

Spark Feb 2025

Australia's National Science Agency

Wildfires are a devastating worldwide hazard

Source: Moritz et al. Nature 515, 58–66. The cumulative area burned between 1996 and 2012 in millions of hectares (Mha) per mapped cell.

Need to simulate wildfires for risk modelling and operational management

Given:

- Ignition conditions (points, lines or areas)
- Information on the fuel and landscape
- Weather data
- Firebreaks and suppression

We need:

- Where the fire will go
- The intensity of the fire
- Heat flux on structures
- Where firebrands will land
- .

All of these elements must be included in a computer model Computer model must be rapid enough for operational prediction

The rate-of-spread depends on:

- The type of fuel
- The condition of the fuel (amount, moisture level, ...)

Empirical rate of spread models developed from experiments

• Mathematical function for rate-of-spread

Need to use many different models for fire prediction

• Each model may require different data

Eucalypt fire. Source: RMIT

Spinifex fire. Source: NASA Earth Observatory

In addition to the rate of spread the following must also be considered:

- Terrain fires move faster uphill
- Local wind effects channelling and lateral spread
- Smoke long range effect
- 'Near-field' fire interacts with itself
- Radiation cause structure damage
- Firebrands create unpredictable new fires

Ongoing worldwide research into all of these areas

Spark

Spark is a wildfire prediction *framework*:

- Based on configurable scripts wherever possible
- Rate-of-spread based on input data wind, fuel, terrain
- Compatibility with all common geospatial data types
- Plug-ins for firebrands, radiant heat flux, terrain, fire feedback
- Python-based for further customisation
- Web front end (SparkWeb) and server (Spark server)

Modelling

Computational wildfire models:

Cellular

Front tracking

- Represents perimeter as line
- Very efficient to update node positions
- Need to filter nearby points
- Lines can get tangled after update/merging

Cellular methods

- Domain is a set of cells
- Fire spreads from cell to cell
- Extremely efficient processing
- Cell geometry affects simulation

Modelling

Spark model

Level set method:

- Precise control of rate-of-spread in each cell
- Automatically handles merging fires
- Efficient and scalable on new computer hardware

Models:

- Defined using scripts, not hard-coded
- Inputs and output layers can be referenced and used
- All projections, spatial and temporal sampling transparently handled

Level set method

Example script for grassland fires in Spark

Data

Any user-defined variables, layers or series can be used

- System handles spatial and temporal sampling
- Integration to support any geospatial data type

Australia's National Science Agency

Usage

• Authentication required

- Authentication required
- Terms of use

- Authentication required
- Terms of use
- Create a new project

- Authentication required
- Terms of use
- Create a new project

- Authentication required
- Terms of use
- Create a new project
 - Projects must be named
 - Pre-populated templates

- Authentication required
- Terms of use
- Create a new project
 - Projects must be named
 - Pre-populated templates
- Layer panel on right-hand side

- Authentication required
- Terms of use
- Create a new project
 - Projects must be named
 - Pre-populated templates
- Layer panel on right-hand side
- Fire input conditions
 - Tools on lower left
 - Point, line or polygon tool (top to bottom)

- Authentication required
- Terms of use
- Create a new project
 - Projects must be named
 - Pre-populated templates
- Layer panel on right-hand side
- Fire input conditions
 - Tools on lower left
- Basic simulation parameters, accessed via menu then edit (or edit pencil icon on main screen)

- Authentication required
- Terms of use
- Create a new project
 - Projects must be named
 - Pre-populated templates
- Layer panel on right-hand side
- Fire input conditions
 - Tools on lower left
- Basic simulation parameters
 - Start date and time
 - Time zone
 - Simulation duration
 - Simulation resolution
- Project controls
 - Run
 - 🖹 Save
 - Save as
 - 🛃 Download

- Authentication required
- Terms of use
- Create a new project
 - Projects must be named
 - Pre-populated templates
- Layer panel on right-hand side
- Fire input conditions
 - Tools on lower left
- Basic simulation parameters
 - Start date and time
 - Time zone
 - Simulation duration
 - Simulation resolution
- Project controls
- Progress
 - Shows when you press 'Run'
 - Any errors reported at this stage

