
Spark user guide
User guide for the Spark software applications

James Hilton, William Swedosh, Lachlan Hetherton, Andrew Sullivan and Mahesh Prakash

EP166699
October 2016

Spark version 0.8.0

Citation

Hilton JE, Swedosh W, Hetherton L, Sullivan A and Prakash M (2016) Spark user guide 0.8.0. CSIRO,
Australia.

Copyright

© Commonwealth Scientific and Industrial Research Organisation 2016. To the extent permitted
by law, all rights are reserved and no part of this publication covered by copyright may be
reproduced or copied in any form or by any means except with the written permission of CSIRO.

Important disclaimer

CSIRO advises that the information contained in this publication comprises general statements
based on scientific research. The reader is advised and needs to be aware that such information
may be incomplete or unable to be used in any specific situation. No reliance or actions must
therefore be made on that information without seeking prior expert professional, scientific and
technical advice. To the extent permitted by law, CSIRO (including its employees and consultants)
excludes all liability to any person for any consequences, including but not limited to all losses,
damages, costs, expenses and any other compensation, arising directly or indirectly from using this
publication (in part or in whole) and any information or material contained in it.

CSIRO is committed to providing web accessible content wherever possible. If you are having
difficulties with accessing this document please contact enquiries@csiro.au.

mailto:enquiries@csiro.au.

Spark user guide | 1

Contents

1 Summary ... 3

2 Introduction .. 4

2.1 Spark and configurability .. 5

3 Spark-gui application ... 6

3.1 Configuration ... 9

3.2 Series Input .. 13

3.3 Gridded input ... 15

3.4 Initialisation model ... 19

3.5 Rate-of-spread models ... 21

3.6 Log ... 24

4 Spark-batch application ... 25

Appendix ... 26

References ... 27

2 | Spark user guide

Figures
Figure 1 - Experimental grassfire burn to provide data for new rate-of-spread models. 4

Figure 2 - Schematic of Spark layers .. 5

Figure 3 - Spark-gui initial screen. .. 6

Figure 4 - Spark gui output .. 7

Figure 5 - Spark gui arrival time output ... 8

Figure 6 - Spark-gui configuration screen .. 9

Figure 7 - Output GeoTIFF (shaded by arrival time), and isochrones (black lines) 12

Figure 8 - Spark-gui series input screen ... 13

Figure 9 - Spark-gui gridded input screen; meteorological data ... 15

Figure 10 - Spark-gui gridded input screen; terrain data .. 17

Figure 11 - Spark-gui initialisation model... 19

Figure 12 - Spark-gui rate-of-spread models .. 21

Figure 13 - Speed definition examples ... 22

Figure 14 - Spark-gui simulation log .. 24

Figure 15 - spark-batch test result ... 25

Tables
Table 1 - Field names for general parameters ... 10

Table 2 - Field names for start parameters .. 11

Table 3 - Field names for output options ... 12

Table 4 - Field names for series input .. 13

Table 5 - Pre-defined time series names for spark-gui ... 14

Table 6 - Field names for meteorological inputs .. 16

Table 7 - Field names for terrain inputs ... 18

Table 8 - Additional terrain layers defined within the Spark applications................................... 18

Table 9 - Field names for initialisation model .. 20

Table 10 - Internal variables used in Spark models. ... 26

Spark user guide | 3

1 Summary

Spark is a toolkit for simulating the spread of wildfires over terrain. The toolkit consists of a
number of modules specifically designed for wildfire spread. These include readers and writers for
geospatial data, a computational model to simulate a propagating front, a range of visualisations
and tools for analysing the resulting data.

This document provides an overview and user guide for a graphical user interface for Spark,
‘spark-gui’ and the command-line Spark server application ‘spark-batch’.

4 | Spark user guide

2 Introduction

Wildfires are dangerous and destructive
phenomena frequently occurring in periodically
dry regions around the world. The occurrence of
fires is a natural process that has shaped
landscapes and ecosystems over time. However,
increasing urbanisation is bringing more
population into contact with wildfires along
urban boundaries. The risk to human life and
infrastructure has led to intensive research into
the prediction of wildfire behaviour. Such
predictions are used for risk reduction planning,
impact assessment or operational emergency
management in the event of a wildfire.

