H3D Networking Utilities Toolkit

1. Introduction

The H3D Networking Toolkit allows H3D scenes todhared across a network. It is"a 3
party extension to H3D (www.h3d.org) with featufesreal-time collaboration. It
enables users of the H3D API to link two machirggther via the internet and have
certain parts of the scenes on each machine int@nadkeep in sync. The developer
achieves this by adding a few extra lines to tR&D X3D scene-graph file. It has been
developed by Chris Gunn of the CSIRO Immersive Emments Team.
(http://www.ict.csiro.au/staff/Chris.Gunn).

Most of this document (apart for the executive swarynis written assuming that the
reader has knowledge of the H3D API, scene-grapti®object-oriented programming.
However, ndknowledge of networking protocols or software igaed to use the toolkit.

2. Overview
This toolkit allows:

1. Fields of objects to be connected (routed) frommaehine to another

2. Bi-directional routing across a network without sigug circular event
propagation.

3. Dynamic objects that move when pushed by the hambic
4. Grabbing and pulling of dynamic objects.

5. Dynamic objects that can be linked (routed) to eatbler across a network, and
will move in unison, with some resilience to latgnc

6. Ability to route together across a network a sulo$ein array of values (i.e. a
subset of an MF field)

7. Mechanisms for compensating for connecting togetharputers running at
different speeds.

8. A course-grained inter-object collision mechanism.

9. A hand-shaking or hand-guiding feature, that castatg at haptics rates for
smooth physical person-to-person guidance acragsénork.

10. A mechanism to reduce network latency and alserijitt the latency, to improve
mechanical stability in dynamic objects.

An H3D scene-graph is a description of a three dsimal scene and how the objects in
that scene interact. It consists of Nodes whichags®ciated in a parent-child hierarchy
(e.g. a Group node has a number of children, a&hage has an Appearance and a
Geometry node). Nodes have attributes, calleddiéddy. a Material node has the fields



of diffuseColor, shininess etc). The fields of nedan be connected to each other via
routes. In that way, if one field is changed byrtisgeraction, an event can be sent along
a route to some other field (usually in anothere)aghich can also then change if
necessary. Chains of routes can propagate eveotgyththe scene-graph. When a
developer builds a scene-graph s/he connects gt parent child associations of
nodes and also connects routes between fields.

The H3D Networking Toolkit extends the conceptroltes between fields’, so that a
field in a scene-graph on one machine can effdgtive routed to a field in a
corresponding scene-graph on another machine.i§ hegerred to within the toolkit as a
“remote route”. Once in place, these remote roaliesv a user’s interaction with objects
in a scene to be reflected in another scene ruronrgydifferent system, across a
network. The remote routes are bi-directional j&d two users can simultaneously, and
co-operatively, interact with the same scene-g@pacts. The interaction involves both
graphic and haptic effects, with the proviso thatehaptics are involved, care needs to
be taken to avoid feedback and instability issuremithe latency of the network
becomes significant. Components of the toolkit Haeen developed to directly address
these issues and accommodate considerable latadey certain constraints. Using these
components, it has been possible to have dualdispéraction with scene objects over a
network with latencies up to 290 mSec. As an exantpis has allowed a haptic scene to
be shared between a computer in Australia androtteeiU.S. (using the Internet2
network). Examples of this interaction are two ssg@asping a simulated body organ,
such as a liver, and stretching it between themoneruser haptically ‘holding the hand’
of the other to guide them within the scene. Alesgible, is the ability to draw and
indicate in the scene and have those annotatiqresaapn the networked system.

It is important to note that creating a useful affectient collaborative application may
involve the careful selection of which nodes amidf within a scene that it makes sense
to connected across a network, and how that coiemeistmade. It may be wasteful to
connect every possible field of every node to dfsiealent across a network. Instead, it
may be more suitable to do local processing on eachected machine for some
behaviours, while limiting the network transmisstoronly those events that need to be
synchronized. For example, a field of grass waumitne breeze would not need the
motion of each blade transmitted and reproduceddeda, a single wind vector could be
sent and the grass motion reproduced locally. Hsggd of the networking toolkit allows
this selective network routing. As such, the tookiNOT a utility that will automatically
find all fields and hook up two complete scenedit developer input. The ability to
pick and choose what is connected to what, givesléveloper the flexibility to

introduce interesting behaviours, because fieldsranmachine do not necessarily need
to be routed to the identical field or node onrd®ote scene. Using this, a developer can
create a ‘master-slave’ system where actions a@rexaxtly symmetrical. An example of
this would be where one of the two connected sysi@oes some physics calculations
which are relayed to the other system. Anotherasting example of an asymmetric
connection, is a system we developed which alloavader to sculpt clay spinning on a
virtual potters wheel. A networked user could sitaéously work on the spinning clay,
but could also choose to make the clay spin atferdint speed or even around a different
axis.



The toolkit is alsoot a system which will transmit a new 3D scene teraote machine.
It is assumed that the H3D file containing the sclkeas previously been sent to the
remote machine so that both machines start uptivglsame scene in the same state.

