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CHAPTER 3. PROGRAM STRUCTURE AND NUMERICAL 

SOLUTIONS 

W. R. Dawes 

 

 

 

3.1 Introduction 

This section details the logical flow, and numerical solution methods for the four balances solved 

in WAVES: water, energy, carbon, and solute. All models that perform balances of quantities 

follow the same pattern: the amount present at the end of a time-step is equal to the amount 

present at the beginning of the time-step, plus the amount added, minus the amount removed; 

WAVES is no different in this regard. The water, carbon, and solute balances use the method 

mentioned, while the energy balance only partitions the amount of energy received, and we 

assume there is no carry-over from one day to the next. The amount at the start and end of the 

time-step is effectively zero. 

3.2 Energy Balance 

The energy balance equations and theory are discussed in Chapter 2, but the important steps, 

theories, and assumptions are repeated here for completeness with the three other balance de-

scriptions. 

3.2.1 Radiation 

The energy balance of any point can be described by: 

Rn = Ps + λE + H + Ah + G+ S  (3.1) 

where Rn is net radiation, Ps is energy absorbed for photosynthesis, λE is energy used for 

evapotranspiration, H is sensible heat, Ah is advected energy from or to the surroundings, G is 

energy that heats the soil, and S is energy that is stored. All these terms are in units of W m–2. The 

variable Rn can also be expressed as: 
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Rn = Rsd − Rsu + Rld − Rlu  (3.2) 

where Rsd is the downward shortwave radiation, Rsu is the upward shortwave radiation, Rld is the 

downward longwave radiation, and Rlu is the upward longwave radiation. All these terms are in 

units of W m-2. 

The energy balance assumptions in WAVES are that: 

• the temperature of the soil, canopy, and air is the same, and equal to the average of the maxi-

mum and minimum daily temperature, 

• differences in upward longwave radiation from the different surfaces is a function of emissiv-

ity alone, 

• on the daily time-step, all storage and heating terms are negligible, 

• in a one-dimensional model, lateral energy transfers cannot be estimated or used, 

• leaf angles are randomly distributed and do not reflect energy within the canopy, so that the 

canopy may be treated as translucent absorbing layer (the so-called ‘big leaf model’). 

Applying the appropriate assumptions to (3.1) leaves us with: 

Rn = λE + H  (3.3) 

Such an equation looks relatively easy to work with. However, in general the two largest terms 

are Rn and λE (Monteith and Unsworth 1990), so H can be estimated by difference. In practice 

within WAVES, H has no significance to the water, carbon, or solute balance, so only Rn and λE 

are modelled explicitly. 

WAVES expects as input daily downward shortwave radiation, which is easy to measure or 

estimate. To complete the terms in Equation (3.2) we need estimates of longwave radiation. 

Following Brutsaert (1982), we have: 

Rld = εaσ Ta
4
 (3.4) 

Rlu = εsσ Ta
4  (3.5) 
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where εa is the atmospheric emissivity, εs is the surface emissivity (this ranges from 0.95 to 0.99 

for surfaces like snow, open water, soil, and plant canopies, so in WAVES it is a constant set at 



 

 

40 

 

0.97), σ is the Stefan–Boltzman constant (5.67x10–8 W m–2 K–4), Ta is the average of daily maxi-

mum and minimum air temperature (Kelvin), and ea is vapour pressure (millibars) based on Ta. 

Net longwave radiation, that is Rld – Rlu, is in general a negative quantity. In the cascading energy 

balance WAVES performs, i.e. one layer at a time, longwave losses must be subtracted from each 

layer, not as a bulk cost to the total available energy. For a vegetation layer, the energy balance 

components are: 

Rsin = Rsd (1− exp(k LAI))  (3.7) 

Rsnet = Rsin (1− α )  (3.8) 

Rlnet = (Rld − Rlu )
Rsin

Rsd
 (3.9) 

Rnet = Rsnet + Rlnet  (3.10) 

where Rsd is the downward shortwave radiation that reaches the soil or canopy surface (for the 

first canopy it is incoming solar radiation, for the next canopy it is the shortwave radiation that 

passes through the first canopy, etc), k is the light extinction coefficient of the canopy, LAI is the 

leaf area index of the vegetation canopy (m2 leaf m–2 ground), α is surface albedo, Rsin is the 

shortwave radiation that is potentially available to the canopy, Rsnet is the net shortwave radiation 

after reflection from the canopy, Rlnet is the net longwave radiation of the canopy (these wave-

lengths are not affected by albedo), and Rnet is the net available total radiation to the canopy. 

These equations can be cascaded through a series of canopies, by repeating the calculations with 

that radiation passing through the canopy as Rsd for the next lower canopy. At the soil surface 

there is no canopy to filter and absorb radiation, so in (3.7) Rsin = Rsd . Other than that, these 

equations hold for the soil energy balance also. 

3.2.2 Vapour Pressure Deficit 

Just as the amount of radiation cascades down through a series of canopies, so the vapour pres-

sure deficit under a canopy is, in general, less than above the canopy. Jarvis and McNaughton 

(1986) proposed a method of estimating how to quantify this decrease, through use of a coeffi-

cient describing how well coupled the atmosphere is to the air within and below the canopy. The 

method for the omega coefficient is as follows: 
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aceqci D)(1DD ΩΩ −+=  (3.11) 

where Di is the within and below canopy vapour pressure deficit (millibars), Da is the above 

canopy vapour pressure deficit (millibars), Deq is the equilibrium vapour pressure deficit (milli-

bars), and Ωc is the atmospheric coupling coefficient, defined by: 

Deq =
γεRnvrc

cp (ε + 1)
 (3.12) 

Ω c =
ε + 1

ε + 1 + rc/ra  (3.13) 

where ε = ∆/γ, ∆ is the slope of the saturated vapour pressure v. temperature curve (millibar K–1), 

γ is the psychrometric constant, rc is bulk canopy resistance (s m–1), cp is the specific heat of air at 

constant pressure (W kg–1 K–1 s), and ra is bulk aerodynamic resistance (s m–1). 

Just as radiation cascades downward, using the amount of radiation passing through the next 

highest canopy as the starting energy, the vapour pressure deficit is progressively reduced moving 

down toward the ground. The vapour pressure deficit in the climate file will affect the upper 

canopy, the lower canopy will use a reduced vapour pressure deficit, and the soil below will use 

yet another vapour pressure deficit. 

3.2.3 Aerodynamic and Canopy Resistance 

The Soil Surface 

For the soil, aerodynamic and canopy (read as surface) resistance for evaporation are extremely 

simplified. The aerodynamic resistance (ra) is set to a constant of 100 s m–1. The values of rough-

ness length for soil reported in Brutsaert (1982) are from 0.001 to 0.01 m, and assuming a con-

stant wind speed of 2 m s–1 at 2 m this translates to a resistance of 85 to 172 s m–1. 

The surface resistance is a function of four possible variables; (1) the wetness of the surface soil, 

(2) the depth of any drying front, (3) the amount of litter, and (4) whether the site is flooded. 

When the soil is not air-dry at the surface, rs is set to zero. When the soil is air-dry at the surface, 

then the depth of drying front is calculated from the soil water potentials solved by the water-

balance module (see section 3.3). The surface resistance is then set according to Choudhury and 

Monteith (1988): 

v
s D

r
ρ
τ l

=  (3.14) 
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where τ is the tortuosity factor (constant set to 2), l is tortuous path-length equal to the depth of 

drying front (m), ρ is soil porosity, and Dm is the molecular diffusion coefficient for water vapour 

in air (constant set to 2.5 x 10–5 m2 s–1). If there is plant litter on the soil surface, then the path-

length l is increased by: 

  
l = l +

Clit

20
 (3.15) 

where Clit is the weight of litter (kg m–2). 

If the soil is flooded, i.e. has standing water with a positive soil water potential at the surface 

node, rs = 0 and ra = 80 s m–1. 