The physical process governing fires is very
complex, involving interactions over a range of spatial and temporal scales. Despite this
complexity, success has been achieved in predicting behaviour using empirical models. These
models predict the behaviour of a wildfire using a set of relationships between factors driving the
fire (Sullivan 2009b). These factors include weather conditions, such as wind and air temperature,
as well as fuel and landscape conditions.

These empirical models can be used to predict rate of spread of a wildfire for a set of given
conditions. They are fast to evaluate on a computer making them ideal for providing rapid large-
scale predictions for the path of a fire. Alternative computer modelling techniques include fully
physical models (Sullivan 2009a), which use a set of interconnected equations governing the
underlying dynamics of the fire. These models provide great detail in the physical processes of the
fire, but are currently unfeasible to compute at the landscape scale required for operational
purposes.

The Spark toolkit is a configurable system for predicting the spread of a fire perimeter over a
landscape based on empirical rate-of-spread models. Multiple rate-of-spread models can be
employed within the framework representing different fuel types. Different parameters and fuel
conditions governing the rate-of-spread can be defined by the user. The system supports standard
geospatial data types for fuel layers and meteorological conditions. The predicted results can be
written to standard geospatial data types or displayed and viewed within the system.

This user guide covers two particular applications of the Spark toolkit. The first, spark-gui, is a
fully-featured graphical application allowing the user to read in data layers for fuel and weather,
compute a predicted fire perimeter and view the result. The second, spark-batch, is a command
line tool suitable for running as a server application. This server application could, for example, be
used for a predictive ensemble of fire simulations based on different conditions.

Figure 1 - Experimental grassfire burn to provide
data for new rate-of-spread models.

Spark user guide | 5

2.1 Spark and configurability

A key aspect of Spark is configurability. Spark has been designed to handle multiple rate-of-spread
models for different fuel types. Spark has also been designed to be compatible with future fire
models and new types of fire behaviour.

Instead of pre-set rate-of-spread models, fire behaviour is programmed into Spark using a C script.
These scripts define the behaviour of the fire in terms of user-defined spatial fuel and
meteorological layers. Any valid OpenCL C code can be used for these scripts, along with a wide
range of additional mathematical operations.

Figure 2 - Schematic of Spark layers

Figure 2 shows a very basic example of Spark configuration. The user has four data layers, shown
here vertically stacked for illustration. The top data layer is a fuel or land classification, containing
a number representing a fuel type. For example, classification 1 may be grassland and
classification 2 may be forest. The classification of zero is reserved as un-burnable. The other data
layers are the air temperature, the wind data (this is stored a vector but shown as a single layer for
illustration) and the land elevation.

The user also requires two fire behaviour models, one for the grassland areas and one for forest
areas. The rate of spread in the grassland (classification 1) is dependent on the temperature and
wind (Figure 2, right hand side, middle), whereas the rate of spread for the forest model
(classification 2) is dependent on elevation and temperature (Figure 2, right hand side, bottom).

The chosen rates of spread are entered as formulas in text into Spark. The framework takes care of
deciding which cell the fire is in, applying the correct rate of spread and updating the fire
perimeter accordingly. Spark also takes care of reading and writing geospatial data layers,
alignment and projection of the layers and all spatial and temporal aliasing.

The actual scripts for a particular rate of spread can be very complex. We provide a free source of
scripts on our website for the latest fire behaviour models. These can simply be cut and pasted
into Spark to provide the desired fire behaviour in different fuel types.

6 | Spark user guide

3 Spark-gui application

Spark-gui is an implementation of the Spark toolkit behind a graphical user interface. This general-
purpose application allows:

 Up to six different types of fuel to be modelled.

 A fire starting condition consisting of a set of points or an ESRI shapefile.

 Either point or gridded input data sets for fuel and weather conditions.

 Output data sets consisting of a raster map of arrival times and a shapefile of isochrones.

Spark applications are run using an XML project file containing fields for controlling and running
the simulation. Two XML sample project files with data are included with the spark-gui
application.

Figure 3 - Spark-gui initial screen.

As an example of the usage of spark-gui we will use the project file proj1 in the following guide. To
open the project, install and run the spark-gui application. The initial screen shows an output map
in the viewer window, as shown in Figure 3.

a

b

f e c d

Spark user guide | 7

To load a project, click on Open (Figure 3, a) and navigate to /appdata/spark-gui/proj1. Select and
open the proj1.xml file. While the project is loading the status bar (Figure 3, b) will be active.
When the project has finished loading the status bar will display ‘Ready’.