- Authentication required
- Terms of use
- Create a new project
 - Projects must be named
 - Pre-populated templates
- Layer panel on right-hand side
- Fire input conditions
 - Tools on lower left
- Basic simulation parameters
 - Start date and time
 - Time zone
 - Simulation duration
 - Simulation resolution
- Project controls
- Progress
 - Shows when you press 'Run'
 - Any errors reported at this stage
- Output of fire simulation
 - Colours represent hourly progress

- Layers
 - List on right-hand side
 - Over the second seco
- Shaded fire contour
 - Dynamic outline based on time slider

- Layers
 - List on right-hand side
 - Over the second seco
- Shaded fire contour
 - Dynamic outline based on time slider
- Wildfire model layer
 - Cell evaluation using inspection tool
 - Current value of all visible layers under mouse
 - Left click for all layer values (shows fireline intensity etc.)

- Layers
 - List on right-hand side
 - Over the second seco
- Shaded fire contour
 - Dynamic outline based on time slider
- Wildfire model layer
 - Cell evaluation using inspection tool
 - Current value of all visible layers under mouse
- Flame height layer
 - Fireline intensity also available

- Layers
 - List on right-hand side
 - Over the second state of the second state o
- Shaded fire contour
 - Dynamic outline based on time slider
- Wildfire model layer
 - Cell evaluation using inspection tool
 - Current value of all layers under mouse
- Flame height layer
- Base map
 - Various base map options

- Layers
 - List on right-hand side
 - Over the second seco
- Shaded fire contour
 - Dynamic outline based on time slider
- Wildfire model layer
 - Cell evaluation using inspection tool
 - Current value of all layers under mouse
- Flame height layer
- Base map
 - Various base map options
- 3D view
 - Right mouse or ctrl+left mouse to rotate view
 - Mousewheel to zoom
 - View reset using compass button

- Layers
 - List on right-hand side
 - Visibility controlled by view icons
- Shaded fire contour
 - Dynamic outline based on time slider
- Wildfire model layer
 - Cell evaluation using inspection tool
 - Current value of all layers under mouse
- Flame height layer
- Base map
 - Various base map options
- 3D view
 - Right mouse or ctrl+left mouse to rotate view
 - Mousewheel to zoom
 - View reset using compass button
- Layer options
 - Layer download buttons
 - Opacity slider
 - Colour map
 - Colour range
- Layer download
 - Defaults to 'Downloads' folder if no directory selected

- Layers
 - List on right-hand side
 - Visibility controlled by view icons
- Shaded fire contour
 - Dynamic outline based on time slider
- Wildfire model layer
 - Cell evaluation using inspection tool
 - Current value of all layers under mouse
- Flame height layer
- Base map
 - Various base map options
- 3D view
 - Right mouse or ctrl+left mouse to rotate view
 - Mousewheel to zoom
 - View reset using compass button
- Layer options
 - Layer download buttons
 - Opacity slider
 - Colour map
 - Colour range
- Layer download
- Weather visualisation
 - Changes with time slider

- Layers
 - List on right-hand side
 - Visibility controlled by view icons
- Shaded fire contour
 - Dynamic outline based on time slider
- Wildfire model layer
 - Cell evaluation using inspection tool
 - Current value of all layers under mouse
- Flame height layer
- Base map
 - Various base map options
- 3D view
 - Right mouse or ctrl+left mouse to rotate view
 - Mousewheel to zoom
 - View reset using compass button
- Layer options
 - Layer download buttons
 - Opacity slider
 - Colour map
 - Colour range
- Layer download
- Weather
 - Changes with time slider
 - Shows time series chart when icon is clicked
 - Can be downloaded as a csv

- Weather inputs
 - Spark requires whatever weather variables your rate of spread models use as inputs
 - Generally wind speed and direction, relative humidity and temperature
 - Could also include drought factor, dew temperature, curing
 - Can be uploaded as a set of gridded netcdf files
 - We have guides to use BARRA-R2, ERA5, ops_aps2 and ops_APS3 data sets for historical reconstructions

