /appdata/spark-gui/proj1. Select and open the 

proj1.xml file. While the project is loading the status bar will be active. When the project has 

finished loading the status bar will display ‘Ready’. 

The project is executed by clicking the Start button. The simulation should take a few seconds to 

complete. After execution is complete, any output data files are written to their specified 

locations. The map view will jump the location of these output data sets and display them on the 

map. The default view displays isochrones of the fire progression, as shown in Figure 4. Different 

display layers can be toggled on or off using the panel on the left hand side of the map.  A legend 

is displayed on the right for the topmost layer. Execution can be reset at any time by pressing the 

Reset button. Any edits to the project (or a new project) can be saved as an XML project file using 

the Save or Save As buttons. 

The application working directory 

Spark-gui and spark-batch set the directory containing the xml project file as the current 
directory, so all filenames can be set relative to the xml project file. Alternatively, a full path 
can be used.  

The default directory often has no write access (if installed to Program Files), so the example 
project directories should be copied somewhere with write access (e.g. Desktop or My 
Documents on Windows) so these can be run and modified. 
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Figure 4 - Spark gui output. 

The view toolbar (outlined in Figure 4) allow the map to be interactively queried, moved and 

captured. The toolbar buttons, from top to bottom, are: 

 

ICON DESCRIPTION 

 

Inspect topmost layer: values for the point under the layer are displayed in a window in 
the top left of the map widget. 

 
Select layers: values for selected items are shown under the layer tree. 

 
Measure distance: measures the distance between two points. 

 
Write to layer: used to set fire start points or arrays of points. 

 
Zoom to selection: zooms to a region selected by clicking and dragging. 

 
Zoom to extent: resets view to show all visible layers. 

 
Capture image: captures the current map view and saves to a file. 

Table 2 - View toolbar buttons 

 

 

 View toolbar 
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The latitude and longitude at the current mouse position, as well as the values for all toggled 

layers is displayed in a table in the upper right corner. These values can be copied to the clipboard 

by clicking the middle mouse button.  

For multi-layer raster data sets, the visible level can be changed using a drop-down menu by 

clicking on the layer name (marked as ‘Currently visible layer’ in Figure 5). To use, select the value 

in the drop-down list and press ‘Enter’. 

 

Figure 5 - Spark gui maximum flame height output. 

 

Errors and warnings 

If the status bar displays an error, please refer to the log by selecting the ‘Log’ tab. 

 

 

 

 

 

 

Currently visible layer 



Spark user guide  | 13 

If an arrival time output is present, Spark can show the fire perimeter at a specified time. The time 

is controlled using the time slider bar at the  bottom of the gui (outlined in Figure 6). The slider can 

be manually dragged to a time, or an animation can be toggled using the ‘Play’ button on the left 

hand side. The drop-down box on the right hand side controls the frequency of the update in 

simulation time steps. The time stamp on the far right of the slider shows the currently selected 

time. 

 

 

Figure 6 - Spark gui maximum flame height output. 

 

Output comparison 

Spark can compare two different fire simulations if a second arrival time raster output is 
specified in the ‘Output arrival time comparison file’ in the ‘Map display’ box within the ‘Data 
input’ tab. Colouring and display options for the fire area can also be set within the ‘Map 
display’ box. 

 

 

Time slider bar 

Fire area at 
specified time 
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3.1 Configuration 

After loading the project, the fields within the application will be populated with values defining 

the simulation. These values include filenames, numbers and scripts. To see the values for proj1, 

select the ‘Configuration’ tab. The configuration screen is shown in Figure 7. 

 

Figure 7 - Spark-gui configuration screen 

The configuration tab is divided into several groups, covered in the next sections. 

Advanced editing 

The custom inputs, as well as the model inputs, are locked by default (shown in grey and not 
editable). To change the custom inputs as well as the initialisation and rate-of-spread-models, 
click on the ‘Advanced’ button in the toolbar to unlock editing.  
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3.1.1 Simulation settings 

These fields define the overall parameters for the simulation. All of the parameters must be 

defined. 

NAME DESCRIPTION TYPE XML 

Project name An optional project name. This name is prepended to 
any output files. 

Text Project name 

Start time (ISO8601) The start time of the simulation in the ISO8601 
format. Here the start time is set to 1 pm on the 17th 
October 2013 for the UTC+11 time zone. 

Text Start time 

End time (ISO8601) The end time of the simulation in the ISO8601 
format. Here the end time is set to 10 pm on the 17th 
October 2013 for the UTC+11 time zone. 

Text End time 

Total simulation time (hours) The length of the simulation in hours. In this example 
the simulation time is set to zero, meaning the end 
time string is used. 

Number Simulation duration 
hours 

Simulation resolution (m) The raster resolution of the simulation in metres. All 
input raster layers are re-sampled to this resolution 
and all output layers are written at this resolution. 
Here, the resolution is set to 30 m by 30 m cells. 

Number Simulation resolution 

Simulation projection (OGC WKT) The projection used for the simulation in the Open 
Geospatial Consortium Well-Know-Text standard or 
EPSG code. All output raster layers and shapefiles are 
written using this projection. Here the projection is 
set to the Australian Lambert projection. 

Text Simulation projection 
WKT 

Table 3 - Field names for simulation parameters 

Start and end time 

It is recommended that time zones are specified for time inputs. If these are not specified the 
simulation will use the local time zone, resulting in different predictions depending on the 
location the simulation is computed. 

 

Simulation projection 

The projection used must be a Cartesian co-ordinate system. Mercator or Lambert projections 
are recommended. For example, the Lambert projection used in proj1 is a good general-
purpose projection for anywhere in Australia. 

 
 
 
 
 
 

http://www.iso.org/iso/home/standards/iso8601.htm
http://www.iso.org/iso/home/standards/iso8601.htm
http://www.iso.org/iso/home/standards/iso8601.htm
http://www.iso.org/iso/home/standards/iso8601.htm
http://www.opengeospatial.org/standards/wkt-crs
http://www.opengeospatial.org/standards/wkt-crs
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3.1.2 Ignitions 

These fields define the starting conditions used for the simulation. A starting condition can either 

be a shapefile representing an initial fire perimeter or a list of points or lines representing starting 

locations. If both are defined, the shapefile will be used preferentially, and the starting points will 

not be used. 

NAME DESCRIPTION TYPE XML 

Fire sources A table of the current ignition sources, these can be points, lines or 
polygons 

None N/A 

Python script This is a Python script defining the latitude, longitude, radii and start 
times of each point source. This script must contain the following 
definitions: 

• long (point longitude) 

• lat (point latitude) 

• radius (point radius) 

• time (point activation time) 

These variables are defined as a Python vector and can be generated in 
any manner within the script. 