The Plant Canopy 

The aerodynamic resistance of each plant canopy in WAVES is treated as a constant. This is for 

several reasons related to the exposition in section 2 from (2.36) to (2.42). The first is that we do 

not always have windspeed available as input data. Second, and more importantly, we do not 

know the roughness length of the vegetation, or how that varies in time. For example, it may be 

adequate to express the height of a grass or crop as a fraction of the leaf area index, but this 

would clearly not work for trees. In that case, a relationship based on accumulated stem mass 

might be good, but only up to certain ages. In any event, these data and relationships are so rarely 

available, that a constant value for ra is the only practical alternative. For very rough canopies, 

such as closed canopy forests, the surface is very rough and a small constant resistance is a good 

approximation, ra = 10 s m–1 (Monteith 1981). For smoother surfaces, such as grass and crops, a 

higher resistance is required, but the value is likely to be less constant over the whole growing 

season, ra = 30 s m–1. 

Canopy or surface resistance is the mechanism for coupling environmental stresses back to tran-

spiration. In Ball et al. (1987) type conductance models, canopy conductance (the reciprocal of 

canopy resistance) is a function of the assimilation of carbon. In section 3.5 there is a detailed 

description of how daily assimilation is calculated, and so here we will assume this value is 

available, and proceed with the estimation of canopy conductance. First the conductance to CO2 

is calculated by: 

)./D(DL]CO[.
Ag

kLAI.g
a

c 53190
00050

2

1

+
+=  (3.16) 



 43 

where gc is the conductance to CO2 (m s–1), g1 is the slope of the assimilation versus conductance 

line, A is the actual assimilation (kg C m–2), [CO2] is the atmospheric CO2 concentration (constant 

set to 1.8324 x 10–4 kg C m–3), and DL is the day length (in seconds). Next, the conductance to 

water vapour is estimated by: 

gw = gc(1 +
χ w

smc χlχt
)1.6  (3.17) 

where gw is the conductance to water vapour (m s–1), χw is the relative availability of water, χl is 

the relative availability of light, χt is the relative favourability of temperature, smc is the ratio of 

stomatal to mesophyll conductance (constant equal to 0.2 for C3 vegetation and 0.8 for C4 vegeta-

tion), and 1.6 is the ratio of the diffusion rates of CO2 and H2O vapour. 

The result from (3.17) is limited to the maximum value obtained when A is at the maximum 

assimilation rate, and the three availability scalars χw, χl, and χt are equal to 1.0. Canopy resis-

tance for estimating transpiration is the reciprocal of conductance from (3.17). 

3.2.4 Transpiration and Evaporation 

With all the necessary quantities defined and calculated, we can estimate the daily transpiration 

and evaporation rates. WAVES uses the Penman–Monteith combination equation: 

)r/r(
r/cR

E
ac

aapn

++
+

=
1γ∆

∆ρ∆
λ  (3.18) 

where E could be for any vegetation layer or the soil surface (m d–1), using the appropriate value 

for Rn, Da, rc, and ra. The constant cp is set to 1010, and constants are applied to (3.18) give the 

estimated rate in m d–1. The following empirical functions are used to determine the parameters 

for equations (3.1) to (3.18). Saturation vapour pressure ea, psychrometric constant γ, slope of 

saturation vapour pressure curve ∆, density of air ρ, and latent heat of vapourisation λ, are calcu-

lated by: 







+

=
16237T

T26917
exp6.1078e

a

a
a .

.
 (3.19) 

aT0.00060.646 +=γ  (3.20) 

∆ = ea (Ta + 0.5) − ea (Ta − 0.5) (3.21) 
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aT0.004281.292 −=ρ  (3.22) 

aT24002501000 −=λ  (3.23) 

where Ta is the average of daily maximum and minimum air temperature in degrees Celsius, and 

in (3.21) a value of saturation vapour pressure at more than, and less than, daily air temperature 

by one-half of a degree is determined from (3.19). 

The transpiration from (3.18) is then distributed within the root zone according to the following 

function: 

rwi = E
rpi 1 −

Ψ i +ηΠ i

Ψwilt

 

 
  

 

 
  

SRP
 (3.24) 

where rwi is the root-water demand at depth node i (m d–1), rpi is the proportion of total root mass 

at node i, Ψi is the water matric potential (m) at node i, Πi is the osmotic potential (m) due to 

solutes at node i, η is the salt sensitivity factor of the vegetation, Ψwilt is the wilting point of the 

vegetation (m), and SRP is the sum of the numerator over all nodes. The result from (3.24) can be 

further reduced if there is not enough water at any particular node while solving the water move-

ment equations. 

3.2.5 Computational Flow 

The sequence of steps to run a single day time-step is as follows: 

• adjust incoming shortwave direct and diffuse radiation for slope and aspect 

• calculate downward and upward longwave radiation 

• calculate root-water experience by adding matric and osmotic potential at each depth node 

with roots; sum this for whole profile for water availability, and sum this multiplied by 

proportion of roots at each node for distributing transpiration 

• calculate net radiation of each vegetation canopy layer 

• calculate net radiation of soil surface 

• calculate rainfall interception for each canopy layer (see section 3.5) and reduce available 

radiation by the amount of energy required to vapourise that water 

• CALL plant growth routine, which calculates actual assimilation 

• calculate constants required for estimating evapotranspiration, including soil surface resis-

tance and plant canopy conductance 
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• calculate transpiration from each vegetation canopy layer, reducing vapour pressure deficit 

below each one 

• calculate soil surface evaporation 

• distribute transpiration down profile; where roots compete for water at a node with less water 

available than required, reduce demand at that node proportionally. 

3.3 Water Balance 

WAVES does the water balance in a specific order, with relevant assumptions for use of a one-

day time-step, and the rate of change of processes. The different types of fluxes, and order in 

which they are calculated in, are shown in Fig. 3.1. 

The solution for soil water movement, water sources, and sinks, is all handled within the solution 

of Richards’ equation (Richards 1931). The soil-water gradients provide the internal driving 

forces, while ponded and free infiltration, evaporation, plant transpiration, lateral fluxes, drain-

age, and groundwater exchange are all simple sources and sinks within the soil profile. Some of 

these are coupled into the iterative solution, such as the depth of a watertable, and some rates are 

constant, such as plant extraction rates over the day. 

Fig. 3.1: WAVES Water Balance Flux Components. Constant Fluxes are calculated once at 

the beginning of the time-step and do not change during solution. Variable Fluxes are up-

dated each iteration of the water movement solution until they are consistent with the 

calculated water contents. 
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3.3.1 Theory 

The assumptions used in WAVES for water-balance modelling are that: 

• the soil is rigid, i.e. it does not shrink or swell 

• the soil is isothermal, i.e. the air temperature is the same as the soil temperature and this has 

no feedback onto the soil properties 

• the soil is non-hysteretic, i.e. single-valued functions describe the relationships between 

water content and potential, and water content and hydraulic conductivity 

• all soil-water flow is through the matrix, i.e. macropores, pipes, preferred pathways, and 

bypass flows are not modelled explicitly 

• soil air flow is ignored 

• solute in the water is conservative, i.e. it is not adsorbed by the matrix, and does not feed 

back onto the soil properties 

• soil properties do not change with time or climate, i.e. the surface does not form a seal (re-

ducing hydraulic conductivity) or compact (reducing hydraulic conductivity and water hold-

ing capacity), or possess other features that change soil properties, e.g. sodicity or acidity 

• rainfall intensity is constant for the duration of the event, and similarly, soil evaporation and 

plant transpiration rates are constant for the non-raining duration of the time-step. 