The application working directory

Spark-gui and spark-batch set the directory containing the xml project file as the current
directory, so all filenames can be set relative to the xml project file. Alternatively, a full path
can be used.

The project is executed by pressing the Start button (Figure 3, c). Exection can be reset at any time
by pressing the Reset button (Figure 3, d). Any edits to the project (or a new project) can be saved
as a XML project file using the Save button (Figure 3, e).

When the project is executed the map view will jump to the initial fire location. The simulation
should take a few seconds to complete. The default view is a shaded area representing the fire
footprint, as shown in Figure 4. Different display layers can be toggled on or off using the named
buttons under the map (Figure 4, a).

Figure 4 - Spark gui output

b c d a

8 | Spark user guide

To zoom the map to cover the extent of the current layer, use the globe button to the left of the
layer controls (Figure 4, b). The current value at the position under the mouse cursor can be
displayed for the topmost layer by selecting the eyedropper tool (Figure 4, c). A screenshot of the
current map view can be captured using the clipboard tool (Figure 4, d).

Figure 5 - Spark gui arrival time output

After execution is complete, any output data sets will be written to their required location.

Errors and warnings

If the status bar displays an error, please refer to the log by selecting the ‘Log’ tab (Figure 3, f)

OpenCL

Spark requires OpenCL 1.1 to run. This now comes as standard with all Windows and Mac
graphics drivers. Please update your graphics driver before installing Spark to ensure that the
latest OpenCL version is installed.

Spark user guide | 9

3.1 Configuration

After loading the project, the fields within the application will be populated with values defining
the simulation. These values include filenames, numbers and scripts. To see the values for proj1,
select the ‘Configuration’ tab (Figure 6, a). The configuration screen is shown in Figure 6.

Figure 6 - Spark-gui configuration screen

The configuration tab is divided into several groups, covered in the next sections.

a

10 | Spark user guide

3.1.1 General parameters

These fields define the overall parameters for the simulation. All of the parameters must be
defined.

NAME DESCRIPTION TYPE XML

Start time (ISO8601) The start time of the simulation in the ISO8601
format. Here the start time is set to 11:59 am on the
17th October 2013 for the UTC+11 time zone.

Text Start time

Total simulation time (s) The length of the simulation in seconds. In this
example the simulation runs for 9.25 hours from the
start time.

Number Simulation duration

Data output period (s) This defines the time period between updates to the
map within the Viewer window. This is set to one
hour in this example.

Number Output period

Simulation resolution (m) The raster resolution of the simulation in meters. All
input raster layers are re-sampled to this resolution
and all output layers are written at this resolution.
Here, the resolution is set to 30 m by 30 m cells.

Number Simulation resolution

Simulation projection (OGC WKT) The projection used for the simulation in the Open
Geospatial Consortium Well-Know-Text standard. All
output raster layers and shapefiles are written using
this projection. Here the projection is set to the
Australian Lambert projection.

Text Simulation projection
WKT

Table 1 - Field names for general parameters

Start time

It is recommended that the time zone is specified within the start time input. If this is not
specified the simulation will use the local time zone, resulting in different predictions
depending on the location the simulation is computed.

Simulation projection

The projection used must be a Cartesian co-ordinate system. Mercator or Lambert projections
are recommended. For example, the Lambert projection used in proj1 is a good general-
purpose projection for anywhere in Australia.

Spark user guide | 11

3.1.2 Start parameters

These fields define the starting conditions used for the simulation. A starting condition can either
be a shapefile representing an initial fire perimeter or a list of points representing point starting
locations. If both are defined, the shapefile will be used preferentially and the starting points will
not be used.

NAME DESCRIPTION TYPE XML

Start shapefile An ESRI shapefile (.shp) defining an initial fire
perimeter. No shapefile is used in this example.

Filename Shape file input source

Start shapefile input projection
(OGC WKT)

The shapefile projection in the Open Geospatial
Consortium Well-Know-Text standard. No shapefile
is used in this example.

Text Shape file input
projection WKT

Start point script This is a Python script defining the latitude,
longitude, radii and start times of each point
source. This script must contain the following
definitions:

 long (point longitude)
 lat (point latitude)
 radius (point radius)
 time (point activation time)

These variables are defined as a Python vector and
can be generated in any manner within the script.
In this example the start location is simply hard-
coded into the script.