Optionally, the python script can use the seed variable (ensemble 
simulation seed), and the startDate variable (start date-time string). 

Text Start point script 

GeoJSON A GeoJSON string specifying the ignition conditions. This is created based 
on (in order of preference) any GeoJSON ignition conditions in the 
project XML, the Python script and the input shapefile. 

Text GeoJSON input 
source 

Ignition shapefile An ESRI shapefile (.shp) defining an initial fire perimeter. No shapefile is 
used in this example. 

Filename Shape file input 
source 

Start shapefile input 
projection (OGC WKT) 

The shapefile projection in the Open Geospatial Consortium Well-Know-
Text standard or EPSG code. No shapefile is used in this example. 

Text Shape file input 
projection WKT 

Table 4 - Field names for ignition parameters 

 

Start shapefile 

The application currently uses two fields for defining the ESRI shapefile data. These are the 
shapefile data (.shp) and the projection. The projection is usually stored within a projection 
(.prj) file, but is not guaranteed to be compatible with the OGC WKT format. To ensure the 
projection is correctly applied it must be specified in OGC WKT in the shapefile projection 
field. 

  

http://www.opengeospatial.org/standards/wkt-crs
http://www.opengeospatial.org/standards/wkt-crs
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3.1.3 Output settings 

These fields define the simulation output files. 

NAME DESCRIPTION TYPE XML 

Output arrival time GeoTIFF file If this field contains a filename a GeoTIFF 
containing arrival time within the fire perimeter is 
written to a file with this name. If the field is 
empty no file is written. 

Filename Output raster file 

Output user data GeoTIFF file If this field contains a filename a GeoTIFF 
containing the ten user-defined output layers is 
written to a file with this name. If the field is 
empty no file is written. 

Filename Output data raster file 

Output user data GeoTIFF file type The data type written to the output data GeoTIFF 
file. The data is converted to this type before 
being written. Different data types may provide 
savings in space. 

Selection Output data raster type 

Output isochrone shapefile If this field contains a filename an ESRI shapefile 
of isochrone data is written to a file with this 
name. The shapefile is written with a projection 
file containing the simulation projection. If the 
field is empty no file is written. 

Filename Output shape file 

Output isochrone shapefile step (s) The spacing in time between the output 
isochrones in the shapefile. If this is zero a default 
value of one hour is used. 

Number Output isochrone time 

Output spot fire shapefile If this field contains a filename an ESRI shapefile 
of spot fire starting locations is written to a file 
with this name. The shapefile is written with a 
projection file containing the simulation 
projection. If the field is empty no file is written. 

Filename Output spot fire shape file 

Output projection (WKT) The projection applied to all outputs in the Open 
Geospatial Consortium Well-Know-Text standard 
or EPSG code. If this is blank the outputs are 
written using the simulation projection. 

Text Output projection WKT 

Write KML to directory Write Keyhole Markup Language to specified 
directory for visualisation in Google Earth and 
Google Maps. 

Filename KML directory 

Write KML to directory step (s) The spacing in time between the output frames in 
the kml directory. If this is zero a default value of 
one hour is used. 

Number KML time step 

Table 5 - Field names for output options 

The output files are compatible with all common GIS processing tools, such as QGIS (Figure 8). 

 

http://www.opengeospatial.org/standards/wkt-crs
http://www.opengeospatial.org/standards/wkt-crs
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Figure 8 - Output GeoTIFF (shaded by arrival time), and isochrones (black lines). 

3.2 Data input 

Spark supports two or three-dimensional raster layers (two spatial plus one temporal) and handles 

all temporal interpolation. Raster data layers are read in using the ‘Data input’ tab (Figure 9).  

Gridded input can be restricted to a sub-region, if required. This can be applied using the bounding 

box configuration (Figure 9, outlined), which specifies bounds in longitude and latitude. The 

bounding box can also be selected on an interactive map using the ‘Select on Map’ button. To 

select a region using this tool, hold shift and drag on the map to specify the region. 

If required, this sub-region can be automatically generated for a region around the starting points 

or shapefile. To use this automatic feature, check the ‘Use bounding box’ and the ‘Auto-generate 

bounding box’ options. A bounding box is generated in a square region with bounds given by the 

starting longitude and latitude plus or minus the value in ‘Bounding box buffer’. The value in 

‘Bounding box buffer’ must be in decimal degrees. 

Automatic bounding boxes 

Use of automatic bounding boxes can greatly increase the simulation speed when using large 
geospatial input layers as only small sub-regions of the layers are read in and processed. A 
reasonable value of the bounding box buffer is 0.4-0.6 decimal degrees for large scale day 
long simulations. If the automatic option is selected the values in the bounding box input are 
ignored. 
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Figure 9 - Spark-gui gridded input screen; meteorological input section. 

3.2.1 Meteorological inputs 

Meteorological input layers are configured in the ‘Meteorological inputs’ tab. There are six 

meteorological input layers which can be defined as individual files or as a set of files in a 

directory. The geospatial projection, along with options to control the time conversion, are 

specified for all meteorological input layers using the following options: 

NAME DESCRIPTION TYPE XML 

Gridded projection (OGC WKT) The raster layer projection for all meteorological 
raster layers in the Open Geospatial Consortium 
Well-Know-Text standard or EPSG code. 

Text Gridded/Layer 
projection WKT 

Use direction/speed If set the input wind raster layers are direction and 
speed. Otherwise the wind raster layers are the x 
and y components of the wind vector. 

Checkbox Gridded/Wind/Use 
direction speed 

Gridded start time overwrite (ISO 
8601) 

An optional start date and time in the ISO8601 
format to use instead of the values stored in the 
meteorological raster layers. 

Text Gridded/Start time 
overwrite 

Gridded time conversion 
coefficient 

A multiple to apply to the time-step value for the 
meteorological raster layers. 

Number Gridded/Time 
conversion coefficient 

Table 6 - Meteorological input layer projections and time conversion parameters 

 

 

Bounding box 

http://www.opengeospatial.org/standards/wkt-crs
http://www.opengeospatial.org/standards/wkt-crs
http://www.iso.org/iso/home/standards/iso8601.htm
http://www.iso.org/iso/home/standards/iso8601.htm
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To set individual files, select the ‘Source file names’ tab. The inputs for this tab are: 

NAME DESCRIPTION TYPE XML 

Wind direction A raster layer specifying the wind direction in 
degrees within each cell. 

Filename Gridded/Wind/Layer direction 
source file 

Wind speed A raster layer specifying the wind speed within 
each cell. 

Filename Gridded/Wind/Layer 
magnitude source file 

Temperature A raster layer specifying the air temperature within 
each cell. 