As well as the Nodes directly related to networkithg toolkit also contains other Nodes
that promote collaboration. The Nodes can be desdrin four categories:

* Networking Nodes — performing the network messaging

* Object Movement Nodes — allowing objects to be ialaited either individually
or in collaboration, whilst accommodating netwaakehcy.

» Hand Guiding Nodes — allowing one user to hold gmnde another user’s hand
(actually their haptic tool). These nodes also entdle-operation of one haptic
tool from another across a network.

The toolkit was developed to connect two machingsther. However, since the
networking has been encapsulated into a scene-dfagé, it is possible to add the node
multiple times in the scene-graph. It thereforeustidoe possible to build in a connection
to more than one machine, thus allowing three-vaaye¢en N-way) systems, although
this has not been tested.

3. Package

The package consists of source files, a MSVisudiStouild environment (modeled on
the H3D one), documentation and example x3d files.

The bin directory contains dlls built using MSVisstudio V9 (2008). If those binaries
do not work on your system, you may need to rebwittlin your environment. (see
section 4).

As with H3D, the dlls contain nodes that can bedusex3d files. You can also inherit
from the nodes to develop your own nodes. In mases, e.g. RemoteCoordPoint, an
existing node can be used as a template on howgkement a similar node if needed.

4. Running the examples

There is an example folder with x3d files testitiglee classes. The file ExamplesList.txt
specifies which x3d file uses which Node. Theselmansed to see the effect of each
node and also as examples of how to use them.

Some of the x3d files will run by themselves witBH.oad, just like normal H3D files.

Others require a servand_clientprogram to run. These all have matching server and
client x3d files, identified by the “Server” or “iéht” at the end of their filenames.

e.g. BufferedMFieldTestServer.x3d and BufferedMéastClient.x3d

It makes most sense to run these on different mashif you are doing that, you will
need to edit the client version of the file, to zn the hostname or IP address of the
server machine in place of the word “server_hosgiamone or two places in the files.




You can, however, run both on one machine, forggiurposes. If that is the case, you
will need to run at least one of the two programsriouse-mode’. To do this, you can
put the word localhost” in the file in place of fger_hostname”, but comment out the
line

<IMPORT inlineDEF ="H3D_EXPORTS exportedDEF ="HDEV AS="HDEV />

And uncomment the lines:
<l-- MouseSensor DEF="mouse"/>
<Devicelnfo>
<MouseHapticDevice DEF="HDEV">
<MouseSensor USE="mouse" containerField="m ouseSensor"/>
<RuspiniRenderer/>
</MouseHapticDevice>

</Devicelnfo -->

5. Building the library

Pre-built dlls are included with the package. Thaye been built using Visual Studio
V9. However, the configuration for this build magt match your system. If the
examples fail to run, try building as detailed here

This library is built in the same way as H3D.

Run CMake:
Set source code pointing at your H3DNetworking Utilsld
Set binaries pointing at your H3DNetworkingUtilsillimySubDir
Configure
Set CMAKE_INSTALL_PREFIX pointing at your H3DNetwangUtils
Set EXECUTABLE_OUTPUT_PATH pointing at your H3DNeidvkingUtils/bin
Set LIBRARY_OUTPUT_PATH pointing at your H3DNetwank Utils/lib
Configure again
Generate

Run H3DNetworkingUtils/build/mySubDir/ H3DNetworlkgttils.sIn
View/Solution Explorer
Choose Debug
Choose INSTALL
Choose Release
Choose INSTALL
Build solution



6. Detailed Description

The toolkit is open source using the MPL licensa:(/www.mozilla.org/MPL ). It
consists of C++, X3D and python source code. The e compiles into a dll
(dynamically linked library). Individual class daoentation is available in the doc
directory. You will need the usual H3D environmamivork with this library.

The toolkit allows you to link a field of a node one machine to a similarly typed field
of any node on another machine, such that they &aep other informed of their current
values. We refer to this connection as a ‘Remotdf-igince it is analogous to the field
routing system within a H3D scene-graph, exceqtithvaorks remotely, i.e. to another
machine.

field field
routes
N)ute;\ RemoteRoute /
X
Internet .
RemoteField ( ) RemoteField
Field > Field

Figure 1. RemoteField connected via field routes.

Typically you would route an H3D field to tliemoteFieldin your scene-graph. The
H3D field update system will update tRemoteFieldas soon as an event occurs
(RemoteFieldsare always ‘AutoUpdate’). ThHRemoteFieldthen sends the field’s value
to the far machine. Typically, the far machine Wigive itsRemoteFieldrouted to some
field in its scene-graph. That field will then recethe new value.

Although you can think of thRemoteFieldas a single field, it is, in fact a Node and it
contains several fields of its own (see below). (meortant field of a RemoteField
node, is itdieldld . Each RemoteField in the scene must haweiquefieldld number.
Unfortunately, in the current implementation, thisreao check on this beware!

The advantage of having a node control messagedling in both directions is that it
can prevent a circular event lockup — a messag@rgyrand being sent on to a scene
object cannot be reflected back to its source.