Text Start point script

Table 2 - Field names for start parameters

Start shapefile

The application currently uses two fields for defining the ESRI shapefile data. These are the
shapefile data (.shp) and the projection. The projection is usually stored within a projection
(.prj) file, but is not guaranteed to be compatible with the OGC WKT format. To ensure the
projection is correctly applied it must be specified in OGC WKT in the shapefile projection
field.

12 | Spark user guide

3.1.3 Output options

These fields define the simulation output files.

NAME DESCRIPTION TYPE XML

Output arrival time GeoTIFF file If this field contains a filename a GeoTIFF
containing arrival time within the fire perimeter is
written to a file with this name. If the field is empty
no file is written.

Filename Output raster file

Output isochrone shapefile If this field contains a filename an ESRI shapefile of
isochrone data is written to a file with this name.
The shapefile is written with a projection file
containing the simulation projection. If the field is
empty no file is written.

Filename Output shape file

Output isochrone spacing (s) The spacing in time between the output isochrones
in the shapefile.

Number Output isochrone time

Table 3 - Field names for output options

The output files are compatible with all common GIS processing tools, such as QGIS (Figure 7).

Figure 7 - Output GeoTIFF (shaded by arrival time), and isochrones (black lines)

Spark user guide | 13

3.2 Series Input

The applications can use either gridded data sets (spatial raster maps of parameters) or series
inputs (a time series representing the change in a particular parameter). The example project
proj1 uses series input for weather conditions, which can be defined and previewed in the ‘Series
input’ tab (Figure 8, a). This window is shown in Figure 8.

Figure 8 - Spark-gui series input screen

The fields in the series input window are:

NAME DESCRIPTION TYPE XML

Script file A filename which can be used within the Python
script. A variable is created within the Python script
called ‘fileName’ containing the contents of this
field.

Filename Time series source

Time zone A time zone string which can be used within the
Python script. A variable is created within the
Python script called ‘timeZone’ containing the
contents of this field.

Text Time zone

Time series Python script
definition

A Python script defining vectors used for time
series.

Text Time series script

Table 4 - Field names for series input

a

b

c

14 | Spark user guide

The window is divided into an input Python script in the upper half and a preview of the generated
time series in the lower half (Figure 8, b). The spark-gui application pre-defines seven time series,
given in Table 5. These time series are populated using the Python script field (Figure 8, c).

NAME DESCRIPTION

wind_speed Wind speed.

wind_bearing Wind bearing in degrees.

temp Air temperature.

rel_hum Relative humidity (%).

dew_temp Dew point temperature.

drought_fac Drought factor.

curing Curing parameter.

Table 5 - Pre-defined time series names for spark-gui

The Python script, if used, must create vectors containing any or all of the time series names given
in Table 5. Additionally, it must create a time vector which defines the time values in ISO 8601
format. In the proj1 example, the Python script uses the Python CSV parser to read a CSV file and
append the values within the CSV file to vectors of the temperature, relative humidity, wind speed
and wind direction. The script performs an additional check to make sure an entry in the CSV is not
blank, and only adds values to the series if data is present.

Time vector

A ‘time’ vector must be defined in the Python script. This currently defines the time values for
all series [as of v0.8.0].

Series definitions

If the Python script does not define a series the series will not be created and will not be
available in the rate-of-spread models within Spark.

Units

No units are defined within the framework. The user must take care of unit conversion within
rate-of-spread models.

Spark user guide | 15

3.3 Gridded input

The application can use gridded input layers. Spark supports two or three-dimensional layers (two
spatial plus one temporal) and handles all temporal interpolation. Gridded layers are read in using
the ‘Gridded input’ tab (Figure 9, a).

Figure 9 - Spark-gui gridded input screen; meteorological data

Gridded input can be restricted to a sub-region, if required. This can be applied using the bounding
box configuration (Figure 9, c), which specifies bounds in longitude and latitude. The bounding box
can also be selected on an interactive map using the ‘Select on Map’ button. To select a region
using this tool, hold shift and drag on the map to specify the region.

Bounding box

A bug in GDAL prevents the bounding box being applied to some GeoTIFF data sets. This will
be addressed in a future version [as of v0.8.0].

a

b

c

e

d

16 | Spark user guide

3.3.1 Meteorological inputs

Meteorological input layers are configured in the ‘Meteorological inputs’ tab (Figure 9, b). The
fields in this tab are:

NAME DESCRIPTION TYPE XML

Wind direction source A raster layer specifying the wind direction in
degrees within each cell.