Filename Gridded/Temperature/Layer 
source file 

Relative humidity A raster layer specifying the relative humidity (%) 
within each cell. 

Filename Gridded/Relative 
humidity/Layer source file 

Dew point temperature A raster layer specifying the dew point temperature 
within each cell. 

Filename Gridded/Dew point 
temperature/Layer source file 

Drought factor A raster layer specifying the drought factor within 
each cell. 

Filename Gridded/Drought factor/Layer 
source file 

Table 7 - Field names for meteorological inputs 

Gridded file names can be alternatively generated by selecting a directory and specifying a name 

filter for each required file. In the example shown in Figure 9 the Input directory contains six files 

containing the text _Wind_Dir_, _Wind_Mag_, _T_, _RH_, _Td_ and _DF_. Once the directory and 

a filter is specified, the Source file column will update with the generated file path for verification. 

The inputs corresponding to the ‘Source directory’ tab are: 

NAME DESCRIPTION TYPE XML 

Source directory A directory containing a set of meteorological 
input files. 

Filename Gridded/Source directory 

Wind direction A text filter specifying the wind direction input 
file. 

Filename Gridded/Wind/Layer direction 
source filter 

Wind speed A text filter specifying the wind speed input file. Filename Gridded/Wind/Layer magnitude 
source filter 

Temperature A text filter specifying the air temperature input 
file. 

Filename Gridded/Temperature/Layer 
source filter 

Relative humidity A text filter specifying the relative humidity (%) 
input file. 

Filename Gridded/Relative 
humidity/Layer source file 

Dew point temperature A text filter specifying the dew point temperature 
input file. 

Filename Gridded/Dew point 
temperature/Layer source filter 

Drought factor A text filter specifying the drought factor input 
file. 

Filename Gridded/Drought factor/Layer 
source filter 

Table 8 - Field names for meteorological inputs 

Source files 

If a directory and file filter is specified, ensure that no name is specified for the file in the 
‘Source file names’ tab, otherwise this will take priority.  
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Once loaded, the gridded meteorological input data can be previewed on the map in the Viewer 

tab. If the input data has a temporal component, the time used for the input layer preview can be 

changed using the slider below the map. 

If the input data set is a NetCDF file, the metadata within the file is parsed to generate time 

information. The parsing process calculates the start time and time step of the input layer. The 

parsing takes the following steps: 

• Search the NetCDF metadata for time. If this is not found, stop processing. 

• Search the NetCDF metadata for time#units and convert to seconds. 

• Search for NETCDF_DIM_time_VALUES. If this is not found, stop processing. 

• Read and convert the NETCDF_DIM_time_VALUES array to seconds. 

• Check the array for equal time spacing. If the time spacing is unequal, stop processing. 

• Calculate the start time of the input layer and the time step. 

If the data is not a NetCDF file, or the processing of the metadata fails at any stage, the time step 

is set to one and the start time is set to zero. In this case, the start time and time step can be 

manually specified using the Gridded start time overwrite (ISO 8601) and Gridded time conversion 

coefficient fields respectively. 

Conversion factors can be applied to the gridded data sets using the ‘Transform’ tab (Figure 10, a). 

This can be used, for example, to convert data values between different units. A scale and an 

offset can be applied to the data. The original data is multiplied by the scale factor before the 

offset value is added. 

Information on the data layers can be viewed using the ‘information’ button at the end of each 

row (Figure 10, b). This opens a window showing the GDAL layer metadata which usually contains 

a description of the data units along with other information (Figure 10, c). 
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Figure 10 - Spark-gui gridded input screen; meteorological data, data transform. 

3.2.2 Terrain inputs 

Fuel and topographic input layers are configured in the ‘Terrain inputs’ tab (Figure 11). The field 

values for this tab are given in Table 9. 

There are five pre-defined layers within the spark-gui application. These are the land classification, 

a fire history layer, an elevation layer, a fuel load layer and a curing layer. If any of these are 

empty, the layer is populated with the value in the ‘Default value’ column. The exception to the 

default value is the fuel classification layer. If this is empty, the classification of the entire 

simulation is set to one. 

a 
b 

c 
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Figure 11 - Spark-gui gridded input screen; terrain data. 

 

Each of the layers can be referred to in the initialisation, post-processing and rate-of-spread 

models by the name given in the ‘Model name’ column.  
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NAME DESCRIPTION TYPE XML 

Land classification A raster layer specifying the land type within each cell. Filename Classification/Layer 
source file 

Land classification 
projection 

The projection for the fuel classification layer in the OGC WKT 
standard or EPSG code. 

Text Classification/Layer 
projection WKT 

Fuel type mask 
shapefile 

If a shapefile is specified, any areas within the shapefile are set 
to a value of one within a layer called mask. Outside the 
shapefile the value of mask is zero. This can be used to define a 
firebreak region, or a previously burnt area.  

Filename Classification/Shape 
mask source file 

Fuel type mask 
shapefile projection 

The projection for the fuel classification mask in the OGC WKT 
standard or EPSG code. 

Text Classification/Shape 
mask projection WKT 

Fire history source A raster layer defining a fire history value, such as a date or 
time since last burn. 

Filename Fire history/Layer 
source file 

Fire history projection The projection for the fire history layer in the OGC WKT 
standard or EPSG code. 

Text Fire history/Layer 
projection WKT 

Fire history 
interpolation 

The interpolation method used for scaling the fire history data. 
If the data values are integers (such as date concatenations) 
‘Nearest’ should be used. 

Selection Fire history/Layer 
interpolation 

Fire history default The default value for the fire history layer. Number Fire history/Layer 
default 

Elevation source A raster layer specifying land elevation with respect to a 
vertical datum. 

Filename Elevation/Layer source 
file 

Elevation projection The projection for the elevation layer in the OGC WKT standard 
or EPSG code. 

Text Elevation/Layer 
projection WKT 

Elevation default The default value for the elevation layer. Number Elevation/Layer default 

Elevation 
interpolation 

The interpolation method used for scaling the elevation data. Selection Elevation/Layer 
interpolation 

Fuel load source A raster layer specifying fuel load values. Filename Fuel load/Layer source 
file 

Fuel load projection The projection for the fuel load layer in the OGC WKT standard 
or EPSG code. 

Text Fuel load/Layer 
projection WKT 

Fuel load default The default value for the fuel load layer. Number Fuel load/Layer default 

Fuel load 
interpolation 

The interpolation method used for scaling the fuel load data. Selection Fuel load/Layer 
interpolation 

Curing source A raster layer specifying curing values. Filename Curing/Layer source file 

Curing projection The projection for the curing layer in the OGC WKT standard or 
EPSG code. 