The last point requires some explanation. WAVES will use a one-day time-step for days when 

there is no rain, or when the rain lasts for the entire day. When only part of the day experiences 

rain, the duration of the rainfall will infer an intensity. Since high rainfall intensity can cause 

surface saturation and runoff, this is an important process to represent. Thus, on a day when rain 

lasts for only part of the day, a time-step is processed for the duration of the rain, then a second 

time-step is processed for the remainder of the day. During any of these time-steps, with rainfall 

or evaporation, the flux crossing the surface soil boundary and the leaf boundary, is assumed to 

be constant for the entire time-step. Diurnal fluctuations in rates are not modelled, only the aver-

age rate for the time-step. This is an appropriate compromise to maintain the largest time-step, 

i.e. a full day, while modelling the most important short-duration processes, i.e. runoff and satura-

tion from high-intensity rainfall. 

To solve a soil water mass balance, we must provide a framework that allows the important 

fluxes and feedbacks to be incorporated directly, and without special conditions. Because 

WAVES is a one-dimensional model concerned with the interactions between water, plant roots, 



 47 

and salt, it is desirable to keep track of the vertical distribution the these quantities within the 

soil. Accordingly, the WAVES water balance is based around solution of Richards’ equation 

(Richards 1931). This starts with a statement of mass balance: 

 
z
q

  = 
t ∂

∂
−

∂
∂θ

 (3.25) 

where θ is water content (L3 L–3), q is water flux (L T–1), t is time (T), and z is depth positive 

downwards (L). Looking at the left-hand side (LHS) of (3.25), we see the change in water content 

with time (water storage at the end of the time-step minus water storage at the start of the time-

step), and the right-hand side (RHS) of (3.25) says the change in flux with depth (water flux out 

of the bottom of the soil column minus water flux into the top of the soil column). The negative 

sign on RHS is because depth is positive downwards, and so the sign of flux matters. This is a 

direct statement of mass balance that matches exactly with the description in the Introduction. 

Richards combined (3.25) with Darcy’s Law for unsaturated conditions: 






 −=

z
1Kq

∂
∂ψ

 (3.26) 

where K is hydraulic conductivity (L T–1), and ψ is water potential (L), and derived: 

∂θ
∂t

= − ∂
∂z

K 1− ∂ψ
∂z

 
 
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 
 
 
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 
 

 

 
  (3.27) 

This is the classical ‘mixed form’ of Richards’ equation. It is called a ‘mixed form’ because the 

dependent variable on the LHS is θ and on the RHS is ψ. Equation (3.26) has three equivalent 

forms that have been used in the RHS of (3.25): 
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θψ

 (3.28) 

where D is soil water diffusivity (L2 T–1), and U is the Kirchhoff transform variable (L2 T–1) (see 

for example Gardner 1958) defined by: 

 d D = d K= U
q

0
∫∫

∞−

θψ
ψ

 (3.29) 

The LHS of (3.25) has similar equivalent forms to (3.28): 
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∂θ
∂t

 =  C ∂ψ
∂t

 =  
1
D

 ∂U
∂t

  (3.30) 

where C is differential moisture capacity (L–1) defined as ∂θ/∂ψ. 

Richards (1931) stated that the solution of (3.27) was unique while the functions between vari-

ables, i.e. K and ψ as functions of θ, or K and θ as functions of ψ, remained monotonic through-

out the entire range of application, and he placed no restrictions of the variables used in (3.28). 

Using different combinations of (3.28) and (3.30), Richards’ equation can be described in one or 

more dependent variables. While each of the forms in (3.30) is analytically equivalent, when 

described in difference form for numerical solutions, they are not equivalent, and cause mass 

balance errors. Only the θ-based form of the LHS can explicitly conserve mass. Given that our 

primary concern here is to accurately keep track of all water, we must use θ on the LHS. 

Analytic solutions of (3.27) up to the point of saturation and in uniform soils have traditionally 

used the θ-based form, commonly known as the Fokker–Planck equation, with θ in the LHS and 

RHS (e.g. Broadbridge and White 1988). Traditionally the ψ-based form has been used where the 

soil becomes saturated, or layers are required, but this form cannot conserve mass except with 

very small time and space steps. Haverkamp et al. (1977) used the U-based form of (3.27) for 

their numerical experiments, but this form is cumbersome and also cannot conserve mass. 

Brutsaert (1971) used (3.27) for saturated and layered soils, thus proving that the traditional ψ-

based form was not required for these purposes. The major step forward was to not use a Picard-

type solution methods requiring a single dependent variable in the equation, but a Newton–

Raphson solution scheme (see for example Shoop 1979). This allowed the equation to be formu-

lated in any way, as long as a derivative with respect to a single dependent variable existed for 

each independent variable. In the general case of saturated and layered (or gradational) soils, the 

only continuous variable is ψ, and Brutsaert used this as the dependent variable of the solution. 

Redinger et al. (1984) and Ross and Bristow (1990) used U on the RHS to reduce the apparent 

non-linearity of the flux term, while using a Newton–Raphson solution. Ross (1990) compared 

different transforms of ψ on the RHS, and found that a speed difference up to a factor of 200 

could be achieved by using the different forms. Further, he found that different forms yielded 

different accuracy, compared to a detailed solution, for the same spatial discretisation. Given all 

forms of (3.28) are analytically equivalent and do not cause mass balance errors, the results of 

Ross (1990) were a function of the soil hydraulic properties used in the experiment. 



 49 

In WAVES the form of Richards’ equation used is: 
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 (3.31) 

where S represents all source and sink terms, e.g. root water extraction, and may be a function of 

the water potential at a node, e.g. water potential on a soil boundary specifies the depth of a water 

table that may be a lateral flowing sink term. 

There are several reasons for using (3.31). Firstly, we do not know what soil hydraulic model the 

user will use. Equation (3.31) is the form that Ross (1990) found was fastest to run with a particu-

lar soil model. Since WAVES does not impose any particular soil model on the user, this will be 

the best equation for the soil model used by Ross. Secondly, the Newton–Raphson solution 

scheme requires derivatives of each term with respect to the dependent variable, in this case ψ. 

The derivative of U is K, and therefore we will not need extra information for derivatives of other 

variables. Finally, we want to minimise the number of arithmetic operations involved. With fewer 

variables in the equation we must reduce the absolute number of operations required. 

3.3.2 Numerical Solution 

Differential Equations 

Equation (1) can be represented in finite-difference form at a depth node i, over time-step j to 

j+1, with arbitrary temporal weighting and central spatial weighting as: 

Fi = α (qi +0.5
j +1 − qi− 0.5

j + 1 ) + (1 −α)(qi +0.5
j − qi −0.5

j ) + ei + Si = 0  (3.32) 

where 

qi +0.5
j = Ki+ 0.5

j −
Ui + 1

j − Ui
j

Dz fi
 (3.33) 

Ki +0.5
j = Ki

j Ki+ 1
j  (3.34) 

ei = θ i
j+ 1 − θ i

j( )Dzci

Dt j

 (3.35) 

zc refers to a central difference, zf refers to a forward difference, and Si is any combination or 

source and sink terms that may or may not be functions of soil water potential. Equation (3.34) is 

a geometric mean of the conductivity. In finite-element solution schemes, linear or arithmetic 
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averages are required due to the solution formulation. Using a finite-difference solution, there is 

no restriction on the form of flux, or even how the average is taken or the variables used to de-

scribe it. As long as they are consistent between iterations there is no numerical problems cre-

ated. The geometric mean causes ‘average’ values to be lower, which we think is more physically 

realistic than the arithmetic average, or an upstream or downstream weighting. 