Filename Gridded wind direction
source

Wind speed source A raster layer specifying the wind speed within
each cell.

Filename Gridded wind
magnitude source

Temperature source A raster layer specifying the air temperature within
each cell.

Filename Gridded temperature
source

Relative humidity source A raster layer specifying the relative humidity (%)
within each cell.

Filename Gridded relative
humidity source

Gridded projection (OGC WKT) The raster layer projection for all meteorological
raster layers in the Open Geospatial Consortium
Well-Know-Text standard.

Text Gridded met projection
WKT

Gridded start time overwrite (ISO
8601)

An optional start date and time in the ISO8601
format to use instead of the values stored in the
meteorological raster layers.

Text Gridded met start time
overwrite

Gridded time conversion
coefficient

A multiple to apply to the time-step value for the
meteorological raster layers.

Number Gridded met time
conversion coefficient

Table 6 - Field names for meteorological inputs

If the input data set is a NetCDF file, the metadata within the file is parsed to generate time
information. The parsing process calculates the start time and time step of the input layer. The
parsing takes the following steps:

 Search the NetCDF metadata for time. If this is not found, stop processing.

 Search the NetCDF metadata for time#units and convert to seconds.

 Search for NETCDF_DIM_time_VALUES. If this is not found, stop processing.

 Read and convert the NETCDF_DIM_time_VALUES array to seconds.

 Check the array for equal time spacing. If the time spacing is unequal, stop processing.

 Calculate the start time of the input layer and the time step.

If the data is not a NetCDF file, or the processing of the metadata fails at any stage, the time step
is set to one and the start time is set to zero. In this case, the start time and time step can be
manually specified using the Gridded start time overwrite (ISO 8601) and Gridded time conversion
coefficient fields respectively.

Once loaded, the gridded meteorological input data can be previewed on the map below the tab
(Figure 9, d). If the input data has a temporal component, the time used for the input layer
preview can be changed using the slider below the map (Figure 9, e). Individual layers can be
turned on or off using the named buttons on this control.

Spark user guide | 17

3.3.2 Terrain inputs

Fuel and topographic input layers are configured in the ‘Terrain inputs’ tab (Figure 10, a). The field
values for this tab are given in Table 7.

There are five pre-defined layers within the spark-gui application. These are the fuel classification,
a fire history layer, an elevation layer, a fuel load layer and a curing layer. If any of these are
empty, the layer is populated with the value in the ‘Default value’ column. The exception to the
default value is the fuel classification layer. If this is empty, the classification of the entire
simulation is set to one.

Unlike the meteorological input layers, a different projection system must be specified for each
terrain layer. In the proj1 example the fuel classification layer is in the Albers projection, whereas
the elevation is in the WGS84 projection.

Figure 10 - Spark-gui gridded input screen; terrain data

Terrain layers

The restriction to five layers is only applicable to the current spark-gui application; the
underlying Spark toolkit has no restriction to the number of layers that can be used. New
layers will be added in future releases [as of v0.8.0].

a

18 | Spark user guide

NAME DESCRIPTION TYPE XML

Fuel classification A raster layer specifying the fuel type within each
cell.

Filename Gridded fuel type source

Fuel classification projection The projection for the fuel classification layer in the
OGC WKT standard.

Text Gridded elevation
projection WKT

Fuel type mask shapefile

If a shapefile is specified, any areas within the
shapefile are set to a fuel classification of zero (un-
burnable). This can be used to define a firebreak
region, or a previously burnt area.

Filename Gridded fuel type shape
mask source

Fuel type mask shapefile
projection

The projection for the fuel classification mask in the
OGC WKT standard.

Text Gridded fuel type shape
mask projection WKT

Fire history source A raster layer defining a fire history value, such as a
date or time since last burn.

Filename Gridded fire history
source

Fire history projection The projection for the fire history layer in the OGC
WKT standard.

Text Gridded fire history
projection WKT

Fire history default The default value for the fire history layer. Number Gridded fire history
default

Elevation source A raster layer specifying land elevation with respect
to a vertical datum.

Filename Gridded elevation
source

Elevation projection The projection for the elevation layer in the OGC
WKT standard.

Text Gridded elevation
projection WKT

Elevation default The default value for the elevation layer. Number Gridded elevation
default

Fuel load source A raster layer specifying fuel load values. Filename Gridded fuel load source

Fuel load projection The projection for the fuel load layer in the OGC
WKT standard.