- Weather inputs
 - Spark requires whatever weather variables your rate of spread models use as inputs
 - Generally wind speed and direction, relative humidity and temperature
 - Could also include drought factor, dew temperature, curing
 - Can be uploaded as a set of gridded netcdf files
 - Or a suitable weather csv file can be dragged and dropped into the 'Simulation series CSV' input
 - Example csv format:

date	relative_humidity	temperature	wind_direction	wind_magnitude
2009-02-23T11:00:00+11:00	18	25	350	15
2009-02-23T12:00:00+11:00	17	27	350	25
2009-02-23T13:00:00+11:00	15	29	350	39
2009-02-23T14:00:00+11:00	15	30	350	39
2009-02-23T15:00:00+11:00	15	30	340	39
2009-02-23T16:00:00+11:00	15	29	300	30
2009-02-23T17:00:00+11:00	14	30	300	33
2009-02-23T18:00:00+11:00	18	29	260	33
2009-02-23T19:00:00+11:00	25	26	210	30

Advanced usage

• Input tools

- Point fire creation
- Line fire creation
- Polygon fire creation
- Mask creation (un-burnable by default, but can be used to modify input values)

Advanced usage

• Input tools

- Point fire creation
- Line fire creation
- Polygon fire creation
- Mask (un-burnable) creation

Multiple ignitions

- Different start times
- Left-click to configure
- Set geometry properties
- Set ignition time
- Set position

- Advanced options
 - All layers and options available

- Advanced options
 - All layers and options available
- Layers
 - Input layers Land classification, elevation, fuel age, disruptions...

- Advanced options
 - All layers and options available
- Layers
 - Input layers Land classification, elevation, fuel age, disruptions...
 - Vector layers Can be used to overwrite input layers or set unburnable areas by drawing lines / polygons

- Advanced options
 - All layers and options available
- Layers
 - Input layers Land classification, elevation, fuel age, disruptions...
 - Vector layers Can be used to overwrite input layers or set unburnable areas by drawing lines / polygons
 - Gridded layers Meteorological netcdf files
 - Output layers Creates rasters which can be written to in initialisation, rate of spread or output models. Any with descriptions are visualised in Project Layers after simulation is run. Reductions shown in Output Data table at completion of simulation

- Advanced options
 - All layers and options available
- Layers
 - Input layers Land classification, elevation, fuel age, disruptions...
 - Vector layers Can be used to overwrite input layers or set unburnable areas by drawing lines / polygons
 - Gridded layers Meteorological netcdf files
 - Output layers Creates rasters which can be written to in initialisation, rate of spread or output models. Any with descriptions are visualised in Project Layers after simulation is run. Reductions shown in Output Data table at completion of simulation
 - Variables Can be used to set global variables for a simulation. CSV data can be uploaded and used as a look up table (e.g. for fuel attributes)

- Models
 - Initialisation Run once per cell. Can be used to set rate of spread model, fuel parameters etc. from input data

- Models
 - Initialisation Run once per cell
 - Advection Used to modify wind field via advect_x and advect_y variables (EW and NS wind speed components)
 - Rate-of-spread, run to determine outward speed. 'Start' runs first for all models and is often used to calculate slope effects. Individual models are then run (for their respective grid cells), often to calculate head fire rate-of-spread. 'End' is then run which often applies the slope effect and applies a geometric template to spread the fire in 2D.