At the top and bottom boundary, the equations are modified because a central difference does not 

exist at these points. At the surface node, nominally node zero, we have: 

F0 = α q0.5
j + 1 − q0

j + 1( )+ (1 −α ) q0.5
j − q0

j( )+ e0 = 0  (3.36) 

e0 = θ0
j + 1 −θ0

j( )∆z f0

2∆t0

 (3.37) 

 

Note that there are no extra source or sink terms at node zero. At the bottom node, nominally 

node n, we have 

F0 = α qn
j + 1 − q n− 0.5

j + 1( )+ (1− α ) qn
j − qn− 0.5

j( )+ en + Sn = 0  (3.38) 

e0 = θn
j + 1 −θn

j( )∆z fn− 1

2∆tj

 (3.39) 

Let us consider the value of α, which sets the temporal weighting of the solution. When α = 1 it 

is a fully implicit equation that requires an iterative solution, does not use information from the 

previous time-step to get solution fluxes, and has few restrictions on time and space step size. 

When α = 0.5 it is a Crank–Nicolson type, or central weighted, equation that requires an iterative 

solution, uses the last time-steps results as well as current estimates of the solution to proceed to 

an answer, and has some restrictions on time and space step size. When α = 0 it is a fully explicit 

equation that does not require iteration, uses only the result from the current time-step to get a 

solution, makes guesses at the fluxes and boundary conditions (since you can’t go back!), but has 

great restrictions on the allowable size of space and time-steps. 

WAVES is designed to be a daily time-step hydrologic model, running with arbitrary soil types 

and climate, and practical to run on a PC, so we therefore cannot be restricted by using α = 0. 

Using α = 0.5 presents some conceptual problems, especially with boundary fluxes. The flux 

passing the surface node from time j to j+1 is, from (3.36): 
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qs = αq j +1 + (1 −α )q j  (3.40) 

so with α = 0.5 we have the flux at the end of the last time-step contributing to flux for this time-

step. Consider a daily evaporation flux of 10 mm day–1, dropping at a rate of 1 mm day–1 until it 

reaches 1 mm day–1. The actual flux, qs, passing the surface is 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 1 mm 

day–1, etc. The qj on the other hand would be 10, 10, 8, 8, 6, 6, 4, 4, 2, 2, 0, 2, 0 mm day–1, etc. 

With a less smooth drop off, such as the qs halving each day, e.g. 16, 8, 4, 2, 1, 1, 1 mm day–1, 

you can generate absurd values of qj such as 16, 16, 0, 8, –4, 6, –4 mm day–1, etc. The values of qj 

generated for alternating days of rain and evaporation are similarly absurd. This leaves α = 1 as 

the most useful compromise. From (3.40) we have the daily surface flux as a constant for the 

whole time-step, and perfectly defined. The number of terms, and therefore the number of opera-

tions, amount of storage, and derivatives required, in (3.36) and (3.38), will be minimised. 

There are similar conceptual concerns with inferring the flux across a boundary with a constant 

potential. When there is a constant potential at the surface node, there is no change in water 

content at that node. From (3.38), with S0 = e0 = 0, we have: 

( ) 0qq)(1qqF j
0

j
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1j
0

1j
0.50 =−−+
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
 −=

++
5αα  (3.41) 

If α = 1, then the solution to (3.41) is that q0 = q0.5, with α = 0 we have a guessed solution based 

on last time-steps conditions, and with any other weighting we have a mixture of terms that will 

contain the surface fluxes described with flux boundary conditions. These arguments clearly 

point out that α = 1 is the only practical temporal weighting. The other benefits in terms of 

maximising the solution convergence space, minimising the amount of storage and operations 

required, and reducing code size and scope for coding errors, are bonuses on this pragmatic 

decision. 

The spatial weighting is much less important than the temporal weighting, since we must retain 

all the detail in the vertical regardless of the solution. Ross (1990) and Ross and Bristow (1990) 

did make some comments on the use of upstream weighting, but this may have had more to do 

with the soil hydraulic functions than the actual solution technique. In any event, WAVES uses a 

central spatial weighting in solution of (3.31). 

Matrix Solution 

The Newton–Raphson solution solves a matrix of the form: 
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FF  (3.42) 

where [F] is a 1 × N matrix describing how well mass is balanced at each depth node based on 

current estimates of [ψ] (see Equations (3.32) – (3.39)), [∂F/∂ψ] is a tridiagonal N × N matrix of 

the derivatives of Equations (3.32), (3.36), and (3.38), and [∆ψ] is a 1 × N matrix to be solved for 

that are the corrections to [ψ] to make all [F] approach zero. Estimates of [ψ] are updated by: 

ψ new[ ]= ψold[ ]− ∆ψ[ ] (3.43) 

This procedure allows re-calculation of [F] with [ψnew] and iteration until the solution converges. 

This criterion for convergence can be done on the basis of either mass balance (the [F] matrix), or 

required changes to the dependent variable (the [ψ] matrix). Given that we may have a range in ψ 

from millimetres to hundreds of metres and both positive and negative values, a consistent cri-

terion for a change in ψ is difficult. However, being primarily concerned with mass balance, [F] 

gives a direct estimate of how well balance is achieved at each node, and provides a very conven-

ient convergence criterion. In WAVES, the solution is deemed to have converged when: 

Fi ≤ 10-10  (3.44) 

Theoretically, and in practice, this allows mass to be balanced to within 10–10 of the largest water 

balance component, usually rainfall or evaporation. Other important considerations are the size of 

changes to [ψ], and an oscillating solution. Using a tangent method, such as Newton–Raphson, 

where very small gradients exist, a very large change in the value of ψ at a node can result. To 

prevent this from causing further problems, a bi-directional limit is set: 

0 <  all for k, + || 0.8< iii ψψψ∆  (3.45) 

where k is a suitable finite number, set to 0.1 m. Points to note about this limit are as follows. 

Ross and Bristow (1990) used a limit that only stopped a node becoming wetter too quickly, i.e. 

essentially (3.45) without taking absolute values and if the change is to make the node wetter, but 

numerical experiments quickly found this to be unsuitable for the continual wetting and drying 

cycles modelled with WAVES. 

A finite offset value is required in (3.45) to allow a node to reach saturation, otherwise it would 

asymptotically approach saturation and never reach it, and converge the solution. 
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The factor 0.8 is apparently arbitrary, but stops a node from becoming saturated in a single itera-

tion. Again numerical experiments quickly showed the worth of this. 

The value of ψi only needs to be negative, since above saturation the behaviour of ψ is linear and 

therefore does not require constraint with a gradient method, even when the node is becoming 

drier, i.e. ∆ψi is towards the unsaturated. 

The second criterion for changes in [ψ] is to minimise the effects of an oscillating solution. 

Where successive iterations indicate a change in the sign of the correction to ψi, the size of the 

correction is halved. This avoids the classical oscillation a constant amount above and below the 

actual solution. 

Solution of the matrix equation (3.42) requires assemblage of [∂F/∂ψ]. The contents of this 

matrix are the derivatives of (3.32), (3.36), and (3.38) with respect to ψ at each depth node i. As 

stated, this is a tridiagonal matrix and is subject to extremely efficient solution. The components 

of [∂F/∂ψ] at node zero are: 

∂F0

∂ψ 0

 =  
K'0
2

 
K1

K0

 +  
K0

∆z f0

 +
θ'0 ∆z f0

2∆t j

 (3.46) 

f0

1

0

11

1

0
z
K

K
K 

2
K' = F

∆ψ
−

∂
∂

 (3.47) 

where Ki is unsaturated hydraulic conductivity, K' is the derivative of K with respect to ψ, and θ' 

is the derivative of θ with respect to ψ. The components of [∂F/∂ψ] at node i are: 
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The components of [∂F/∂ψ] at node n are: 
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 (3.52) 

Source and Sink Terms 

All sink terms are added or subtracted from (3.32), (3.36), or (3.38) as required. If these terms are 

constant, such as evaporation or rainfall rate, or root water extraction rate, then they have a zero 

derivative with respect to ψ, and therefore do not appear in any of the derivative terms. An exam-

ple of a sink term that is a function of ψ at a node is lateral flux. A watertable that develops on a 

soil layer boundary node i will generate a lateral flux, defined by Darcy’s law for saturated 

conditions: 

q
l = ψ i Ks m  (3.53) 

where ql is the lateral flux (m3 d–1), ψi is the positive water potential at node i (m), Ks is the  

saturated hydraulic conductivity of the soil layer (m d–1), and m is the slope of the land surface  

(m m–1)*. Equation (3.53) would be added to (3.32) or (3.38) as required. The derivative term is: 

  

dql

dψ i
 =  Ks  m  (3.54) 

This term is added to (3.49) or (3.52) as appropriate. Equation (3.53) is recalculated each itera-

tion with an updated value of ψi. 