Text Gridded fuel load
projection WKT

Fuel load default The default value for the fuel load layer. Number Gridded fuel load
default

Curing source A raster layer specifying curing values. Filename Gridded curing source

Curing projection The projection for the curing layer in the OGC WKT
standard.

Text Gridded curing
projection WKT

Curing default The default value for the curing layer. Number Gridded curing default

Table 7 - Field names for terrain inputs

Each of the layers can be referred to in the initialisation, post-processing and rate-of-spread
models by the name given in the ‘Model name’ column. In addition, the following layers are
defined and can be used:

NAME DESCRIPTION

speed_reduce Speed reduction layer

FHSs Surface fuel hazard score.

FHSns Near-surface fuel hazard score

Hns Near surface fuel height.

H Fuel height.

Table 8 - Additional terrain layers defined within the Spark applications

Spark user guide | 19

3.4 Initialisation model

The initialisation model is a powerful pre-processing step run over all data layers after they are
created, and used in the simulation. The use of an initialisation model is entirely optional, but
allows for manipulation and population of the data layers. The model allows values in the data
layers to be re-written or populated according to any user-defined function. The final initialisation
script must be in OpenCL C code.

The processing in proj1 shows a typical use of an initialisation model. The raw data layer for the
classification uses a three digit Australia land use classification code (ALUM). This three-digit code
must be converted into the four classifications used within this example: un-burnable (0),
grassland (1), forest (2) and urban (3). For example, the first step converts any ALUM code starting
with ‘6’ into an un-burnable region, as codes starting with ‘6’ are water regions.

The second step of the processing carries out a different processing function. In this step, the
layers FHSs, FHSns and Hns for the dry eucalypt model are populated within each cell using an
exponential growth curve based on the fuel age layer.

Figure 11 - Spark-gui initialisation model

The initialisation model can be used to carry out any such processing of this type. For flexibility the
model is split within the Spark applications into three steps. The full model script is built up from
three blocks: a starting script (Figure 11, a), a script generated by Python (Figure 11, b) and an

a b c

d

20 | Spark user guide

ending script (Figure 11, c). For reference the entire initialisation script is shown in a display at the
bottom of the tab (Figure 11, d). This structure allows, for example, a Python script to
automatically generate mappings between multiple fuel types and the fuel types used within the
application.

The fields in this tab are:

NAME DESCRIPTION TYPE XML

Script input file A filename which can be used within the Python
script. A variable is created within the Python script
called ‘fileName’ containing the contents of this
field.

Filename Initialisation Python
input file

Initialisation start A script specifying the starting block of the
initialisation model.

Text Initialisation start string

Initialisation script A Python script defining a generated block of text
to append to the initialisation model. The text must
be added to a string named ‘initString’ within the
Python script.

Text Initialisation Python
script

Initialisation end A script appended to the end of the start block and
the generated Python script.

Text Initialisation end string

Table 9 - Field names for initialisation model

Initialisation and optimisation

For optimisation it is best to put as much calculation as possible within the initialisation
model, rather than the rate-of-spread models.

Spark user guide | 21

3.5 Rate-of-spread models

The rate-of-spread models are the core of the Spark application. These define the local rate of
spread of a fire perimeter based on an empirical relationship. For the example proj1 three rates-
of-spread are defined: the CSIRO grasslands model, the Dry Eucalypt model and a placeholder
urban model. The rate-of-spread model scripts must be in OpenCL C code.

There are six input tabs within this window corresponding to fuel classifications 1-6. The rate-of-
spread model in the ‘Class 1’ tab is used to calculate the rate of spread within any cells with a fuel
classification value of 1, the rate-of-spread model in the ‘Class 2’ tab is used to calculate the rate
of spread within any cells with a fuel classification value of 2, and so on.

Figure 12 - Spark-gui rate-of-spread models

The grassland and dry eucalypt models are complex models containing a large amount of code. A
much simpler example illustrating the rate of spread scripts is the urban rate of spread model in
the Class 3 tab. This rate-of-spread model is given by:

speed = (REAL)0.01*wind;

All rate-of-spread models must contain a speed = definition. This defines the outward speed of
the fire perimeter. Sets of isochrones for three different speed definitions are shown in Figure 13.