Text Curing/Layer projection 
WKT 

Curing default The default value for the curing layer. Number Curing/Layer default 

Curing interpolation The interpolation method used for scaling the curing data. Selection Curing/Layer 
interpolation 

Table 9 - Field names for terrain inputs 
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3.2.3 Custom inputs 

Rate-of-spread models typically require a range of additional input layers, for example, fuel 

parameters or wind reduction factors. Up to twenty additional named layers can be specified in 

the ‘Custom inputs’ tab. These layers are initialised to the value given in the ‘Default value’ column 

and are available in all models with the name given in the ‘Model name’ column. Optionally, the 

layers may be read from any GDAL-compatible file. If the source filename is empty, an empty layer 

initialised to the default value is created.  

NAME DESCRIPTION TYPE XML 

Source files The source file for the layer (optional). Filename Custom/Layer file name [1-20] 

Projection (OGC WKT) The projection for the fuel classification mask in 
the OGC WKT standard or EPSG code. 

Text Custom/Layer projection [1-20] 

Model name The name of a custom layer. Text Custom/Layer name [1-20] 

Default value The default value for the layer. Number Custom/Layer default [1-20] 

Interpolation The interpolation method used. Selection Custom/Layer interpolation [1-20] 

Table 10 - Input parameters to define custom layer names 

In the proj1 example, three additional layers are created: fuel_hazard_score_surface, 

fuel_hazard_score_near_surface and fuel_height_near_surface for the dry eucalypt model. 

 

Figure 12 - Spark-gui gridded input screen; custom input layers. 

 

http://www.opengeospatial.org/standards/wkt-crs
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3.3 Series Input 

The applications can use either gridded input data sets (spatial raster maps of parameters) or 

series inputs (a time series representing the change in a particular parameter). The example 

project proj1 uses series input for weather conditions, which can be defined and previewed in the 

‘Series input’ tab. This window is shown in Figure 13. 

The fields in the series input window are: 

NAME DESCRIPTION TYPE XML 

Script file A filename which can be used within the Python script. A 
variable is created within the Python script called ‘fileName’ 
containing the contents of this field.  

Filename Series/Script 

Time zone A time zone string which can be used within the Python script. 
A variable is created within the Python script called ‘timeZone’ 
containing the contents of this field. 

Text Series/Time zone 

Wind variation speed 
distribution 

If non-zero a random variation is imposed on the wind speed. 
The wind speed from the series is used as a mean value and a 
random value is drawn from a normal distribution with the 
specified width around this mean value.  

Number Series/Wind speed 
stdev 

Wind variation direction 
distribution 

If non-zero a random variation is imposed on the wind 
direction. The wind direction from the series is used as a mean 
value and a random value is drawn from a normal distribution 
with the specified width around this mean value. The value is 
wrapped between 0-360 degrees. 

Number Series/Wind bearing 
stdev 

Time series Python script 
definition 

A Python script defining vectors used for time series. This 
python script also has access to seed and count variables. 

Text Series/Source file 

Table 11 - Field names for series input 

The window is divided into an input Python script in the upper half and a preview of the generated 

time series in the lower half. The spark-gui application pre-defines seven time series, given in 

Table 12. A preview of each of these can be displayed using the appropriate tab at the bottom of 

the preview. These time series are populated using the Python script field. 

NAME DESCRIPTION 

wind_speed Wind speed. 

wind_dir Wind bearing in degrees. 

temp Air temperature. 

rel_hum Relative humidity (%). 

dew_temp Dew point temperature. 

drought_fac Drought factor. 

fuel_state Fuel state parameter. 

Table 12 - Pre-defined time series names for spark-gui 

The Python script, if used, must create vectors containing any or all of the time series names given 

in Table 12. Additionally, it must create a time vector which defines the time values in ISO 8601 

format. Optionally, a time series for a particular variable can be specified using the series name 

with ‘_time’ appended. For example, temp_time will create a time series for the temperature 

vector temp. 
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Figure 13 - Spark-gui series input screen. 

In the proj1 example, the Python script uses the Python CSV parser to read a CSV file and append 

the values within the CSV file to vectors of the temperature, relative humidity, wind speed and 

wind direction. The script performs an additional check to make sure an entry in the CSV is not 

blank, and only adds values to the series if data is present. 

Multi-level wind field can be specified using an array of arrays in the Python time series script for 

the wind_speed and wind_dir variables. The first array for this is a vector of timestamps, the 

second array is a vector of wind speeds or directions at the first vertical level, the third array is a 

vector of wind speeds or directions at the second vertical level, and so on. The wind field for the 

particle is interpolated from the three-dimensional wind field, so the local wind vector for the 

particle will smoothly vary between the wind fields specified at various levels. 

For example, a multi-level wind field can be specified using the definition: 

wind_dir = [['2013-10-17T13:00:00', '2013-10-17T14:00:00'], [90, 180] ,[100, 

190]]  

wind_speed = [['2013-10-17T13:00:00', '2013-10-17T14:00:00'], [25, 30], [30, 

35]] 

The above code would give a wind from a 90 bearing at the ground level and a wind from a 

bearing of 180 at the first layer at 1pm. This would shift to a wind from a 100 bearing at the 

ground level and a wind from a bearing of 190 at the first layer at 2pm. Similarly, the wind speed 
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would be 25 km/h at the ground level and 30 km/h at the first layer at 1pm. This would shift to 

30 km/h at the ground level and 35 km/h at the first layer at 2pm.  

Note the code requires multi-level winds to be enabled, this is currently specified in the firebrand 

experimental module, see section 3.9.1 for details. 

Time vector 

A ‘time’ vector must be defined in the Python script. This defines the time values for all series. 
To define a time for a particular series this time vector can be overwritten using the series 
name with ‘_time’ appended. 

 

Series definitions 

If the Python script does not define a series the series will not be created and will not be 
available in the rate-of-spread models within Spark. 

 

Units 

No units are defined within the framework. The user must take care of unit conversion within 
rate-of-spread models. 
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3.4 Initialisation model 

The initialisation model is a powerful pre-processing step run over all data layers after they are 

created and used in the simulation. The use of an initialisation model is entirely optional, but it 

allows for manipulation and population of the data layers. The model allows values in the data 

layers to be re-written or populated according to any user-defined function. The final initialisation 

script must be in OpenCL C code. 

 

Figure 14 - Spark-gui initialisation model. 

The processing in proj1 shows a typical use of an initialisation model. The raw data layer for the 

classification uses a three digit Australia land use classification code (ALUM). This three-digit code 

must be converted into the four classifications used within this example: un-burnable (0), 

grassland (1), forest (2) and urban (3). For example, the first step converts any ALUM code starting 

with ‘6’ into an un-burnable region, as codes starting with ‘6’ are water regions.  