iy_pro	Jeci										_	_									Advar	iced 1	× ^		Ф	0 📚	Layer	5	
asic	Sources	Layer	rs	Init	tialisa	ation		Adve	ection		Rate	of Sprea	d	Upo	late	Proce	essing	Sub	Models							Fire sources	Project	Layers	
tart	End 1	2		3	4	5		6	7	8	9	10		11	12	13	14	15	16	17	18	19	20	rs Hill		Mask	Fire sour	ces	6
																									1	1/	> Disru	ptions	
odel N	ame																								Ar	ochrones	> Fire	perimeter	
irasslar	nd																							K		12:59	> Outr	ut data	
- 11																										12:50	> Fireh	rande	
	CSIRO grass	lands mo	del																					5	-	12:40	2 The	i anus	
11	1. Temperati	ure (degi	rees	c), '	temp'																			2		12:20	> Web	services	
. //	2. Relative	humidit	y (*), 're	1_hum	÷																				12:10	Lightnin	g Strikes	2
- ''	4. Curing v	alue (%)	, .e	uring'	peeu																					11:50	DEA Wat	erbodies	3
- //																										11:40	A CLARGE		
11																									12	11:30	wiidnire	spread model ID	
- 11	Specific to	test																								11:10	Weather		2
	inst REAL cur:	ing = 80	.0;																							11:00 23rd Feb			
																											Selected	Layer Option	IS
//	Calculate c	uring co	effi	cient	from	Cruz e	et a	1. (26	815)																				
11	(curing >=)	20.0) {	0;																								Map Bas	e Layer	
- L	curing_coe	ff = 1.0	36/(1.0+10	3.989	exp(-	-0.0	996*(0	curing	-20.0)));													orwei	ngub	oora			
}																											Outdoors		
- 11	Fuel moistu	re conte	nt aj	pproxi	mated	d using	g Mc	Arthur	r (196	6)															2			Contours	
RE	AL grassland:	s_moistu	re =	9.58-	(0.20	95*temp	p)+(I	0.138	"rel_h	um);														-		····		low Contours	
11	Calculate m	oisture	coef	ficien	t fro	on Cher	ney (et al.	(199	8)																		ck Man View	
RE	AL moisture_	coeff;																										on map view	
1	moisture_c	_moisture ceff = e:	e <= xp(-i	9.108*	۱ grass	slands	moi	sture));																				
- }	else if (wi	nd_speed	<=	10) {																				C			Output	Data	
	moisture_c	oeff = 0	.684	-0.034	2*gra	assland	ds_m	oistur	ne;																		output	Sutu	
1	moisture_c	oeff = 0	.547	0.022	8*gra	assland	ds_m	oistur	ne;																		Fire		47357
}																										A hard	intensity	maximum	kW/m
11	Calculate h	ead fire	spe	ed (km	/hr)																					Contraction of the second			
11	(wind_speed	>= 5.0)	{																							Inad	height	maximum	11.0 m
	// Fast																							0					
	if (subcla	ss == 1)	{																										
	// Nati	ural: cb	- 1	.4. cw	- e.	.838																							
	speed -	- 1.4+0.	838*	pow((w	ind_s	speed-5	5.0)	, 0.84	44);																				
	} else if	(subclas:	s ==	2) {																				5					
	// Cut	or graz	ed: (cb = 1	.1, c	см – 0.	.715																	\sim		Gran and			
																								-		Omepbox			
D	8 0	ٹ																						2					

- Models
 - Initialisation Run once per cell
 - Advection Used to modify wind field
 - Rate-of-spread, run to determine outward speed. 'Start' runs first for all models and is often used to calculate slope effects. Individual models are then run (for their respective grid cells), often to calculate head fire rate-of-spread. 'End' is then run for all models which often applies the slope effect and applies a geometric template to spread the fire in 2D.
 - Update, runs within burnt regions. 'Start' runs first for all models. Individual models are then run (for their respective grid cells), often to calculate flame height and fireline intensity. 'End' is then run for all models which often calculates effects of disruptions.

- Layer creation
 - Any number can be created
 - Name available in model scripts for reading/writing
 - Must have description to be visualised
 - Example 'test' layer created called 'Test'

my_p	project								Adva	nced 🗸	\times		0 0	Layers		\times
Basic	Sources	Layers	Initialisation	Advection	Rate of Spread	Update	Proce	essing	Sub Models				Fire sources	Project Lay	/ers	
Input	Layers I	nput Vectors	Gridded Layers	Output La	yers Variable	5						Beavers Hill	Mask	Fire sources		0
Outpu	t Layers												Arrival time	> Disrupti	ons	
Nam	e	Descript	ion	Units	S	ampling		Reduction		Flat			isochrones	> Fire peri	meter	
mod	lel_id	Wildfire	spread model ID			Nearest	\bigtriangledown	None	\bigtriangledown		8		12:59	> Output	data	
<i>e</i>	blatanı.					Union					•		12:40	> Firebran	ds	
fire_	nistory					Linear	×	None	~		0		12:20	Lightning St	rikes	20
fuel,	load					Linear	\bigtriangledown	None	\bigtriangledown		8		12:00	DEA Waterb	odies	3
inter	nsity	Fire inte	ensity	kW/m	1	Linear	\bigtriangledown	Maximum	\bigtriangledown		8		11:40	Wildfire spre	ad model ID	2
flam	a baiabt	Elamo k	voight			Linear	~	Maximum	~		•	1 10/	11:20	Weather		8
India	e_neight	Tiamer	leight			Lifear	×	MidAimum	Ť		Ű	CIAT	11:00 23rd Feb	Selected L	war Option	
fireb	orand_max_dis	t				Linear	\bigtriangledown	None	\bigtriangledown		8			Selected La	ayer Option:	
fireb	rand_creation	Firebra	nd creation			Linear	\bigtriangledown	None	\bigtriangledown		8			Map Base I	Layer	
test		Test				Nearest	\bigtriangledown	None	∇		8	Kuiwe	anguboora	Outdoors		\sim
O Ad	d element to (Output Layers										XL	CIAI	Show	Contours	
														Lock	Map View	
												-15				
														Output Dat	а	
												$\left\{ \right\}$		Eiro		47257
												\mathbb{Z}		intensity	maximum	kW/m
													And I Take	Flame	maximum	11.0 m
													y to	neight		
													4			
⊳	80	يك										2/2009 11:00 📋	@mepbox			
												ev Le mahnor e obciro	treetMap Improve this map			