6.1. Client, Server, Ports and Sockets

The two collaborating machines must be declaremichentandserver.lt doesn’t matter
which machine is the client or server, as it isyanlthe initial connection that they differ.
The client and server have slightly different segregoh code, but this amounts to a
difference of only two or three lines in the H3:fiThe difference is that the server



must be ‘listening’ for a connection froamy client, whereas the client must be told the
specific name of the server that it needs to canieec

They communicate via port, which is identified by a port number. It is conient to

think of a port as the termination of a communmagi wire from one machine to another.
This is obviously not correct, as a computer carelalarge number of ports open
simultaneously, and typically it only has one phgscommunications cable. But
logically this can be assumed. A port is often associatddagiocket The socket and

port can both be referring to the same communioatime termination. Aockets a

term for software providing the low level code thandles the communications protocol.
Theport is a reference the operating system uses foirtagdrmination, regardless of
the socket code using it. The toolkit makes avé&lavo socket types: TCP and UDP,
which can be used simultaneously in the same séendifferent fields. TCP is slower
than UDP, but guarantees that each and every nmeegségthrough. (More on this later).

6.2. RemoteConnection

Before aRemoteFieldcan send values back and forth, some ‘hand shakirth
initialization must happen. It is convenient to gpsulate this in a node, called a
RemoteConnection A RemoteConnectionfirstly creates extra threads to handle the
reading and writing to the communication line (yél8D program probably already has
more than one thread running). TRemoteConnectionthen connnects to its
correspondingRemoteConnectionnode on the remote machine and prepares for the
sending of data. RemoteConnectionis, in fact, aGroup node that is a container for a
number ofRemoteFields. Having done its setup, it then services itsdchil
RemoteFields, sending their data when necessaryRémoteFields can be sending
several different data types: Vec3f, Vec2f, Fldait32, Rotation, Bool, Time etc. It can
also send arrays of these types.

You won't actually see the wordRemoteConnectiori, in an H3D file, however, since

it is actually an abstract node. The implementatifan either a server or client are in one
of the nodesRemoteServerandRemoteClient which both inherit from
RemoteConnection. ThdkemoteTCPServer RemoteTCPClient RemoteUDPServer
andRemoteUDPClientinherit from them and are the final concrete ing8tdions that
appear in your H3D file.

There is no difference between the server andtaliedes once they are running - they
differ only in their startup hand-shaking.RremoteServerstarts by ‘listening’ on a port
number, when it is opened. This means that any machat tries to contact it on that
port will be ‘heard’. Consequently,RemoteServemeeds a fieldjsteningPort, which
is an integer providing the port number on whicligten. (It should be noted that care
should be taken when choosing a port number —alegvh

A RemoteClientneeds to be told either the host name or IP addriethe machine it
needs to connect to, as well as the port numbd#retefore has these two fields -
remoteHostandremotePort. When it is opened, it sends a message to théfigpeaost
and port, and if that host is in fact runninBR@moteServeron that port number, they
will set things going.



TheRemoteServeror RemoteClientshould be included in your H3D file within the
same scene-graph as your scene objects.

Here is an example of how to include these new siadthe scene-graph for the server
machine:

<RemoteTCPServer DEFR"server "
listeningPort =" 40000 "
open="TRUE >
< RemoteSFVec3f DEFR"graphic_tool_pos " fieldld ="0"/>
< RemoteSFBool DEFR="button " fieldld ="1"/>
< RemoteSFInt32 DEFR="choice " fieldld ="2" />
< RemoteSFColor DER"cIr " fieldld ="3" />
< RemoteSFFloat DER"transp " fieldld ="4" />
< RemoteSFRotation  DER"rot " fieldld ="5" />
< RemoteSFString DER"str " fieldld ="6" />
< RemoteSFTime DEFR="time " fieldld ="7" />
< RemoteSFVec2f DEFR=" particleSize " fieldld ="8" />
</ RemoteTCPServer >

Figure 2. Example serverH3D code

Here is an example of how to include these new sigdéhe scene-graph for the client
machine:

<RemoteTCPClient DEF"client "
remoteHost ="localhost "
remotePort ="40000"
open="TRUE >

< RemoteSFVec3f DEFR=" graphic_tool_pos " fieldld ="0" />
< RemoteSFBool DEFR="button " fieldld ="1" />

< RemoteSFInt32 DEFR="choice " fieldld ="2" />

< RemoteSFColor DER"cIr " fieldld ="3" />

< RemoteSFFloat DEFR"transp " fieldld ="4" />

< RemoteSFRotation DER"rot " fieldld ="5" />

< RemoteSFString DER"str " fieldld ="6" />

< RemoteSFTime DER"time " fieldld ="7" />

< RemoteSFVec2f DEFR" particleSize " fieldld ="8" />

</ RemoteTCPClient >

Figure 3. Exampleclient H3D codé

You will note that there are ritemoteFieldsmentioned and that there are, instead, new
node types likeRemoteSFVec3f. This is becaus®emoteFieldis an abstract class.
The concrete specializations of it are:

RemoteSFBoolfor a remote single field of Boolean.

RemoteSFColor for a remote single field of color.

RemoteSFFloatfor a remote single field of float.