The second step of the processing carries out a different processing function. In this step, the 

layers fuel_hazard_score_surface, fuel_hazard_score_near_surface and fuel_height_near_surface 

for the dry eucalypt model are populated within each cell using an exponential growth curve 

based on the fuel age layer. 

The initialisation model can be used to carry out any such processing of this type. For flexibility the 

model is split within the Spark applications into three steps. The full model script is built up from 

three blocks: a starting script (Figure 14, a), a script generated by Python (Figure 14, b) and an 

ending script (Figure 14, c). For reference the entire initialisation script is shown in a separate tab 

a b c d 

https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.agriculture.gov.au/abares/aclump/land-use/alum-classification-version-7-may-2010/alum-classification-version-7-may-2010
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(Figure 14, d). This structure allows, for example, a Python script to automatically generate 

mappings between multiple fuel types and the fuel types used within the application. 

The fields in this tab are: 

NAME DESCRIPTION TYPE XML 

Script input file A filename which can be used within the Python script. A 
variable is created within the Python script called ‘fileName’ 
containing the contents of this field. 

Filename Initialisation Python 
input file 

Script input file 2 A second filename which can be used within the Python script. 
A variable is created within the Python script called ‘fileName2’ 
containing the contents of this field. 

Filename Initialisation Python 
input file 2 

Initialisation start A script specifying the starting block of the initialisation model. Text Initialisation start string 

Initialisation Python 
script 

A Python script defining a generated block of text to append to 
the initialisation model. The text must be added to a string 
named ‘initString’ within the Python script. This python script 
also has access to the seed variable. 

Text Initialisation Python 
script 

Initialisation end A script appended to the end of the start block and the 
generated Python script. 

Text Initialisation end string 

Table 13 - Field names for initialisation model 

The user-defined output layers can be named in the ‘Initialisation Python script’ by setting an 

outputJSON variable. The JSON much contain an array named ‘Layers’ consisting of strings for each 

of the output layers in order from ouput0 onwards. An example script naming the first three layer 

is: 

JSON = { 

    "Layers": [ 

        { 

            "Name": "Arrival time (s)" 

        }, 

        { 

            "Name": "Speed (m/s)" 

        }, 

        { 

            "Name": "Maximum intensity (kW/m)" 

        } 

    ] 

} 

outputJSON = json.dumps(JSON) 

Initialisation and optimisation 

For optimisation it is best to put as much calculation as possible within the initialisation 
model, rather than the rate-of-spread models. 
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3.5 Rate-of-spread models 

The rate-of-spread models are the core of the Spark application. These define the local rate of 

spread of a fire perimeter based on an empirical relationship. For the example proj1 three rates-

of-spread are defined: the CSIRO grasslands model, the Dry Eucalypt model and a placeholder 

urban model. The rate-of-spread model scripts must be in OpenCL C code. 

There are twelve input tabs within this window corresponding to fuel classifications 1-12. The rate-

of-spread model in the ‘Class 1’ tab is used to calculate the rate of spread within any cells with a 

fuel classification value of 1, the rate-of-spread model in the ‘Class 2’ tab is used to calculate the 

rate of spread within any cells with a fuel classification value of 2, and so on. 

 

Figure 15 - Spark-gui rate-of-spread models. 

The grassland and dry eucalypt models are complex models containing a fair amount of code. A 

much simpler example illustrating the rate of spread scripts is the urban rate of spread model in 

the Class 3 tab. This rate-of-spread model is given by: 

speed = 0.01*wind; 

All rate-of-spread models must contain a speed = definition. This defines the outward speed of 

the fire perimeter. Sets of isochrones for three different speed definitions are shown in Figure 16. 

In each case the initial fire is a circle of diameter 20 metres, shown as the inner isochrone at zero 

time. Isochrones are shown at 25 second intervals.  

https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/


32   |  Spark user guide 

• In the first case (Figure 16, a) the speed definition is speed = 1. The initial circular 

perimeter spreads with a radial speed of 1 m/s in all directions, ending as a circle of 

diameter 220 metres. 

• The second case (Figure 16, b) uses the wind vector defined in the simulation. The wind 

vector in these examples is in the vertical direction with respect to the figure, from the 

bottom to the top, with magnitude 1 m/s. The speed definition here is speed = 1 + wind, 

where wind is specially defined quantity1 representing the component of the wind in the 

direction of the fire front. In this case the fire grows outwards at a rate of 1 m/s and moves 

forward at an additional rate of 1 m/s, resulting in a stretched obround fire perimeter. 

• The final example (Figure 16, c) is an example of a non-linear rate of spread. The speed 

definition here is speed = 1 + wind2, resulting in a pointed fire perimeter. 

 

 

 

Figure 16 - Speed definition examples. 

 

In the case of the urban model, the fire perimeter is simply moved in the direction of the wind at 

1% of the wind speed. 

The other two models in the example use a much more complex relationship for the rate of spread 

which is coupled with factors such as fuel moisture and the topography of the terrain. For 

example, the CSIRO grasslands model calculates the rate-of-spread in a number of steps. 

• Firstly, the two-dimensional shaping of the fire is determined by calculating the length to 

breadth ratio of the spreading fire, based on the current wind speed. This is then used to 

figure out the fraction of the head fire rate of spread to be used around the fire perimeter. 

                                                           

 

1 Mathematically the variable wind is defined as 𝑤𝑖𝑛𝑑 = max(�̂� ∙ 𝐰, 0), where 𝐰 is the wind vector and �̂� is the normal vector to the fire perimeter. 
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• Next, the curing coefficient used in the model is calculated using an empirical formula 

given by Cruz 2015. The curing variable corresponds to the value defined either in the 

terrain input layer, or the curing time-series. Note that local variables, such as 

curing_coeff, can be defined and used in the script. 