- Layer creation
 - Any number can be created
 - Name available in model scripts for reading/writing
 - Must have description to be visualised
 - Example 'test' layer created called 'Test'
- Scripting
 - Layer is written in update model
 - Anywhere where flame height > 3 test is 1
 - Elsewhere test is null

- Layer creation
 - Any number can be created
 - Name available in model scripts for reading/writing
 - Must have description to be visualised
 - Example 'test' layer created called 'Test'
- Scripting
 - Layer is written in update model
 - Anywhere where flame height > 3 test is 1
 - Elsewhere test is null
- Visualisation
 - Data from 'Test' shown in green after simulation is run again

- Layer creation
 - Any number can be created
 - Name available in model scripts for reading/writing
 - Must have description to be visualised
 - Example 'test' layer created called 'Test'
- Scripting
 - Layer is written in update model
 - Anywhere where flame height > 1 test is 1
 - Elsewhere test is null
- Visualisation
 - Data from 'Test' shown in green after simulation is run again
- Errors
 - Errors appear in a red box
 - Script errors trigger 'Spark simulation failed'
 - Reported as a 'clBuildProgram: -11' exception
 - We will make this more intelligible!
 - The full error log is available in the API response

- Rate-of-spread scripts
 - Script for each fuel classification type
 - Each type is an integer identifier 'class'
 - Zero is reserved for un-burnable
 - Classes can be named

Advanced usage

Rate-of-spread scripts

- Script for each fuel classification type
- Each type is an integer identifier 'class'
- Zero is reserved for un-burnable
- Classes can be named
- Example 1
 - Script "speed = 0.5;"
 - Sets outward speed to 0.5 m/s
 - Resulting fire is circular

Advanced usage

Rate-of-spread scripts

- Script for each fuel classification type
- Each type is an integer identifier 'class'
- Zero is reserved for un-burnable
- Classes can be named
- Example 1
 - Script "speed = 0.5;"
 - Sets outward speed to 0.5 m/s
 - Resulting fire is circular
- Example 2
 - Script "speed = 0.1+0.02*wind;"
 - Adds component in wind direction
 - Resulting fire grows outwards and moves with wind

- Firebrand model
 - Eucalypt forest empirical firebrand model
 - Requires script (update model) to determine creation

my_pr	roject																	Advan	ced 🗸	\times	Ф	\circ	\$	Layers		×
Basic	Source	s	Layers	Ini	tialisation	Adv	vection	8	Rate of S	pread	Up	date	Proce	essing	Sub M	Models					F	ire sou	rces	Project La	yers	
Basic Start Comment 1 // 2 1 3 1 4 4 5 // 6 1 7 9 9 10 11 12 13 14 15 16 17 7 19 19 19 10 10 10 10 10 10 10 10 10 10	Source End on start (/ Calculat intensity - Ilame_heigh // Calculat firebrand_m ff (class - REAL fi firebrand f (ran if (ran if (ran if (ran)	s 1 e inter max(it - max) e firel ax_dis; rebran nd_prol ddom < ^ Calcull. Save an ebrand	Layers 2 nsity an ntensity x(flame t = 0.0, time - d_prob - b = 1.0. firebrar ate maximum max_dif reas of _creation	Ini a nd flame y, 18000 axiu arrival - pow((RE ray) imum dis st = max x_dist = firebra on = max	height *speed*fuel 0.075*pon istance < 300.0) { 1; AL)(1.0-fir (speed*3.6* = 0) firebr nd creation (firebrand_	Adv 6 load*0 (intensi ((intensi ((intensi ((intensi ((intensi ((intensi))))))))))))))))))))))))))))))))))))	7 7 .1); ity, 0.4 .033*fue _dist = 	8 6)); ine_s l_loa noDat rand_	<pre>Rate of S 9 9 step); d)-3.6, _a_REAL; max_dist</pre>	<pre>ipread 10 0.0)*100);</pre>	Up 11	date	Proce	14	Sub N	Models 16	17	18	19	20	F F Arrive Isoch It 1 1 1 1 1 1 1 1 1 1 1 1 1	ire sou al time rones 2:59 2:50 2:20 2:20 2:20 2:20 2:20 2:20 2:20	rces	Project La Fire source > Fire source > Output > Fire per > Output > Fire per > Output > Fire per > Output Scheeted L Map Base Outdoors Shor	yers imeter data data data vids vivices rrikes ead model ID ayer Option Layer v Contours	0 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
																							Mu Refe	Cutput Da Fire intensity Flame height	Map View	22809 kW/m 7.8 m
Þ	BQ	<u>ک</u> و	<u>↓</u>																		eetMap In	P no	PDOX his map			