Soil Layers 

With layered soils, there are special considerations. At a soil layer boundary, the only continuous 

quantities are soil water potential and soil water flux. We plan to calculate water content changes 

using variables other than ψ, so we must take into account that two values of these variables exist 

at the layer boundary. Since flux terms are defined between nodes, they require no special treat-

                                                      

* Darcy’s law of saturated flux consists of a conductivity, depth, slope, and width. Conductivity is taken 
from the soil hydraulic properties, depth of flow is the soil water potential at the layer boundary, slope is a 
constant for the soil profile specified by the user, and for dimensional consistency, the lateral flux flows 
across a unit width of soil. 
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ment. However, the ei terms in (3.36) and (3.38) are defined at nodes, and do require special 

formulation and derivatives. At a node i straddling a boundary, ei is defined by: 

ei = ((θup
j +1 −θup

j )∆z fi −1 + (θ lo
j +1 − θ lo

j )∆z fi )
1

2∆t f
 (3.55) 

where θup refers to the soil layer above the boundary, and θlo refers to the soil layer below the 

boundary. Similarly, the derivative term in (3.49) and (3.52) will contain a mixture of derivatives. 

Boundary Conditions 

There are two possible boundary conditions at the top and bottom of the soil column: constant 

flux and constant water potential. At the surface, a constant flux condition would occur with non-

ponded infiltration or energy-limited (stage 1) evaporation, and a constant potential condition 

would occur with ponded infiltration or soil-limited (stage 2) evaporation. WAVES allows a 

range of different options for surface ponded water: all ponded water becomes runoff, water is 

allowed to pond as if the area were flooded, or a flood depth is imposed. All of these options are 

handled transparently. 

A constant flux boundary condition is set when rainfall or evaporation occurs with an unsaturated 

surface soil. This is done by prescribing the rate of rainfall or evaporation as q
j+1
0  in Equation 

(3.36). If evaporation causes the surface node to become drier than the air-dry water potential of 

the soil, or rainfall causes the surface node to become saturated, then the time-step is re-run with 

a potential boundary condition. This will cause a mass balance problem, because the potential at 

the surface is imposed for the entire time-step. To avoid this, a triangle of water equal to the 

difference between the current water content and that at the constant potential for the top depth 

node must be added or removed, and placed in the accounting for water passing the surface node, 

i.e. (θpot – θold) / 2 × ∆zf0. 

If the surface dries out due to evaporation, the time-step is re-run and the flux passing the surface 

boundary is q
j+1
0.5, from (3.41) with α = 1, plus the triangle of mass removed. When the surface 

node becomes saturated, forcing a constant flux would cause compression of water in the soil 

profile, and very large water potentials. The apparent rainfall flux is therefore reduced by the 

amount of water that is ponded, thus: 

q0 = qrain −
ψ 0

∆train
 (3.56) 
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where q0 is the flux that appears in (3.36), qrain is the rainfall rate, and ψ0 is the estimated water 

potential at node zero equivalent to the depth of ponded water, and ∆train is the duration of the 

rainfall. Because (3.56) is a function of the potential at node zero, a derivative equal to –1/∆train 

will appear in (3.46). If water is allowed to pond, then after convergence the program continues. 

If ponded water is runoff, then the time-step is re-run using a constant potential condition of  

ψ0 = 0, and the runoff becomes the rainfall minus the infiltration (q
j+1
0.5) minus the triangle of mass 

added. 

At the base of the soil column there is only a single boundary condition: constant flux. This flux 

however, may interact with a user imposed groundwater level. In the simplest case, the soil 

column is allowed to drain at a rate determined by the conductivity of the boundary node and a 

throttle value β ranging from 0 to 1. If β = 0, there is no drainage out of the soil column, and a 

watertable may develop. If β = 1 there is gravity drainage assuming a unit gradient, at a rate 

equal to the unsaturated hydraulic conductivity of the boundary node. When 0 < β <1, we have a 

throttled condition which assumes a gradient less than free drainage, due conceptually to a semi-

infinite block of lower conductivity material below the modelled soil profile. In general the 

drainage flux is: 

nd Kq β=  (3.57) 

where qd is the drainage rate, and Kn is the unsaturated hydraulic conductivity at node n. This 

term appears in (3.38), and it has a derivative term: 

n
n

d 'K
d
dq

β
ψ

=  (3.58) 

which appears in (3.52). This flux is always a sink term, i.e. it is water lost to the soil column, 

and is always recalculated between iterations. 

The other condition that may exist at the base of the soil column is a groundwater interaction 

term. In this coupling, the user specifies the depth of an external regional groundwater table, and 

this level may be changed daily through the weather file. This regional level interacts with any 

local water table through the following flux: 

qg = ε (dgw − zn +ψn )  (3.59) 

where qg is the rate of drainage from the local to regional groundwater table, dgw is the depth to 

regional groundwater, zn is the depth of the soil column, ψn is the water potential at node n, 
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equivalent to the depth of water table in the soil column, and ε is a coupling coefficient related to 

the rate of bore recession after a rise. Again, this term appears in (3.38) and has a derivative term: 

dqg

dψ n
= ε  (3.60) 

which appears in (3.52). When the regional groundwater table is deeper than the local water 

table, qg is positive and can be thought of as drainage from the soil column. When the local water 

table is deeper than the regional water table, qg is negative and represents filling of the soil de-

pleted by evapotranspiration. The value of qg from (3.59) is restricted so that its magnitude, 

whether positive or negative, never exceeds the saturated hydraulic conductivity of the bottom 

soil layer. Under these conditions, no derivative exists because the value is no longer a function 

of potential, and (3.60) is not required. 

The quantity ε deserves some description. In a system where the regional groundwater table 

strongly controls local levels, because of high conductivity and good hydraulic connection, or in 

a lysimeter where groundwater levels are controlled externally, ε has a value close to 1.0, mean-

ing that for every millimetre of water extracted, the regional groundwater can supply one in 

return. In this system the local water table is at the same depth as the regional groundwater table. 

As water table recessions become slower, the value of ε decreases. If ε = 0.001, for example, then 

for every 1.0 metre of head difference between the local and regional water table, 1.0 millimetre 

of water per day would be able to be exchanged, conductivity restrictions notwithstanding. So if 

vegetation were able to evaporate 1 mm day–1 more than rainfall, then the local water table would 

be 1.0 m below the regional groundwater table on average. The value of ε should theoretically be 

based on the ratio of the hydraulic conductivities of the soil and aquifer systems. 

3.3.3 Computational Flow 

The sequence of steps to run a single day time-step is as follows: 

• determine whether all rainfall can be intercepted → no rainfall time-step required 

• calculate available water and total osmotic plus matric potential at each depth node 

• if first call for this time-step, CALL energy-balance, which calculates net rainfall 

• determine surface boundary condition 

   *** re-entry point for failed solution, or need to set new boundary condition *** 

• get values of soil water functions for state of last time-step 

• set first estimate of solution to state of last time-step 

• LOOP 

• get values of soil water functions for current solution estimate 
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• calculate coefficients and derivatives for matrix solution 

• incorporate source and sink terms into matrices, i.e. transpiration, watertables, ground-

water interaction or drainage. 