22 | Spark user guide

In each case the initial fire is a circle of diameter 20 meters, shown as the inner isochrone at zero
time. Isochrones are shown at 25 second intervals.

 In the first case (Figure 13, a) the speed definition is speed = 1. The initial circular
perimeter spreads with a radial speed of 1 m/s in all directions, ending as a circle of
diameter 220 meters.

 The second case (Figure 13, b) uses the wind vector defined in the simulation. The wind
vector in these examples is in the vertical direction with respect to the figure, from the
bottom to the top, with magnitude 1 m/s. The speed definition here is speed = 1 + wind,
where wind is specially defined quantity1 representing the component of the wind in the
direction of the fire front. In this case the fire grows outwards at a rate of 1 m/s and moves
forward at an additional rate of 1 m/s, resulting in a stretched obround fire perimeter.

 The final example (Figure 13, c) is an example of a non-linear rate of spread. The speed
definition here is speed = 1 + wind2, resulting in a pointed fire perimeter.

Figure 13 - Speed definition examples

In the case of the urban model, the fire perimeter is simply moved in the direction of the wind at
1% of the wind speed.

The other two models in the example use a much more complex relationship for the rate of spread
which is coupled with factors such as fuel moisture and the topography of the terrain. For
example, the CSIRO grasslands model calculates the rate-of-spread in a number of steps.

 Firstly, the curing coefficient used in the model is calculated using an empirical formula
given by Cruz 2015. The curing variable corresponds to the value defined either in the

1 Mathematically the variable wind is defined as ݀݊݅ݓ = max	(ܖෝ ∙ ,ܟ 0), where ܟ is the wind vector and ܖෝ is the normal vector to the fire perimeter.

Spark user guide | 23

terrain input layer, or the curing time-series. Note that local variables, such as
curing_coeff, can be defined and used in the script.

// Calculate curing coefficient from Cruz et al. (2015)
REAL curing_coeff;
if (curing < 20)

curing_coeff = 0;
else

curing_coeff = 1.036/(1+103.989*exp(-0.0996*(curing-20)));

 Next, the grassland fuel moisture is calculated using a relationship given by McArthur 1966,
based on the local temperature, temp, and relative humidity, rel_hum. These two layers
correspond to

// Fuel moisture content approximated using McArthur (1966)
REAL GMf = 9.58-(0.205*temp) + (0.138*rel_hum);

 The fuel moisture is used to calculate the grassland moisture coefficient:

// Calculate moisture coefficient from Cheney et al. (1998)
REAL moisture_coeff;
if (GMf <= 12)
 moisture_coeff = exp(-0.108*GMf);
else if (wind <= 10)
 moisture_coeff = 0.684-0.0342*GMf;
else
 moisture_coeff = 0.547-0.0228*GMf;

 Finally, the speed is calculated using the CSIRO grassland model (Cheney 1998). Note the
spread rate is converted to m s-1 from km hr-1:

// Calculate spread rate from Cheney et al. (1998)
if (wind >= 5.0)
 speed = (1.4+0.838*pow((wind-5),0.844))*moisture_coeff*curing_coeff/3.6;
else
 speed = (0.054+0.269*wind)*moisture_coeff*curing_coeff/3.6;

 The model then applies the Kataburn (Sullivan 2014) slope correction:

// Calculate slope effect
REAL slope_in_normal_dir =
degrees(atan(dot(normal_vector,grad(elevation))));
slope_in_normal_dir = min(max(slope_in_normal_dir,-20),20);
REAL slope_coeff = pow(2.0, 0.1*fabs(slope_in_normal_dir));

if (slope_in_normal_dir >= 0)
 speed *= slope_coeff;
else
 speed *= slope_coeff/(2*slope_coeff-1.0);

Similar processing is carried out for the Dry Eucalypt model to calculate the rate of spread.

24 | Spark user guide

3.6 Log

The log provides output and information on the simulation. On start-up similar text to that shown
in Figure 14 should appear.

Figure 14 - Spark-gui simulation log

Any errors are highlighted in red with a description of the error encountered.

Spark user guide | 25

4 Spark-batch application

The spark-batch package is a stand-alone command-line application. The application is configured
to be deployed to multi-CPU or GPU servers. The input to the application is an XML project file for
the configuration of the solver and a series of input data sets. XML project files created using the
spark-gui application are compatible with spark-batch.