RemoteSFInt32for a Reomte single field of int.



RemoteSFRotationfor a remote single field of rotation
RemoteSFStringfor a remote single field of string.
RemoteTimefor a remote single field of time.
RemoteSFVec2ffor a remote single field of Vec2f.
RemoteSFVec3ffor a remote single field of Vec3f.
RemoteSFVec3fPair for a remote single field consisting of a paiMafc2f.
RemoteMFBoolfor an array of boolean
RemoteMFFloatfor an array of float

RemoteMFInt32 for an array of int

RemoteMFString for an array of string
RemoteMFVec3ffor an array of Vec3f

Note that in the code above, ed&bmoteFieldhas dieldld number. Thdieldld s of the
RemoteFieldsin both the client and server must match. For gptanfi a remote field, of
type RemoteSFVec3fhas fieldld ‘7’ on one machine, there should be a
RemoteSFVec3fwith fieldld ‘7’ on the other machine, to allowtdao flow between the
two. The fieldld is used by the system to deliver torrect data to the correct
destination, as the system actually multiplexedifferent elements of data during the
streaming process. Note also that, although thegated “RemoteFields”, each
RemoteField is not a field at all, but a Node, eamihg fields of itsown Thefieldld is
one of those fields. This is because, althougtchilyi it helps to think oRemoteFields
as fields which can be routed together, they nedthve their own attributes associated
with them, and therefore these attributes areisethe usual H3D field mechanism.

In the examples so far we have set up a serveclard. You may have noted that both
the client and server have apen="TRUE?" field setting. Before connection can happen,
the server needs to be “open”. However, if thentlie “open’ at startup, it would
repeatedly try to connect to the specified seraed, this may be a nuisance if the server
was not running yet, as it blocks the main grapthcsad occasionally while it tries to
connect. A more typical situation would have therdl start up wittopenset toFALSE,
and have some user-interface widget, such as arutt perhaps a keyboard key, routed
to theopenfield, to turn it on when the user decided toargonnection. However, for
simplicity in our examples, we will set the cligntbe open from the start. This will still
work, even if the server is started up after thent!



6.3. Routing to the RemoteFields

Having a remotely connected scene will not actuddiyanything unless we route values

in and out of thesRemoteFields. We have already come acrossfieklld field of a
RemoteField The two other most important fields in these rsogetoBeSentand
received.We route any value that we want to be sent to theranachine, into the
toBeSentfield. We route theeceivedfield to any value that we want to change when the
remote end changes (see figure 2)..

toBeSent | received

toBeSent | received

Machine A Machine B
H3D Nod . H3D Node p
<+ n
SFvecs : SFVec3
RemoteSFVec3f RemoteSFEVec3f

——,—— e e e ———

Figure 2. Routing to RemoteFields

You may notice from Figure 2, that there seemseta bircular connection: The SFVec3f
on machine A is connected through to the SFVec3hanhine B, but that is also
connected back to the original SfVec3f. The todtlds an in-built mechanism that
prevents circular lockups of events. (The data aerdss the networked is time-stamped
so that the system can identify which event caaséata transmission and can therefore
block the same event being reflected back to tlggnating machine.)



6.4. A Simple Scenario

Suppose we want to display each user’s stylusdrstiene of each other’'s machine. Let’s
assume that, to differentiate it from the localrissstylus, we want to display it as a
simple cylinder. We could use the code in figure&pw (also reproduced in
ExamplelServer.x3d). This creates a graphic tcesgmt the other user’s haptic tool, a
RemoteClient containing 3 RemoteFields, and robétseen the relevant fields.

<Group >
< ImportLibrary url =".\bin\H3DNetworkingUtils_vc9_d.dll ">

< IMPORT inlineDEF ="H3D_EXPORTS exportedDEF ="HDEV AS="HDEV />

<l-- Represents the other user's tool -->
< Transform DEF="rem_graphic ">
< Transform  rotation ="100-1.57 ">
< Shape>
< Appearance >
< Material DER"matl" diffuseColor ="0.6090 "/>
</ Appearance >
< Cylinder  radius ="0.005 " height ="0.1"/>
</ Shape>
</ Transform >
</ Transform >

< RemoteTCPClient DEF="client
remoteHost ="152.83.70.187
remotePort ="40000"
open="TRUE >

< RemoteSFVec3f DEFR" graphic_tool_pos " fieldld ="0"/>
< RemoteSFRotation =~ DEF=" graphic_tool_or " fieldld ="1"/>
< RemoteSFBool DEFR="button " fieldld ="2"/>
</ RemoteTCPClient >
<l-- Sending and receiving the tool position -->
< ROUTEfromNode ="HDEV fromField =" proxyPosition
toNode =" graphic_tool_pos " toField ="toBeSent "/>
< ROUTEfromNode =" graphic_tool_pos " fromField ="received
toNode ="rem_graphic " toField ="translation ">
<l-- Sending and receiving the tool orientation -->
< ROUTEfromNode ="HDEV fromField ="trackerOrientation
toNode =" graphic_tool_or " toField ="toBeSent "/>
< ROUTEfromNode =" graphic_tool_or " fromField ="received
toNode ="rem_graphic " toField ="rotation "/>
<l-- Sending and receiving the button -->
< PythonScript DEF="ps" url ="Examplel.py "/>
< ROUTEfromNode ="HDEV fromField ="mainButton " toNode ="button " toField ="toBeSent "/>
< ROUTEfromNode ="button " fromField ="received " toNode ="ps" toField ="boolToFloat "/>
< ROUTEfromNode ="ps" fromField ="boolToFloat " toNode ="matl" toField ="transparency "/>