- Firebrand model
 - Eucalypt forest empirical firebrand model
 - Requires script to determine creation
 - Models for all firebrand stages
 - Creation script, sets new firebrand positions
 - Initialisation script, creates firebrands
 - Advection model, controls air flow
 - Update model, controls firebrand changes
 - Transport model, controls interaction with air flow
 - Basic spot fire creation only required one model

my_pro	oject						Ac	lvanced \checkmark \times			Layers	×
Basic	Sources	Layers	Initialisation	Advection	Rate of Spread	Update	Processing	Sub Models		Fire sources	Project Layers	
Firebrar Minimum Ignition Creation	nds Plur m spotting d delay element to Ig n model EAL advect_me	nes istance (m) nition delay g = hypot(ed max dist > d	<pre>vect_x, advect_y);</pre>							Arrival time isochrones 12:59 12:50 12:20 12:20 12:20 12:20 12:20 12:00 11:50 11:40 11:40 11:40	Fire sources Fire sources > Fire perimeter > Output data > Firebrands > Web services Lightning Strikes DEA Waterbodies Wildfire spread model ID	© 8 8 8
3 4 5 6 7 8 } 9 Initialisa 1	create = t x += firet y += firet z = 0.0; t = 1.0;	rue; rand_max_dis rand_max_dis	t*advect_x/advect_ t*advect_y/advect_	mag; mag;						11:20 11:10 11:00 23rd Feb	Weather Selected Layer Options Map Base Layer Outdoors Show Contours	8
Transpor	rt model								The	Re	Lock Map View Output Data Fire maximum	22809
											Flame maximum	kW/m 7.8 m
Pre-tran 1	isport model								10 10 m	Milliones Rd		
Þ	89	<u>ك</u>							23/02/2009 11:00	Conceptox penstreetMap Improve this map	<	

- Firebrand model
 - Eucalypt forest empirical firebrand model
 - Requires script to determine creation
 - Models for all firebrand stages
 - Creation script, sets new firebrand positions
 - Initialisation script, creates firebrands
 - Advection model, controls air flow
 - Update model, controls firebrand changes
 - Transport model, controls interaction with air flow
 - Basic spot fire creation only required one model
- Plume model
 - More physical basis for the transport of firebrands in a plume
 - Requires most of the physics based models above
 - Currently requires 3D weather layers. Simple plume model in development path

my_pro	oject						Ac	dvanced \checkmark >		0 🕸	Layers	>
Basic	Sources	Layers	Initialisation	Advection	Rate of Spread	Update	Processing	Sub Models		Fire sources	Project Layers	
Firebran Weather	topography	mes							Mer	Arrival time isochrones 12:59 12:50 12:40	Fire sources Fire perimete Output data Firebrands	o r
Weather	atmosphere	•								12:30 12:20 12:10 12:00	> Web services Lightning Strikes	Ø
Fire pow	er layer nan	ne							0	11:50 11:40 11:30 11:20	DEA Waterbodies Wildfire spread m	nodel ID
Fire pow	er threshold	I (MW)								11:10 11:00 23rd Feb	Selected Layer	Options
0	anie interva	(3)									Map Base Laye	r
0	rtical speed	(m/s)							020	R C	Show Cor	itours
Maximu 0	m distance (m)							2 The		Aus fere	View
Distance 0	step (m)								The second		Output Data	
Constant	ts element to G	onstants									Fire ma	iximum 22809 kW/m
Creation 1	model										height ma	7.8 m
										Manual Part		
Þ	8 0	ىك							23/02/2009 11:00	mepbox morethap Improve this man		