The application must be run in a project directory containing the XML project file. This XML file is
supplied to the application as a command line argument, for example, if the input XML file is
proj1.xml the application is executed using the command:

spark-batch ./proj1.xml

Outputs will be written to the files defined within the XML file. The batch application also contains
a test to ensure the application is working correctly. To carry out the test, execute the command:

spark-batch --test

If all is working correctly, an image called spark-batch_test_result.png will be written to the
current directory. The image is shown in Figure 15.

Figure 15 - spark-batch test result

The XML project file can either be generated using the spark-gui application or automatically
created. The XML must be contained by an <operation> tag. The fields within the file have the
following form:

<input globalname="Start time">2013-10-17T11:59:00+11:00</input>

The globalname tag for each of the inputs is given under the ‘XML’ column in each of the tables in
the spark-gui section.

XML composition

XML contains escape characters, for example the less than sign ‘<’ is encoded using the string
‘<’. Care must be taken to use these escape characters when manually writing code in XML.

26 | Spark user guide

Appendix

Spark contains a number of internally defined variables which provide access to information
required for fire modelling. These are given in Table 10, with the availability of the variable shown
in the last column.

VARIABLE TYPE DESCRIPTION AVAILABILITY*

easting scalar The cell easting value (m). I

northing scalar The cell northing value (m). I

speed scalar Required: sets the normal speed at the perimeter (m/s). RP

wind scalar The dot product of the wind and front normal, limited by zero. R

wind_vector vector The wind vector. R

normal_vector vector The normal vector of the perimeter. R

class scalar The fuel classification value. IRP

random scalar A random number from a uniform distribution between 0-1. IRP

output0 scalar Internal user-defined data layer, written to ‘output grid’ layer 0. IRP

output1 scalar Internal user-defined data layer, written to ‘output grid’ layer 1. IRP

output2 scalar Internal user-defined data layer, written to ‘output grid’ layer 2. IRP

arrival scalar The ignition (arrival) time of the perimeter at the cell (s). No-data values indicate no
recorded arrival time.

P

hour scalar The current hour in simulation time. R

time scalar The current solver time (s). RP

layername scalar The interpolated value within the cell from the user-defined layer or time series
named layername.

IRP

dx(layername) scalar The x-spatial derivative of the user-defined layer named layername. IR

dy(layername) scalar The y-spatial derivative of the user-defined layer named layername. IR

grad(layername) vector The gradient of the user-defined layer named layername. IR

Table 10 - Internal variables used in Spark models.
* I: Initialization models, R: Rate-of spread models, P: Post-processing models

Spark user guide | 27

References

Cheney NP, 1998, Prediction of fire spread in grasslands. International Journal of Wildland Fire 8,
1-15.

Cruz MG, 2015a, Effects of curing on grassfires: II. Effect of grass senescence on the rate of fire
spread. International Journal of Wildland Fire 24, 838-848

McArthur AG, 1966, Weather and grassland fire behaviour. Commonwealth Department of
National Development. Forestry and Timber Bureau, Leaflet 100, Canberra, ACT. 23 pp.

Sullivan AL, 2009a, Wildland surface fire spread modelling, 1990–2007. 1: Physical and quasi-
physical models, International Journal of Wildland Fire, 18, 349–368

Sullivan AL, 2009b, Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-
empirical models, International Journal of Wildland Fire, 18, 369–386

Sullivan AL, 2014, A downslope fire spread correction factor based on landscape-scale fire
behaviour. Environmental Modelling and Software 62, 153-163.

CONTACT US
t 1300 363 400
 +61 3 9545 2176
e csiroenquiries@csiro.au
w www.data61.csiro.au

AT CSIRO WE SHAPE THE FUTURE
We do this by using science and
technology to solve real issues. Our
research makes a difference to industry,
people and the planet.

 FOR FURTHER INFORMATION
James Hilton
Senior Research Scientist
t +61 3 9518 5974
e james.hilton@csiro.au

Mahesh Prakash
Group Leader
t +61 3 9545 8010
e mahesh.prakash@csiro.au

Andrew Sullivan
Team Leader
t +61 2 6246 4051
e andrew.sullivan@csiro.au

w www.data61.csiro.au

mailto:csiroenquiries@csiro.au
http://www.data61.csiro.au
mailto:james.hilton@csiro.au
mailto:mahesh.prakash@csiro.au
mailto:andrew.sullivan@csiro.au
http://www.data61.csiro.au