</ Group >

Figure3. Code for a simple sen. Example

The code for the corresponding server would betidaln except for three changes:
1. the nodeRemoteTCPClientwould be replaced witRemoteTCPServer
2. the “‘remoteHost line would be removed
3. “remotePort” would be replaced withlisteningPort”



The server code is contained in ExamplelServer.x3d

Note that in the figure 3, the field that is routetb thetoBeSentfield is not the one that
thereceivedfield at the other end routes to. In our scenav®are displaying theemote
user’s stylus - we want oown stylus to move quite differently. This is an exadenpf
asymmetric connection of fields. Connecting up sgene-graphs is not usually a case of
simply connecting every field of every node todtpiivalent on the other machine.

Note the line:
< ImportLibrary url =" .\bin\H3DNetworkingUtils_vc9_d.dll ">

This contains the Networking Toolkit and is a diytamically linked library) which is
loaded at run time.

6.5. TCP and UDP

The two types oRemoteConnectionnodes in examplel (figure 3RemoteTCPServer
andRemoteTCPClient,are implemented using TCP sockets. TCP socketekable

(i.e. they can’t lose data and the data is guaeante arrive in the correct order), but can
be slow or have irregular delivery rates (i.eejitxt An alternative method is UDP, which
is, faster and more regular, but unreliable. Thaaipacket of data may become lost
altogether and not arrive at all, or packets ohdaay arrive out-of-order. This may
sound dire at first, but there are circumstancgse@ally in haptic interaction, where this
is preferable to having the longer latency andijittf TCP.

The toolkit hadRemoteUDPServerandRemoteUDPClient using UDP, which can be
used in your scene-graph. In fact, you can havie 56t and UDP running
simultaneously in the same scene — but you musemaie that they use different ports.
The UDP code is encapsulated in the noBesnoteUDPServerand

RemoteUDPClient

You may be wondering why we might want to use shimgtthat isunreliable In fact, a
lot of the time the data that we send back andhfoeied not actually arrive every time —
we can get away with missing a bit every now amghtiWith the reliable TCP, if a
packet of data gets lost along the way, the TCRBysepeatedly resends it until it is
correctly received. This means that there is aydelale the system sorts itself out. To
lose a bit of data may be preferable to the dedgyired to fix the problem. Where we
have two parts of the scene that are tightly cotatkleaptically, such as the two tools
linked together directly with a simulated springg meed minimum latency, and can
tolerate an occasional lost value, because anotéer similar value will be coming
along straight away. In that circumstance, we Hauad that the UDP version works
better. It doesn’t matter that much if a small noeat of one user’s hand is lost, as long
as we get the most up-to-date position that we \dsnare better off getting the most up-
to-date value, rather than spending time checkintgrasending one which would be out
of date anyway.

However, is data arriveolut-of-orderit could in fact cause problems. An old position
value coming in after the user’'s hand has movedsimhpfurther along could cause a
momentary force backwards. This is something thahot be tolerated in our scenes, as



a data value arriving that is out of date couldseaa violent jitter. The toolkit has its own
sequence checking algorithm embedded in the codshwhll throw away out-of-order
data.

In certain circumstances, however, we must us@ @@ versions, as we can'’t afford to
lose a single value. An example of this would liBoalean field - if a change from true
to false was lost, the scene behaviour could benatiaally different from that intended.

The UDP implementation has the added advantaggaliatan schedule it to send data
at rates faster than the graphics refresh ratght up to the haptics refresh rate (1000hz)
in fact.

The samd&remoteFieldnodes RemoteSFVec3ttc) can be used with both TCP and
UDP implementations.

6.6. Routing into the Haptics Thread

Typically, you would route from eeceivedfield of aRemoteFieldnode into a field that
is used by the graphics thread of your H3D programexample might be from a slider
value on one machine to a slider value on anofizethat the second user would see the
slider move. Note, however, that the value carvainto the RemoteField
asynchronously, since the data-reading code hasvitshread that is not synchronized
with the graphics thread. If the field mechanisih tiee data immediately into the
destination, it may change the value at an inappatgptime relative to the work that the
graphics thread is currently doing.

RemoteConnection H3D Node

Network
From netwo reading loop
(thread Reryote, | H3D
\_ Field b field
o route

Figure 6. Receiving thread

H3DNetworkingUtils has an inbuilt protection meclsan that prevents this problem.
This mechanism delays data updates reaching thieakesn field until an appropriate
time in the graphics cycle.