- Firebrand model
 - Eucalypt forest empirical firebrand model
 - Requires script to determine creation
 - Models for all firebrand stages
 - Creation script, sets new firebrand positions
 - Initialisation script, creates firebrands
 - Advection model, controls air flow
 - Update model, controls firebrand changes
 - Transport model, controls interaction with air flow
 - Basic spot fire creation only required one model
- Plume model
 - More physical basis for the transport of firebrands in a plume
 - Requires most of the physics based models above
 - Currently requires 3D weather layers. Simple plume model in development path
- Visualisation
 - Firebrands which cause spot fires are visualised with yellow/red lines from generation to landing points

Advanced usage

- Uploading user data layers
 - Note, the wildfire platform is currently open. Do not upload any sensitive data as other users will be able to use it. Please use specific filenames to ensure no duplicates (e.g.

MY_USER_land_classification_EPSG_XXXX_v1.tiff)

- Uploading user data layers
 - Note, the wildfire platform is currently open. Do not upload any sensitive data as other users will be able to use it. Please use specific filenames to ensure no duplicates (e.g.
 - MY_USER_land_classification_EPSG_XXXX_v1.tiff)
 - File is uploaded with the path: /geowebfs/uploads/FILENAME
 - Input the correct projection and data type as well as a name which can be referred to in the model scripts.

my_project							×		
Basic Sources	Layers	Initialisation	Advection	Rate of Spread	Update	Processing	Sub Models	orest Rd	
Input Layers In	put Vectors	Gridded Layers	Output I	ayers Variables				Codes F	
Input Layers								PAL	reswie
Name	Source		F	Projection	Ту	/pe			Planta
elevation	/geowebfs/	/data/AUS_DEM_16	_EPSG3112	EPSG:3112	F	loat	▽ 😣	$A \rightarrow 7$	
classification	/geowebfs/	/data/AUS_ALUM_1	6_EPSG311	EPSG:3112		nteger	▽ 😣		ξ.
example_layer	/geowebfs/	/uploads/WS_exam	ple_tiff_v1.1	EPSG:4326	F	loat	▽ 3	+	
• • • • • • • • • •									
Add element to Ir	nput Layers								Winna
								N > 1	
								N-V	
								1 m	

- Uploading user data layers
 - Note, the wildfire platform is currently open. Do not upload any sensitive data as other users will be able to use it. Please use specific filenames to ensure no duplicates (e.g.
 - MY_USER_land_classification_EPSG_XXXX_v1.tiff)
 - File is uploaded with the path: /geowebfs/uploads/FILENAME
 - Input the correct projection and data type as well as a name which can be referred to in the model scripts.
- Visualising user data layers
 - Create an output layer