• solve matrix equation 

• check for solution convergence 

• modify estimates of solution, restricting large changes and oscillation 

• check for failed solution, and re-enter if necessary 

• check for change in boundary conditions, and re-enter if necessary 

• accumulate all solved mass balance components. 

This sequence is repeated if both rainfall and surface evaporation occur on the same day. Evapo-

ration and transpiration fluxes, and stresses, are not recalculated in this case. 

3.3.4 Soil Hydraulic Functions 

As stated at the end of section 3.3.1, we do not know what soil hydraulic model the user will 

want to use, so we place no restrictions on this. However, Short et al. (1995) provide a treatise on 

the use of the Broadbridge–White (BW) soil model in practical daily time-step modelling (Broad-

bridge and White 1988, White and Broadbridge 1988). They presented spaces where convergence 

was guaranteed with constant rate infiltration into very dry soil; one of the most numerically 

difficult problems. The strength of the BW soil model is that it links water potential, water con-

tent, and hydraulic conductivity by starting with a physically realistic representation of soil water 

diffusivity. Other important properties are that the functions between ψ, θ, and K are monotonic. 

With a solution scheme that depends on the gradients of these functions, not having zero or 

infinite slope is a great benefit; this is also physically realistic. It has been suggested that slope 

discontinuities are a problem for the Newton–Raphson solution scheme. However, a slope 

discontinuity apparently exists at every point on the soil tables used by WAVES without causing 

numerical problems. Brutsaert (1971) successfully used the Newton–Raphson solution scheme 

with only 10 points to describe the soil hydraulic curves. The issue of zero and infinite slopes in 

the curves is critical to the convergence of the solution, whereas slope discontinuities are almost 

irrelevant. 

The BW soil model has five physically meaningful and measurable parameters, and can represent 

a wide range of soil moisture characteristics ranging from highly nonlinear, associated with 

uniform sands, to weakly non-linear, associated with well-structure forest soils. The space in 

which convergence of the solution is guaranteed for all rainfall rates into all soils described by 

the BW model, shown in Short et al. (1995), is where the spacing between depth nodes is no 



 59 

greater than the characteristic length scale of the BW soil model. This condition is very practical, 

and for a model that must run for long times with dynamic climatic and vegetation stresses, the 

existence of this space is mandatory. Such spaces may exist for other soil hydraulic models but 

they are not available in general, so while another soil model, or a set of empirical equations 

fitting observations, may be used with WAVES, the stability and convergence of Richards’ 

equation cannot be guaranteed. 

3.4 Solute Balance 

3.4.1  Generalised Equations 

Solute Mass Balance 

The solute balance in WAVES is concerned with conservative solutes only, and in particular 

common salt, sodium chloride (NaCl). This solute is assumed to not attach to the soil matrix, or 

affect soil hydraulic properties, or to removed by the plant roots or surface evaporation. Further 

we assume that the saturation concentration in water is never exceeded, thus avoiding problems 

with different solubilities of salts, precipitation of salt, and re-dissolving of salt. Under these 

conditions, we may write a mass balance equation for solute that is similar to that for water 

(3.31): 

 ) S(c+ 
dz
q

t
)c (

s
ss ∂

−=
∂

∂ θ
 (3.61) 

where cs is the concentration of salt (kg l–1), qs is the flux of salt (m d–1 kg l–1, sometimes reduced 

to kg d–1), and S is a source or sink term that may be a function of the salt concentration. With the 

salt transport in WAVES, we assume that the salt concentration does not affect the soil hydraulic 

properties, does not adsorb to the soil and transfer between the soil matrix and soil water, and is 

not removed from the soil by plants or evaporation. Under these conditions, the sink/source term 

can be omitted, and the soil property values and fluxes are constant for any concentration of 

solute. 

In a similar way to water, we can write equations (3.32) to (3.35) for (3.61), thus: 

Gi = qs,i + 0.5
j +1 − qs,i − 0.5

j +1 + hi = 0  (3.62) 

where 

qs,i + 0.5 = qi + 0.5cs,i + 0.5 −θ i +0.5 Ds,i +0.5

cs,i +1 − cs,i

∆z fi

 (3.63) 
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hi = (cs,i
j + 1θ i

j +1 − cs, i
j θ s,i

j )
∆zci

∆t f

 (3.64) 

cs ,i+ 0.5 =
cs,iθ i + cs,i + 1θ i +1

θ i + θ i +1

 (3.65) 

Ds,i +0.5 = D1θi + 0.5τ + D2
qi + 0.5

θi + 0.5

 (3.66) 

where Ds is solute diffusivity (m2 d–1), D1 is diffusion coefficient in free water (constant set to 

0.001 m2 d–1), τ is an impedance factor (constant set to 0.5), and D2 is dispersivity (constant set to 

0.02 m). Equations (3.63) to (3.66) are formulated at time j+1, and this index has been omitted 

where possible for clarity. 

Equations (3.62) and (3.64) are modified at the upper and lower boundary. At the surface node 0, 

we have: 

G0 = qs,0.5
j + 1 − qs,0

j + 1 + h0 = 0  (3.67) 

h0 = (cs ,0
j +1θ s,0

j +1 − cs,0
j θ 0

j )
∆z f 0

2∆t j

 (3.68) 

and at the bottom node n, we have: 

Gn = q s, n
j + 1−q s,n −0.5

j +1 +hn = 0  (3.69) 

hn = (c s,n
j +1θ n

j + 1−c s, n
j θ n

j )
∆z fn− 1

2∆t j

 (3.70) 

With the water fluxes solved for, qs,0 and qs,n are easily determined. If rainfall or irrigation has 

occurred, with or without a potential boundary condition, the surface flux of salt is the volume of 

water that infiltrated multiplied by the salt concentration in the rain or irrigation water. If evapo-

ration has occurred, then there is no salt flux from the surface node. When a potential boundary 

condition is imposed at the surface however, the surface salt concentration must be adjusted to 

account for the change in water content at the surface; see section 3.3.2 Boundary Conditions. If 

there is drainage from the bottom node, then the flux out of the soil column is the drainage flux 

multiplied by the concentration of salt at the bottom node. Similarly if there is upflow from a 



 61 

groundwater table then the flux of salt into the soil column is the inflow flux multiplied by the 

concentration of salt in the groundwater. 

Matrix Derivative Terms 

Equations (3.62) to (3.70) can be expressed in finite difference form, and have derivatives taken 

with respect to cs at each node. At the surface node 0 we have: 

∂G0

∂cs,0

 =  q0.5 
θ0

θ0 +  θ1

 +
θ0 Ds,0.5

∆z f 0

 +  
θ0 ∆z f 0
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At a general intermediate node i we have: 
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At the bottom node n we have: 
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∂Gn
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  (3.76b) 

Inspection of the derivative terms (3.71) to (3.76b) reveals that cs does not appear on the RHS of 

any of the equations. The system of equations is linear, and may therefore be solved in a single 

iteration with the Newton–Raphson gradient method. Even with other water-based processes 

included, the solution remains linear in salt concentration. Take for example lateral flows. Equa-

tion (3.53) describes a lateral flux ql as a function of water potential, conductivity and gradient. 
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When salt is also involved, some mass will be lost from the column via lateral transfers. Specifi-

cally, the flux is: 

q
l ,s =  q

l
 cs,i   (3.77) 

where ql,s is the lateral salt flux at a node, ql is the lateral water flux from (3.53), and cs,i is the 

salt concentration at node i with a perched watertable. The derivative of (3.77) is: 

  

∂ql, s

∂cs,i

 =  ql   (3.78) 

which is not a function of salt concentration, and leaves the solution linear in cs. Equation (3.77) 

is added to (3.62) or (3.69), and (3.78) is added to (3.74) or (3.76b). 