Sometimes we may want to use data as soon asvgs(e.g. with values that are to be
used in the haptics thread). If this is the cagecan turn off this protection mechanism,
to allow the data to go straight through. This barused in conjunction with the
RealTimeAttractor node, which uses locking to ecttthe data and set it into the haptics



thread for immediate use. To do this, the fieldapticField (which by default is FALSE)
can be set to be TRUE.

Sometimes you need a value sent as soon as a mewation to the remote system is
made, even when the local value has not changeslisrachieved by setting the
sendOnConnect field of RemoteField node to TRUE.

As we saw in Figure 3, we are displaying the mov&noétheremoteuser’s stylus and
ourownstylus quite differently. However, there are cmatances when you would like
the two networked representations of siaenelogical object to stay ‘in synch’ with each
other - i.e. you want both users to see a singkecbimove in the same way to give the
impression that they are interacting with the @negle object. In that case, you can
route the same fields of the same nodes in eactesogether. There is a mechanism to
prevent circular events in this case.

6.7. Making sure you get all values

In an earlier section it was mentioned that, usiiegTCP version, delivery of all data is
guaranteed. This is true within the reading threfatthe program. However, it can happen
that two or more updates to the same data careasrnivthe network within the time taken
for a single graphics cycle (remember that the lyothread is cycling independently of
the reading thread). In that case a value may &tmg or more times before the
graphics thread cycles around and is aware of hagge at all. This can typically
happen if the two machines communicating have diffecapabilities and are running at
different frame rates.

There are certain circumstances where this is uraids. Take, for example, the case
where you are sending a ‘button-down’ Boolean, ¢gtieel by the user pushing a button
momentarily. If the data for the “down=true” andWin-false” arrive during one
graphics cycle, the fact that the button was pushed can be lost. To prevent this loss,
we can set thbufferReceivedValsfield of RemoteFieldto TRUE. The effect of this is
for the receiving thread to buffatl values received, and to release them to the graphi
thread one at a time — i.e. the graphics threpdssed one of the new received values
each graphics cycle, until the buffer is exhaustedociated with this is another setting
on the RemoteFieldyufferStrategy. If bufferStrategy is NONE, no buffering is doriie.
bufferStrategy is SET_ONE_PER_CYCLE, a single nestivalue is released from the
buffer to the graphics cycle on each time roundgttaghics loop. If it is SET_ALL, each
received value is released in sequence to the gsagiiread, but they all in the released
in the next single loop of that thread. SET_ALLhhs an effect if the field that you are
routing into is AutoUpdate.

6.8. Port Numbers and Firewalls
As mentioned above, we need to allocate a port eariab our communications.

The IANA (Internet Assigned Numbers Authority), ¢art and assign various port
numbers.

The port numbers 0 through 1023 (calleefl-known’ports), are assigned for certain
common applications. For example port 80 is assidoeweb servers.



Then the numbers 1024 through 491&gisteredports), are listed by the IANA as a
convenience for the community to develop convemtiéior example ports 6000 through
6063 are registered for X window servers.

Numbers from 49152 through 65535 are availablefyruse. To be safe from conflict,
choose your port numbers from this group.

Also, it is common for a computing system to haveeall installed, protecting it from
unauthorized access via the internet. The toolkitomly be able to connect if there are
no firewalls between the communicating machinesif tinere are firewalls, ginhole’
through the firewall has been set up. A pinholgimgply an entry in the firewall
configuration table that specifies that data fropadicular IP address is permitted to a
particular port number. This needs to be set upddih TCP and UDP. You systems
administrator should be able to do this. Usuallyauistrators like to open up a port to
specified external host names or IP addresses smifhey may require both the port
numbers and host names to which you will be commgct

6.9. Multi-valued fields

The toolkit contains some multi-valu&emoteFields, e.gRemoteMFVec3f These

work in the same way as tRemoteSFieldnodes, but they send an array of values from
one H3D MField to another on another system. Howdlie MField has no way of

telling theRemoteMField which of the array values have changed. Becautesyfthe
RemoteMField must sendll the values across the network. For large arrhysntay be
wasteful of network resources. TRemoteNodeFieldnodes were created to overcome
this. The currently implemented instancefReimoteNodeFieldare:

* RemoteCoordPoint
« RemoteNormalVector,

To use these nodes you need to know which valuéeeiarray have changed. You may
know this from the user input that caused the chaRgr example, if the user is
sculpting a surface, the code that detects thetasehing the surface and changes it
probably knows which vertices on the surface aregpehanged. You need to route
those indices, along with the MField being changedheRemoteNodeFieldnode. It
then extracts only those changed values and shads tlong with their corresponding
indices, across the network to the other machihe.réceiving machine then explicitly
sets only those values at the other end. The fensoteNodeFieldcomes from the fact
that it is designed to work on a particular node &eld within that node. For example, a
RemoteCoordPointwill work on the point field in a Coordinate node.

6.10. Haptic Effects

One of the more interesting possibilities of netkaal haptic programs is the ability to
feel things that the other user is doing. Usingrttethods described so far, we can move
objects in the scene and another user, conneateaigth the Networking Toolkit, will



feel that movement if they are grasping the sanpectbrlhey are feeling the motion of
the object, they are not feeling what the other iss&eeling.