// Calculate curing coefficient from Cruz et al. (2015) 

REAL curing_coeff; 

if (curing < 20) 

curing_coeff = 0; 

else 

curing_coeff = 1.036/(1+103.989*exp(-0.0996*(curing-20))); 

• Next, the grassland fuel moisture is calculated using a relationship given by McArthur 1966, 

based on the local temperature, temp, and relative humidity, rel_hum. These two layers 

correspond to  

// Fuel moisture content approximated using McArthur (1966) 

REAL GMf = 9.58-(0.205*temp) + (0.138*rel_hum); 

• The fuel moisture is used to calculate the grassland moisture coefficient: 

// Calculate moisture coefficient from Cheney et al. (1998) 

REAL moisture_coeff; 

if (GMf <= 12) 

    moisture_coeff = exp(-0.108*GMf); 

else if ( wind_speed <= 10 ) 

    moisture_coeff = 0.684-0.0342*GMf; 

else 

    moisture_coeff = 0.547-0.0228*GMf; 

• Finally, the speed is calculated using the CSIRO grassland model (Cheney 1998). Note the 

spread rate is converted to m s-1 from km hr-1:     

// Calculate spread rate from Cheney et al. (1998) 

if ( wind_speed >= 5.0 ) 

    head_speed = (1.4+0.838*pow((wind_speed-5),0.844))*moisture_coeff* 

curing_coeff/3.6; 

else 

    head_speed = (0.054+0.269*wind_speed)*moisture_coeff*curing_coeff/3.6; 

• The model then applies the Kataburn (Sullivan 2014) slope correction: 

// Calculate slope effect 

REAL slope_in_normal_dir = 

degrees(atan(dot(normal_vector,grad(elevation)))); 

slope_in_normal_dir = min(max(slope_in_normal_dir,-20),20); 

REAL slope_coeff = pow(2.0, 0.1*fabs(slope_in_normal_dir)); 

 

if (slope_in_normal_dir >= 0) 

   speed *= slope_coeff; 

else 

   speed *= slope_coeff/(2*slope_coeff-1.0); 

Similar processing is carried out for the Dry Eucalypt model to calculate the rate of spread. 
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3.6 Post-processing models 

The post-processing models are key to creating user defined output in Spark. Without any post-

processing models, Spark will only output the arrival time raster and a shapefile of isochrones.  

The post-processing models are used to calculate the output variables (output0, output1, …, 

output9) based on user defined empirical relationships of propagation/solver variables (such as 

speed and fuel_load) and other user defined data layers. After the simulation has been completed, 

these output variables are saved as layers 0 to 9 respectively in the Output user data GeoTIFF file 

specified in the Configuration tab. 

 

Figure 17 - Post-processing. 

There are twelve input tabs within this window corresponding to fuel classifications 1-12. The 

post-processing model in the ‘Class 1’ tab is used to calculate the outputs within any cells with a 

fuel classification value of 1, the rate-of-spread model in the ‘Class 2’ tab is used to calculate the 

outputs within any cells with a fuel classification value of 2, and so on. There is also a Post 

processing common code script which applies the code to all classes before the individual class 

code is run. The post-processing model scripts must be in OpenCL C code. It should also be noted 

that the post-processing models run at the end of each time step on the entire burned region 

unless specified otherwise. 

For the example proj1, all of the post-processing is completed in the Post processing common code 

script as there is no difference in post-processing models for different classes in this case. The first 

https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
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few lines are for calculating ‘one time’ variables, in other words, outputs that you only wish to 

calculate at the time when the fire enters that cell. In this case, arrival time is being saved to 

ouput0 and propagation speed is being saved to output1: 

if (output0 == nodata){ 

 output0 = arrival; 

 output1 = speed; 

 output2 = 0; 

 output3 = 0; 

} 

The following lines use empirical models to calculate the fireline intensity and flame height. In this 

case, the maximum intensity and flame height experienced in a cell are being saved to outputs 2 

and 3 respectively: 

// Calculate intensity and flame height 

REAL intensity = 18600.0*speed*fuel_load*0.1; 

REAL flame_height = 0.0775*pow(intensity, 0.46); 

 

output2 = max(output2, intensity); 

output3 = max(output3, flame_height); 

The various parameters accessible in the post-processing models are given in the Appendix. 
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3.7 Ensembles 

Spark can run multiple simulations and calculate statistics using results from these simulations 

with the Output ensemble statistics script.  This script is run at the end of each simulation and 

allows a running variable R to be updated. Variables available values to this script are the output 

user data grids, A, the count of times the cell has burnt over all simulations, B, the output layer 

number, kpos, and the current run count, v. The output statistic is stored in the variable R. This is 

initialised to nodata and holds the same value between simulations allowing, for example, running 

averages to be calculated. The output from this analysis can be written to a multi-layer GeoTIFF 

file specified using the GeoTIFF file parameter. 

An example of an ensemble simulation is the proj1_ensemble project. This calculates impact 

probability (count of number of simulations reaching the cell as a percentage): 

R = 100.0*B/v; 

Or the cumulative average arrival time: 

if (A != nodata) 

    R = (A+(B-1)*R)/B; 

 

NAME DESCRIPTION TYPE XML 

Number of ensemble 
simulations 

This variable sets the number of ensembles to run. Number Number of simulations 

Ensemble layers The number of output layers (starting from zero) to run the 
Output ensemble statistics script on. 

Number Output stats layers 

GeoTIFF file The path and filename of a GeoTIFF file containing the 
calculated statistic. 

Filename Output stats raster file 

GeoTIFF type The data type written to the output data GeoTIFF file. The data 
is converted to this type before being written. Different data 
types may provide savings in space. 

Selection Output stats raster type 

Random seed The random seed for the OpenCL code within the application. 
This affects the initialisation, rate of spread, post-processing 
models and any fire behaviour modules. 

Number Random seed 

Output ensemble 
statistics unit type 

Sets the displayed unit type for the statistic calculated by the 
ensemble script. 

Selection Output stats unit type 

Output ensemble 
statistics script 

An OpenCL script for spatially combining arrival time values 
from multiple simulations. 

Text Output stats script 

Simulation control 
script 

This Python script controls the number of simulations, N. The 
projectName string can also be set here. The ignition point can 
also be set by defining lat, long, radius and time arrays. 

Text Simulation number 
script 

Table 14 - Ensemble options 

If the Number of ensemble simulations input is larger than 1, then an ensemble number input will 

appear in the top right corner of the main toolbar. Changing this input allows the user to toggle 

between outputs of individual simulations in the Viewer tab and time series in the Series input tab.  
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3.8 Reductions 

Spark can perform a reduction on up to three particular layers in the user-defined outputs. For 

example, the layer representing maximum flame height can be reduced to a single number for the 

maximum flame height found anywhere in the simulation. A Python script to carry out this 

processing is shown in Figure 18.  

 

Figure 18 - Reduction script. 

The layers to perform the reduction on is specified in the ‘Reduction output’. A choice of reduction 

operations is available from the ‘Reduction type’ drop-down list.  

The available variables in the reduction script are: 

NAME DESCRIPTION 

seed The random seed number of the current ensemble. 

area The final fire area in m2. 

perimeter The final fire perimeter in m. 

reduction The result from the reduction operation on output 1. 

reduction2 The result from the reduction operation on output 2. 

reduction3 The result from the reduction operation on output 3. 

Table 15 - Reduction script inputs 
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3.9 Experimental fire behaviour models 

Currently, four experimental fire behaviour modules are currently available:  

1. Firebrand transport for long range spotting. 

2. Disruption layers for roads and rivers. 

3. Wind-terrain correction for wind flow modelling over terrain. 

4. Near field modelling for fire line attraction and coalescence effects.  

These models are experimental as they rely either in part or wholly on parameters which have not 

been calibrated to wildfire simulations. As such these models and any examples provided of 

these models should be used with caution for operational and risk predictions, and should not 

be used without careful consideration and calibration of necessary parameters.  