Soil Layers 

At soil layer boundaries, special consideration must be given to (3.64) and its derivative equation 

(3.74). At a soil layer boundary there are two parts to each of the mass components, yielding the 

following, where node k is the soil boundary, and the superscript ‘a’ is for the layer above and ‘b’ 

is for the layer below: 

hk = (cs, k
j +1θk

a, j +1 − cs,k
j θk

a, j )
∆z fk −1

2∆tj

+ cs,k
j+ 1θk

b, j + 1 − cs,k
j θk

b, j( )∆z fk

2∆tj

 (3.79) 

∂Gk

∂cs,k

 =  
θk

a, j + 1∆z fk-1 +  θk
b, j +1 ∆zfk

2 ∆t j

  (3.80) 

Calculation of (3.65) requires careful algebra also to ensure the integrity of the formulation and 

solution. If the solution fails to converge in a single iteration, then it is most likely that the equa-

tions have been derived or coded incorrectly. 

3.4.2 Computational Flow 

The sequence of steps to run a single day time-step is as follows: 

 *** allow soil water solution to converge to get state values and fluxes *** 

• estimate values of soil hydraulic properties between nodes 

• estimate values of solute diffusion and boundary solute fluxes 

• set first estimate of solution to state of last time-step 

• LOOP (once only!) 
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• calculate coefficients and derivatives for matrix solution 

• incorporate source and sink terms into matrices, i.e. water tables, groundwater interaction 

or drainage. 

• solve matrix equation 

• check for solution convergence 

• modify estimates of solution 

• check for failed solution, indicating bad solution 

• accumulate all solute mass balance components. 

This sequence is repeated if both rainfall and surface evaporation occur on the same day. Because 

the solution is explicit (i.e. fixed coefficients requiring no iterations, there are theoretical restric-

tions on the size of time-steps given) we have fixed the depth nodes. These warnings are ignored 

in WAVES and, as a result, small negative values for solute concentration can occur with full 

solute transport but without a saline watertable. The presence of a watertable tends to smooth out 

fluxes, water contents, and sink terms, and provides a generally larger amount of solute that 

eliminates the negative values sometimes obtained. 

3.5 Carbon Balance 

3.5.1 Generalised Equations 

The carbon balance is performed as part of calculation of evaporation and transpiration demand 

for a given day. These fluxes are calculated based on the soil conditions at the start of the day, 

and are not updated during the solution of the water flow equation. A portion of the energy bal-

ance, all of section 3.2.1, is first used to estimate the stresses on the vegetation, the carbon bal-

ance routine is called to calculate assimilation based on those stresses, and then evaporative 

demand is calculated using a conductance based on that assimilation rate. In this way a complete 

feedback between the atmosphere, soil and salt, and vegetation is made. 

The WAVES plant growth model is a generic algorithm with rate-based equations and sound 

physical principles, however empiricism is used where appropriate. WAVES does not attempt to 

model discrete phenological growth stages, and does not fill grain in crops for a prediction of 

yield. WAVES further treats the plant as three buckets of carbon representing leaves, stems, and 

roots. Each of these is assumed to occupy the conceptual site fully. The leaves are evenly spread 

across each square metre, stem numbers are not determined but assumed to be again uniformly 

spread, and the roots totally explore the depths to which root carbon is allocated. This approach 

to plant growth modelling is a result of designing WAVES to be primarily a hydrological model 
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and leaf area index and root distribution are the primary variables interacting with the hydrologic 

cycle. 

Gross Photosynthesis 

The first step in growing our plant is to calculate the stresses on the plant. Within the transpira-

tion subroutine the availability of water to the plant is calculated, in a similar way to (3.24). 

χw =
1−

ψ i +ηΠ i

ψ wilt

 

 
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 
  ∆zi

zmaxi =1

N

∑  (3.81) 

where χw is the relative availability of water, zmax is the depth of the deepest roots within the soil, 

and the sum is taken only over those depth nodes with roots present. 

The osmotic potential due to salt is given by Metten (1966) as: 

ai,si TRC2=Π  (3.82) 

where Cs,i is the molar concentration of salt at the depth node i (mol l–1) given by dividing cs,i  

(kg l–1) by the molar weight of salt in kilograms (0.0585 kg mol–1), R is the universal gas constant 

(0.832 m l K–1 mol–1), and Ta is average daily temperature expressed in Kelvin. A factor of two 

appears because two ions contribute to osmotic potential, both Na+ and Cl–, and they are assumed 

to contribute equally. 

Next the availability of light is calculated, along with the modifying effect of air temperature, 

thus: 

χl  =  
Rn 4600 
2 DL Lsat

   (3.83) 

χt = exp[−αt (Ta − Topt )
2 ]  (3.84) 

where Rn is the net radiation for the canopy of interest (kJ m–2 d–1), 4600 is a units conversion 

factor, Lsat is the saturation light intensity (µmoles m–2 s–1), the factor of two assumes that half of 

sunlight is photosynthetically active radiation, Topt is the temperature at which maximum assimi-

lation occurs, αt is a factor so that χt = 0.5 at the temperature when half of maximum assimilation 

occurs. The value of χl is limited to lie between 0 and 1. 
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At this stage, the actual relative growth rate can be estimated using the integrated rate methodol-

ogy of Wu et al. (1994) by: 

  

g =  1 +  ww  +  wN
1

χl χ t

 +  ww

χw

 +  wn

χ N

 
   (3.85) 

where g is the actual relative growth rate, ww is the weighting of water relative to light, wN is the 

weighting of nutrients relative to light, and χN is the relative availability of nutrients. In WAVES 

full nutrient cycling and leaching calculations are not performed so χN is a constant set by the 

user. 

Next gross production is calculated from Slavich et al. (1998): 

43200
1

DL
))LAIkexp((gAA max −=  (3.86) 

where Amax is the maximum production rate (kg C m–2 12 hr–1), and the scalar on the RHS is a 

correction for day lengths greater or less than 12 hours. 

 

Respiration and Losses 

There are two methods for estimating plant respiration. The first is to assume that it is some fixed 

or dynamic proportion of gross production (see, for example, Landsberg and Waring 1997), or to 

calculate it independently by invoking a rate equation based on the amount of material present; in 

WAVES we do the latter. The maintenance respiration loads for leaves, stems, and roots are 

calculated as follows: 

carminrateresp LDL
)T.exp(LL 





 −=

86400
10850  (3.87) 

where Lresp is the dark respiration of the leaves (in units of kg C), Lrate is the leaf respiration rate 

(kg C kg C–1 d–1), Tmin is the minimum daily temperature, and Lcar is the total amount of leaf 

carbon (kg C). The factor 0.085 in the exponential term doubles the respiration load for an 

8 degree increase in temperature. This is termed dark respiration because the leaf is assumed to 

get all the sustenance it requires during the day as part of normal photosynthesis, and the maxi-

mum net production parameter Amax already accounts for this loss. This is also why the minimum 



 

 

66 

 

temperature, assumed to occur during the night, and the proportion of the day that is night is used 

in the calculation. 

cararateresp S)T.exp(SS 0850=  (3.88) 

cararateresp R)T.exp(RR 0850=  (3.89) 

where Srate is the stem respiration rate (kg C kg C–1 d–1), Scar is the total amount of stem carbon  

(kg C, which may be zero if the plant has no woody stem), Rrate is the root respiration rate  

(kg C kg C–1 d–1), and Rcar is the total amount of root carbon (kg C). For all intents and purposes 

Lresp, Sresp, and Rresp are unknown, and are empirical fitting parameters. 

Leaves and roots are subject to turnover also, where a fixed proportion of the carbon is lost each 

day, thus: 

carrateloss LML =  (3.90) 

carrateloss RMR =  (3.91) 

where Mrate is the mortality rate of leaves and roots, or fraction lost each day (d–1). 