If we connect through the field network, as we hbgen discussing so far, the motion is
occurring during the graphics loop, typically abab30 Hz. If a user is directly grasping
the object, they will feel this as a vibration grittiness’ during movement. It would be
more desirable to feel the movement at haptics ratt000Hz, as this would feel much
smoother. This can be done with the toolkit. Tothetbest effect we need to firstly use
UDP transmission of data, and also we need tovedke data into the haptics thread,
not the graphics thread. One useful implementadfchis technique is in hand guiding.
Using this, one user can effectively grasp anatiser’'s haptic tool and “pull them
around” in the 3D scene. This is sometimes refetweas “hand shaking”, but it can be
much more useful than the simple novelty of shakimigeone’s hand across the internet.
It can be used by an instructor to guide a stutteatparticular spot, and act in a
particular way. This can be especially useful irg&al training, but is possibly
applicable to other domains as well.

To demonstrate the capabilities of the toolkit wk work through the addition of hand
guiding into Examplel. Firstly we will need to aa&emoteUDPServerand
RemoteUDPClientfor haptics-related updates. We will addmoteFieldsto these, to
send an attraction point from one user’s haptit position to the other’s scene and vice-
versa. In this way the two tools will be attracteagach other. We will keep the
RemoteTCPServerandRemoteTCPClientin the scene to perform the graphic updates
as before. We will also take advantage of two otfuetes in the toolkit,
ToolPosDetectorandRealtimeAttractor .

ToolPosDetectorsimply detects the haptic tool position and presgidn output field
containing it. This sounds just like the proxyPiasitor devicePosition in the H3D
HapticsDevice node. The difference is that thetpmsis updated dtapticsrates
(~1000Hz) not graphics rates. This gives us a meassnding data across the network
faster than the graphics rate, thus helping wigmaoth feel at the receiving end.

RealtimeAttractor is a spring force towards a specified point ingbene. It actually
inherits fromAttractor , but differs in that the point in the scene cartl@nged at rates
faster than the graphics frame rate (up to 1000Hz8.changed point is used in the
haptics loop to modify the force. It has fieldsateig to how strong the attraction is and
how far it reaches. It also hasveghOffset field that can prevent the first ‘grab’ of the
tool causing a jerk towards the other tool positibthis is set to TRUE, when the
attractor becomes active, it uses the current oéfisthe position as a zero force point and
creates forces when either user deviates from tiéie allows a user to grasp the other
tool back along the stylus shaft, or at some dedrom the tip, leaving the tip itself
clear of any graphic associated with the graspoog t

An attractor has aenabledfield which, when TRUE switches on the hand guydiorce.

The extra lines that we need to add to ExampleXlaoevn in figure 7. The full H3D
code can be found in Example2Server.x3d and Ex&@lent.x3d.



<l-- For hand guiding -3
< ToolPosDetector DEFR=" haptic_tool_pos
enabled ="TRUE

/>

< RealtimeAttractor DEF=" attractor
point ="000 "
radius ="0.2 "
strength  ="8.0 "
devicelndex ="0"
localEnabled ="TRUE
remoteEnabled ="TRUE
withOffset =" FALSE"

/>

< RemoteUDPServer DEFR="udp_server

listeningPort ="40002"
open="TRUE
periodicSend ="TRUE
periodicSendRate  ="800"
simulatedLatency ~ ="0.000 ">
< RemoteSFVec3f DEFR="rf_haptic_toolpos
isHapticField =" TRUE
fieldld ="0">

</ RemoteSFVec3f >
</ RemoteUDPServer >

< ROUTEfromNode ="rf_haptic_toolpos " fromField ="received
toNode =" attractor " toField ="realtimePoint ">
< ROUTEfromNode =" haptic_tool_pos " fromField ="localPos
toNode ="rf_haptic_toolpos " toField ="toBeSent "/>
< ROUTEfromNode ="button " fromField ="received
toNode =" attractor " toField ="enabled " />
< ROUTEfromNode ="HDEV fromField ="mainButton
toNode =" attractor " toField ="enabled " />

Figure 7. H3D code required for hand guiding (servg

You will notice from Example2 that ttiRemoteConnectionshave the fields
periodicSendandperiodicSendRate Normally a value is sent across the network only
when it changes. [feriodicSendis TRUE, a value is sent to the other end at the
periodicSendRate regardless of whether it has changed or notuircase the tool tip
position is being detected at about 1000Hz. Wesattng theperiodicSendRateat

800Hz (i.e. a lower rate than is available) becdnysexperimentation it was found to still
provide a smooth response, and would reduce theonetraffic. UDP is a fairly
“unsociable” protocol, in that it can monopolizeetwork if it floods it with data, to the
detriment of other users. Although the haptic iat&ion typically uses a much lower
bandwidth than, say, video, minimizing network fiaghould always be a consideration.