 

Details on the terrain correction and near field model will be supplied in future version of the 

software as these are currently in research and development stage. 

Experimental examples 

Any examples supplied using the experimental options are for demonstration only, these 
models and parameters should not be applied to wildfire scenarios without careful 
consideration and understanding of the models, parameters and limitations of the models 
used. 

 

Experimental models 

The experimental processing and fire behaviour modules in the ‘Experimental’ tab are liable 
to change or move to different locations in future versions. 
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3.9.1 Firebrand transport 

The firebrand model allows the life cycle of a firebrand to be modelled. This is made up of three 

components: 

 

Figure 19 - Stages in the firebrand lifecycle. 

1. Creation. The creation of firebrands is controlled using the Firebrand creation script. 

Creation is limited to one firebrand per time step per grid cell. To create a firebrand the 

specified radius must be greater than a minimum radius of 0.5 mm and the specified 

lifetime must be greater than zero. Firebrands exist until either the radius or lifetime of the 

firebrand is zero (or lower), or when they have landed and been mapped into the fire 

solver as a new spot fire.  

2. Transport. The transport and updates to the firebrand while airbourne are controlled using 

the Firebrand update and Firebrand airbourne growth scripts. The Firebrand update is used 

to apply acceleration to the firebrand while airbourne. Typically this will be a wind drag 

model with gravity, but can be modified to apply any local acceleration. To apply wind drag 

and gravity a script such as the following can be used: 

// Drag coefficient 

REAL cd = 0.42; 

 

// Ratio of air to particle densities 

REAL rho_diff = 1.2/250.0; 

 

// Relative velocity, wind vector must be in m/s 

REALVEC3 rel_velocity = wind_vector-velocity; 

 

// Set firebrand acceleration: 

//   a = F = 0.5*rho_gas*cd*area*u^2 

//       -   ----------------------- 

//       m     rho_particle*volume 

 

acceleration = (0.375*rho_diff*cd/radius)*length(rel_velocity)*rel_velocity; 

 

// Apply gravity 

acceleration.z -= 9.8; 

The above script calculates the acceleration on the particle from the relative wind velocity, 

then subtracts the vertical gravitational component. The Firebrand airbourne growth script 

can modify firebrand parameters, such as the radius or local wind vector, before the 

position of the particle is updated. Although possible it is not recommended that the 

position or velocity are updated in this script. 
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3. Spot fire ignition. The firebrand is checked for intersection with the ground plane. If it 

reaches the ground the firebrand processing switches to the ground growth model, 

controlled by the Firebrand surface growth script. This is a basic model allowing only 

increase in the firebrand radius until it is above the size in which it can be modelled as a 

new spot fire in the fire spread solver. The Firebrand surface growth script has limited 

access to the data for the fire spread model, including the state, class, subclass and output 

layers from the main solver. Note that the lifetime of the firebrand still applies on the 

ground, and if the lifetime of a firebrand on the ground reaches zero it is extinguished. 

 

NAME TYPE DESCRIPTION AVAILABILITY* 

position 3D vector The 3D position of the firebrand (m). CR, UP, AG, GG 

velocity 3D vector The 3D velocity of the firebrand (ms-1) CR, UP, AG 

acceleration 3D vector The 3D acceleration applied to the firebrand (ms-2) UP 

wind_vector 3D vector The wind vector (ms-1). CR, UP, AG 

cell 3D vector The centroid of the current grid cell (m). CR 

radius scalar The radius of the firebrand (m), this is limited to a minimum of 0.5 mm. 
If lower than the minimum radius the firebrand is extinguished. 

CR, UP, AG, GG 

lifetime scalar The lifetime of the firebrand.  CR 

time scalar The current lifetime of the firebrand (s). This is reduced from the initial 
value of lifetime to zero. When zero the firebrand is extinguished. 

UP, AG, GG 

q scalar A general-purpose user defined variable CR, UP, AG, GG 

state scalar Whether the cell is currently un-burnable (value 0) or burnable (value 
1). 

CR, GG 

class scalar The fuel classification value. CR, GG 

subclass scalar The fuel sub-classification, can be 0-255. CR, GG 

distance scalar The distance to the perimeter from the point on the ground below the 
firebrand (m). 

CR, UP, AG, GG 

speed scalar The normal speed of the fire at the perimeter (ms-1). CR 

speed scalar The speed of growth of the firebrand (ms-1), this is used to update the 
radius. 

UP, AG, GG 

elevation scalar The land elevation at the point on the ground below the firebrand (m).  UP, AG, GG 

height scalar The vertical height of the firebrand above ground (m). UP, AG, GG 

output[0-9] scalar Internal user-defined data layer, written to ‘output grid’ layer [0-9]. CR, AG, GG 

Table 16 - Firebrand script inputs 

* CR: Creation script, UP: Update script, AG: Airborne growth script, GG: Growth script 

 

The airbourne transport component is not required to implement firebrands. If required 

firebrands landing locations can be directly specified. The example project proj1_firebrand, shown 

in Figure 20, uses Ellis’ maximum spotting distance model to create new spot fires at a given 

distance from the fire front. Note this only uses a creation script and a ground growth script. 

 



Spark user guide  | 41 

 

Figure 20 - Maximum spotting distance model implemented using the firebrand processor. 

 

The firebrand model is three-dimensional, and can use a three-dimensional wind field if available. 

A three-dimensional wind field can be applied as multiple vertical levels using a different time 

series in each. The number of vertical levels and the spacing between each of the levels is set using 

the Number of vertical levels and Vertical spacing between levels input fields on the Firebrands 

processor tab. 

An example of a simulation with multi-level winds is shown in Figure 21. Firebrands are created 

and lofted into a cross-stream causing them to fall to the south of the front. The model assumes 

that the firebrand is buoyantly lofted for 1 minute after creation, allowing the firebrands to rise 

and enter the cross-stream. It should be emphasised that many of the characteristics of firebrand 

transport is still under research and parameters such as lofting times are unknown. 

Implementation of the firebrand model should consider such factors before use and rely on 

researched parameters or careful calibration to existing fire data.  
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Figure 21 - Spot fires created parallel to the fire due to firebrand transport in a high level cross-wind. Note this is an 

example of the model and not representative of realistic fire conditions. 

 

Firebrand parameters 

The behaviour of lofted firebrands is still an active scientific research area. The models 
supplied with Spark are intended to show utility of the modelling system and are not designed 
to be used for fire predictions without substantial consideration of the underlying model.  