Dynamic Partitioning 

The losses in (3.87) to (3.91) are reconciled against the gross production after that production is 

partitioned to the available carbon pools. This is done on the basis of determining first how much 

is assigned to above-ground and below-ground. This is dictated by water availability and a maxi-

mum partitioning factor: 

wff .SL χβ+== 10  (3.92) 

Rf = 1− Lf − Sf  (3.93) 

where Lf is the fraction of production partitioned to leaves, Sf is the fraction of production parti-

tioned to stems, β is the partitioning factor (between 0 and 0.4), and Rf is the fraction of produc-

tion partitioned to roots. This model suggests that when water is not easily available, i.e. a low 

value of χw, more resources are placed below ground to find water, and when water is plentiful 

resources are put into growing canopy and above ground structures. 



 67 

Now an updated value of the three carbon pools can be calculated by: 

Lcar
new = Lcar + 0.65Lf A − Lresp − Lloss  (3.94) 

Scar
new = Scar + 0.65Sf A − Sresp  (3.95) 

Rcar
new = Rcar + 0.65Rf A − Rresp − Rloss  (3.96) 

where the 0.65 factor is a fixing efficiency of assimilate to actual material. 

There are certain limits placed on the accumulation of carbon pools relative to one another, and 

in total. Leaf carbon will not be accumulated after 99% of light can be intercepted by the canopy, 

due to the marginal cost of maintaining extra leaf resources relative to the extra assimilation 

gained. If the plant has stems, then the stem carbon must be at least equal to the leaf carbon, to 

provide mechanical and hydraulic support to the leaf mass. Root carbon can only be accumulated 

to a maximum of twice the leaf carbon if no stems exist, and four times the leaf carbon if stems 

are present. 

Considerations for Annual Vegetation 

WAVES is simplistic with regard to perennial vegetation, so that when either leaf or root carbon 

is reduced to zero, the vegetation dies and does not regrow. Annual vegetation has a more pre-

dictable cycle of germination, growth, and death, and must be accounted for by the generic 

growth model. This is done by the addition of two parameters: the year-day of germination (1 to 

365), and the lifespan of the plant in degree daylight hours. 

WAVES must check for the day when the plant germinates, and initialise the leaf, stem, and root 

carbon pools. Annuals are assigned an amount of carbon such that the leaf area index is 0.1, a 

matching amount of carbon is given to stems (if they are present), and twice that amount to roots. 

The root carbon profile is assumed to be linear with depth at a density of 0.1 kg C m–3. 

On the day of germination, all resource availabilities are assumed to be at maximum for numeri-

cal purposes, and the counter for degree daylight hours is initialised to zero. The degree day 

hours are accumulated for each growing day by multiplying the average of maximum and mini-

mum daily temperature by the number of sunlit hours in the day, with a minimum of 1 degree day 

hour for any one-day time-step. After an annual has been growing for its full lifetime, all produc-

tion rates are assumed to be zero, and the respiration load is multiplied by 20 to cause the carbon 

pools to senesce. This last process representation is totally arbitrary, but avoids introducing extra 

parameters to better describe this part of the life cycle. 
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Estimates of yield can be made from knowledge of above-ground biomass and actual and poten-

tial transpiration, based on empirical curves (Charles-Edwards 1982). The simplest equation uses 

the Harvest Index: 

Y = HI . DM  (3.97) 

where Y is grain yield (kg m–2), HI is the harvest index, and DM is the total above ground dry 

matter produced (kg m–2, in WAVES this is 2 × Lcar). Values of HI can be found in literature, and 

commonly range from 0.2 to 0.5. Alternative yield estimates can be made by adding knowledge 

of transpiration (de Wit 1958), thus: 

Y = Ymax  m . 
ETact

   ET     pot
 (3.98) 

where Ymax is  maximum grain yield, m is an empirical constant, ETact is actual transpiration (m),

and ETpot is average potential transpiration rate over the growing season (m). Within WAVES, 

the values of ETact and ETpot are stored and can be used for these calculations with a user- 

specified Ymax and m parameter. 

Litter and Grazing 

WAVES keeps track of a fourth carbon pool for ground litter. The effects of litter have already 

been described, for example in equation (3.15) for surface resistance to evaporation. The above-

ground loss term in (3.90) is added to the ground litter pool, and is allowed to decompose over 

time. The decomposition rate is an empirical function of temperature and moisture at the soil 

surface: 

dl =   
Θ 0 χt

10
 (3.99) 

where dl is the proportion of litter decomposed, Θ0 is the relative water content at the surface (0 

is air-dry, and 1 is saturated), and the factor 10 indicates that 10% of the total litter may decom-

pose each day under optimal rotting conditions. 

Grazing can be imposed if plants are to be grown. Grazing pressure is indicated by specifying the 

number of stock equivalents (ewe and lamb pairs) per hectare, and the year-day that they are let 

on, and taken off. Each stock equivalent is assumed to consume 0.5 kg C d–1 ha–1, and this amount 

is removed from the overstorey, understorey, and litter carbon pools in proportion to their sizes. 
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3.5.2 Root Growth 

Roots are growth by a chaotic algorithm, with three very simple rules. The root zone is broken 

into the same node spacings as for the soil water dynamics modelling with Richards’ equation 

(see section 3.3 Water Balance) and root carbon is assigned to each node. This root activity is 

assumed to occur in the region half-way to the next node up, and half-way to the next node down. 

Because of this, no root carbon is assigned to either the surface node at 0 m, or the bottom most 

node, at the base of the soil column. 

The rules that cover root growth are as follows. Firstly, we must maintain a connected root sys-

tem to the deepest node with roots; any net root carbon growth must first satisfy this need. Sec-

ondly, root growth occurs where there is the most water and oxygen available and an existing 

root mass. This is determined by a method similar to (3.81), thus: 
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where FAVi is the favourability for root growth at node i, zi is the depth of node i, and Rci is the 

amount of root carbon at node i. The first term of the RHS represents the water availability, 

taking salt into account, the second term represents oxygen availability, i.e. the deeper below the 

ground the less oxygen diffuses down there, and the final term means that a greater investment 

will be made where roots already exist. The value of (3.100) is calculated at each node, summed, 

made into a relative value, and carbon is assigned to nodes on the basis of the favourability as a 

proportion of the root carbon to be assigned. 

The final rule for root growth is that the plant wants to explore new areas. In practice, if the 

deepest roots are shallower than the maximum rooting depth of the plant, then the favourability 

of the next node is calculated as available for assignment of carbon. 

The other housekeeping issues involved are (1) to maintain a maximum level of root carbon 

accumulation, (2) that root carbon respiration is subtracted on the basis of the proportion of total 

root carbon at each depth node, and (3) that roots will not grow in saturated soil. 

3.5.3 Computational Flow 

The sequence of steps to run a single day time-step is as follows: 

(General Plant Growth) 

• gather availability of water and root growth favourability from other routines 

• calculate availability of light and modifying effect of temperature 



 

 

70 

 

• determine maximum allowable carbon accumulation levels 

• calculate growth rate and gross assimilation 

• check status of annual plants 

IF GERMINATION 

• set growth rate and assimilation to maximum 

• assign minimum carbon to plant carbon pools 

• distribute roots down soil profile 

ELSE 

• accumulate degree day hours of growing season 

• calculate respiration loads 

IF PLANT IS SENESCING 

• set growth rate and assimilation to zero 

• increase respiration loads by factor of 20 

• calculate dynamic allocation amounts 

• calculate carbon pool mortality amounts 

• update carbon pools for assimilation, respiration, and mortality 

• update litter pool for leaf drop 

• check status of grazing 

• calculate amount of carbon grazed 

• reduce leaf carbon and litter pools 

(Dynamic Root Growth) 

• gather favourability index and carbon allocation and respiration from other routines 

• calculate distribution of potential losses due to respiration or saturated soil 

• calculate distribution of potential growth according to general favourability 

• update root carbon for all losses 

• update root carbon at each depth to maintain minimum root carbon for connected root system 

• update root carbon from remaining assimilation 

• recalculate relative amount of carbon at each depth node. 