Basic Sources Layers Initialisation Advection Rate of Spread Update Processing Sub Models Input Layers Input Vectors Gridded Layers Output Layers Variables Dutput Layers Description Units Sampling Reduction Flat model_id Wildfire spread model ID Inear None Image Image fuel_load Image Fire intensity Image KW/m Image Maximum Image Image firebrand_max_dist Image Fire intensity KW/m Image Maximum Image Image<	my_project										×
Input Layes Input Vectors Ordput Layers Variables Output Layes Sampling Reduction Flat model_id Pescription Vnits Sampling Reduction Flat model_id Wildfire spread model ID Nearest None Image: Comparison Image: Comparison None Image: Comparison fuel_load Fire intensity Fire intensity KW/m Linear None Image: Comparison Image: Comparison Image: Comparison Image: Comparison Image: Comparison Maximum Image: Comparison Image:	Basic Sources	Layers	Initialisation	Advection	Rate of Spread	Update	Proce	ssing	Sub Models		
Name Description Units Sampling Reduction Flat model_id Wildfire spread model ID Nearest None Image Image <td>Input Layers Input</td> <td>Vectors</td> <td>Gridded Layers</td> <td>Output Laye</td> <td>ers Variables</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Input Layers Input	Vectors	Gridded Layers	Output Laye	ers Variables						
NameDescriptionUnitsSamplingReductionFlatmodel_idWildfire spread model IDNearestNone©©©fire_historyLinearNone©©©©fuel_loadLinearNone©©<	Output Layers										
model_id Wildfire spread model ID Nearest None Image: Comparison of the spread model ID Imag	Name	Descriptio	on	Units	Sa	mpling		Reducti	on	Flat	
fire_history Image:	model_id	Wildfire s	pread model ID		N	learest	\bigtriangledown	None	\bigtriangledown		8
fuel_load inear Vone V Image: state of the s	fire_history				L	inear	\bigtriangledown	None	\bigtriangledown		8
intensity Fire intensity kW/m Linear ▼ Maximum ▼ © flame_height Flame height m Linear ▼ Maximum ▼ © firebrand_max_dist	fuel_load				L	inear	\bigtriangledown	None	\bigtriangledown		0
flame_height Flame height m Linear V Maximum V I firebrand_max_dist Inear V None V I I firebrand_creation Firebrand creation Inear V None V I I example_output Example output Name V I	intensity	Fire inter	sity	kW/m	L	inear	\bigtriangledown	Maxim	um 🗸		8
firebrand_max_dist inear Inear None Image: Constraint of the second seco	flame_height	Flame he	ight	m		inear	\bigtriangledown	Maxim	um 🗸		8
firebrand_creation Linear Vone V Image: State S	firebrand_max_dist				L	inear	\bigtriangledown	None	\bigtriangledown		0
example_output Example output None Image: Constraint of the second secon	firebrand_creation	Firebrand	l creation			inear	\bigtriangledown	None	\bigtriangledown		0
✿ Add element to Output Layers	example_output	Example	output		۸	learest	▽	None	\bigtriangledown		8
	Add alamant to Outp	utlavara									
	Add element to Outp	ut Layers									

- Uploading user data layers
 - Note, the wildfire platform is currently open. Do not upload any sensitive data as other users will be able to use it. Please use specific filenames to ensure no duplicates (e.g. MY_USER_land_classification_EPSG_XXXX_v1.tiff)
 - File is uploaded with the path: /geowebfs/uploads/FILENAME
 - Input the correct projection and data type as well as a name which can be referred to in the model scripts.
- Visualising user data layers
 - Create an output layer
 - Write to the output in a model script

- Uploading user data layers
 - Note, the wildfire platform is currently open. Do not upload any sensitive data as other users will be able to use it. Please use specific filenames to ensure no duplicates (e.g. MY_USER_land_classification_EPSG_XXXX_v1.tiff)
 - File is uploaded with the path: /geowebfs/uploads/FILENAME
 - Input the correct projection and data type as well as a name which can be referred to in the model scripts.
- Visualising user data layers
 - Create an output layer
 - Write to the output in a model script
 - Run simulation again to view output
 - Your layer name can be used in Initialisation, Rate of Spread and Update models

Spark server

- Web API
 - Services calls from SparkWeb
 - Can be called directly to run simulations/serve outputs
 - All models sent to server

Spark server

- Web API
 - Services calls from SparkWeb
 - Can be called directly to run simulations/serve outputs
 - All models sent to server
- API calls
 - Documentation and examples available
 - /spark Initialise solver
 - /spark/sources Set sources (geojson)
 - /spark/initialise_solver Initialise solver
 - /spark/run_solver Run solver
 - /spark/process_output Custom post-processing
 - /spark/raster_output Get gridded output (tiff/json)
 - /spark/vector_output Get vector output (shp/geojson)
 - Success codes 200/201

Spark server

- Web API
 - Services calls from SparkWeb
 - Can be called directly to run simulations/serve outputs
 - All models sent to server
- API calls
 - Documentation and examples available
 - /spark Initialise solver
 - /spark/sources Set sources (geojson)
 - /spark/initialise_solver Initialise solver
 - /spark/run_solver Run solver
 - /spark/process_output Custom post-processing
 - /spark/raster_output Get gridded output (tiff/json)
 - /spark/vector_output Get vector output (shp/geojson)
 - Success codes 200/201

```
requests.post(f"http://localhost:{port}/spark/sources", headers=headers,
json={
    "sources" : {
        "features" : [
                "geometry" : {
                    "coordinates" : [ 150.342, -33.6 ],
                    "type" : "Point"
                },
                "properties" : {
                    "radius" : 120,
                    "time" : 0
                },
                "type" : "Feature"
        ۰.
        "type" : "FeatureCollection"
    }
})
```