Many of the parameters used in these models, including the firebrand creation probability, 
lofting time and aerodynamic characteristics of the firebrands, should be carefully researched 
before implementation and use in the system. 
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3.9.2 Disruption modelling 

Spark can read a vector line network from a shapefile and use it to impose a barrier to fire spread 

or change the classification of the fuel type under the vector. All vectors are imposed as a one cell 

wide line within the fuel classification layer.  

 

Figure 22 - Disruption options. 

Uses for the disruption layer include implementing the effect of roads, waterways or fire breaks in 

the simulation. Disruptions can be made to permanently affect the spread of the fire (for example, 

by setting the land classification under the disruption vectors to zero), temporarily halting the 

spread of the fire (for example, by clearing the state flag and making the cell burnable at random 

in a rate of spread model), or changing the fuel type under the vector layer. 

The inputs for the disruption model are shown in Table 17 while example inputs for the disruption 

model are shown in Figure 22. The example inputs shown are from proj3 which is supplied with 

the software. In this example the VicRoads_Width.shp shapefile is read in as the disruption 

shapefile. The land classification is overwritten to class 4 in this case so that the disruption can be 

handled specifically in that rate-of-spread model. The state has also been set to zero, meaning 

that the fire will not be able to burn that cell unless the state is switched back to one. The inputs 

also specify that the Shapefile state name or field of SEAL_WIDTH should be read from the 

shapefile and its value applied to the user data layer road_width so that it can be accessed in both 

the rate-of-spread models and post-processing models. In this project, an example disruption 

model is implemented in class 4 where the failure probability of the disruption decreases with a 

larger road width, and the cell becomes burnable (state = 1) if a random probability is exceeded. 
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NAME DESCRIPTION TYPE XML 

Disruption shapefile An ESRI shapefile for the vector representing the 
disruption network (e.g. roads, waterways or fire 
breaks). Only polylines are used from the shapefile. 

Filename Disruption shape 
source file 

Disruption shapefile projection 
(OGC WKT) 

The projection for the shapefile in the Open 
Geospatial Consortium Well-Know-Text standard. 

Text Disruption shape 
projection WKT 

Mark disruption cells as 
unburnable (set state flag to zero) 

Sets the state flag of any cells under the disruption 
vectors to zero, making them currently un-burnable. 

Checkbox Disruption clear 
state 

Overwrite classification Option to overwrite land classification values under 
the disruption vectors with a new value. 

Checkbox Disruption overwrite 
classification 

Classification overwrite value The new value for the fuel classification under the 
disruption vectors. 

Number Disruption overwrite 
classification value 

Overwrite user data layer with 
disruption shapefile state 

Option to write any numeric field from the shapefile 
to a user-defined layer in Spark. 

Checkbox Disruption overwrite 
user layer 

User data layer name The names of the user-defined layer in Spark. Text Disruption overwrite 
user layer name 

Shapefile state name The name of the field in the shapefile to use. Text Disruption overwrite 
network state name 

Table 17 - Field names for disruption behaviour module 

 

http://www.opengeospatial.org/standards/wkt-crs
http://www.opengeospatial.org/standards/wkt-crs
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3.10  Log 

The log provides output and information on the simulation. On simulation completion similar text 

to that shown in Figure 23 should appear. 

 

Figure 23 - Spark-gui simulation log. 

Any warnings or errors are highlighted in red with a description of the error encountered.  
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4 Spark-batch application 

The spark-batch package is a stand-alone command-line application. The application is configured 

to be deployed to multi-CPU or GPU servers. The input to the application is an XML project file for 

the configuration of the solver and a series of input data sets. XML project files created using the 

spark-gui application are compatible with spark-batch. 

The application must be run in a project directory containing the XML project file. This XML file is 

supplied to the application as a command line argument, for example, if the input XML file is 

proj1.xml the application is executed using the command: 

spark-batch ./proj1.xml 

Outputs will be written to the files defined within the XML file. The batch application also contains 

a test to ensure the application is working correctly. To carry out the test, execute the command: 

spark-batch --test 

If all is working correctly, an image called spark-batch_test_result.png will be written to the 

current directory. The image is shown in Figure 24. 

 

Figure 24 - spark-batch test result 

The XML project file can either be generated using the spark-gui application or automatically 

created. The XML must be contained by an <operation> tag. The fields within the file have the 

following form: 

<input globalname="Start time">2013-10-17T11:59:00+11:00</input> 

The globalname tag for each of the inputs is given under the ‘XML’ column in each of the tables in 

the spark-gui section. 

XML composition 

XML contains escape characters, for example the less than sign ‘<’ is encoded using the string 
‘&lt;’. Care must be taken to use these escape characters when manually writing code in XML. 
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Appendix 

Spark contains a number of internally defined variables which provide access to information 

required for fire modelling. These are given in Table 18, with the availability of the variable shown 

in the last column. 

 

VARIABLE TYPE DESCRIPTION AVAILABILITY* 

area scalar The current total fire size in m2 IRP 

easting scalar The cell easting value (m). I 

northing scalar The cell northing value (m). I 

speed scalar Required: sets the normal speed at the perimeter (m/s). RP 

distance scalar The distance to the perimeter. R 

wind scalar The dot product of the wind and front normal, limited by zero. R 

wind_vector vector The wind vector. RP 

normal_vector vector The normal vector of the perimeter. R 

class scalar The fuel classification value. IRP 

subclass scalar The fuel sub-classification, can be 0-255. IRP 

mask scalar The mask region, with a value of 1 within the mask and 0 outside. IRP 

state scalar Whether the cell is currently un-burnable (value 0) or burnable (value 1).  IRP 

random scalar A random number from a uniform distribution between 0-1. IRP 

output[0-9] scalar Internal user-defined data layer, written to ‘output grid’ layer [0-9]. IRP 

arrival scalar The ignition (arrival) time of the perimeter at the cell (s). No-data values indicate no 
recorded arrival time. 

P 

year scalar The current year in simulation time. IRP 

month scalar The current month in simulation time. IRP 

day scalar The current day in simulation time. IRP 

hour scalar The current hour in simulation time. IRP 

time scalar The current solver time (s). RP 

layername scalar The interpolated value within the cell from the user-defined layer or time series 
named layername. 

IRP 

dx(layername) scalar The x-spatial derivative of the user-defined layer named layername. IR 

dy(layername) scalar The y-spatial derivative of the user-defined layer named layername. IR 

grad(layername) vector The gradient of the user-defined layer named layername. IR 

nodata scalar The no-data value. IRP 

Table 18 - Internal variables used in Spark models. 

* I: Initialization script, R: Rate-of spread scripts, P: Post-processing scripts 
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