There is also aimulatedLatencyfield. This can be used for testing when you are
working with a low latency LAN but you eventuallyawt your code to work on a WAN
with significant latency. If non-zero, it simulatagatency by queuing all network data



and releasing it at the correct rate after theifpddatency. Be aware that it does not
simulate any jitter, however, and the jitter on AM/can also have an effect on object
behaviour in a haptic scene. A WARNING — make sune have reverted your
simulatedLatencyvalue to zero before deploying your system!

4, Remotely Connected Dynamic Objects

As mentioned in section 3.6., you may like to keep networked representations of the
same logical object to stay ‘in sync’ with eacheastho that they behave as one, single
object. In that case, you can route the samesfieldhe same nodes in each scene
together.

However, care must be taken when connecting earnvékelds of remote machines. If
the local system has a mechanism determining theement of an object (such as exists
in theDynamicTransform nodes in the H3D API), it may conflict with anytdaoming

in from a remote machine. In particular, if two rhaxes are separately calculating the
position of a DynamicTransform, and sending thelcalated positions to each other, the
objects may jitter between two positions on th@ldig, as the delay (latency) in the
network may cause a discrepancy between the vedsdved and that calculated locally.
This jitter can, in some cases, accelerate urdikgrstem becomes unstable and unusable.

The toolkit contains nodes which overcome thistiidn under certain circumstances.

The solution used in the toolkit involves havimgsterandslavedynamic nodes in the
scene. The master can be any of@nabableDynamic nodes (see below), and the slave
is implemented as @rabableDynamic with slaveModeset to TRUE.

Another requirement is that users push and puaibjaround via virtual springs. In that
way, a number of users can be attached to oneta)eaco-operatively move it. Of
course, the springs can be quite stiff, so thafdbekis as if you are grabbing the object
directly. The alternative, of routing a user’s tpokition directly to the object’s position,
fails when more than one user is interacting withecause the movement can often be
in opposition, and the object can jitter betweenttho alternatives.

TheDynamic node is an extension of the H3DynamicTransform node. It adds any
user forces from the haptic tool to the node’s omgtso that you can bump and push a
Dynamic around in the scene. It also has an optspréng force anchoring the node to a
point in space.

A CollidableDynamic adds a course-grained inter-object collision meigm to this.

The collision mechanism is turned off by defauk. granularity of the collisions can be
set manually by the developer, or automaticallyh®s/system. Care should be taken
when using the aut-generation mechanism, howeliisiset too fine, the number of
collision cells can cause the frame rate to dray i@v. This can, in turn, cause dynamic
object instability.

The GrabableDynamic inherits from this and adds the ability to grasd aull on
objects as well push them with the haptic tool.



A DampedDynamicis aGrabableDynamic that has specialized physics that can
accommodate latency. This is the best one to ImWwith a slave (a GrabableDynamic
with Mode set to TRUE) to solve the stability pierh mentioned above.

When in slave mode, it does not do any local catouj of its motion, it simply collects
all forces acting upon it and sends them (acrossd®-ields) to the master dynamic
node on the other machine. The master node, celiscbwn local forces (e.g. local user
input, gravity, springs or other forces) along wthlbse it receives across the network,
and uses the resultant force to calculate the rasitipn of the object. It then renders this
new position locally and also sends the new pasitiack to the slave, for rendering
there. The system is not perfect as the rendetithgascurs on the systems at slightly
different times (i.e. the network latency) butashproved to solve the instability effect in
many cases. This logic is contained in the dynamagement nodes of the toolkit.

As well as this, experimentation discovered thatNlewtonian physics model (i.e. the
eqguations of motion involving force, acceleratigelocity, displacement) , interfered
with the stability of the system when network latgrs significant. The toolkit
overcomes this with the DampedDynamic node by rengoany momentum completely
from the equations. This produces an unrealistialte- objects only move while forces
act on them and immediately stop when the resultainé drops to zero. However, for
many applications (especially those that don’t lme@rojectiles), this is sufficient.

6.11. Testing a networked system on one machine

As we have seen, networked systems require two ptBBrams, a server and a client,
running, so that they can communicate. Often, wdereloping a program, it is
inconvenient to use two separate computers. bssiple to run two H3D programs on
one computer, with one haptics device (or even witlhaptics devices) connected. To
do so, you need to use thuseHapticsDevicenode, supplied with the toolkit. It
simulates a haptic device with a computer mouseleth button ‘grabbing’ the haptic
proxy, while movement of the mouse moves it inxtand y direction. Movement in the
z direction can be attained by also pressing tjig mouse button. The middle mouse
button corresponds to the mainButton of the hagetidce. Note, however, that the
motion is only a graphics rates, and has someijijartefacts. So actual forces felt on a
connected program with a real haptic device wiltdaggh and not indicative of what you
would feel in a normal setup.

The method of having one phantom and one mousé&hajgvice on the same machine
is:

1. Have one of your haptic scenes (either serverientct for our example we will use
server), configured with a MouseHapticDevice indtefthe real one.

2. Open the H3D Settings GUI.
3. Choose Haptics device = None and Apply changes



4. Start the server

5. Choose Haptics device = Any Phantom device (ortesa you normally chose) and
Apply changes

6. Start the client.
Then you should have mouse control on the senatyaar haptic device on the client.

7. Examples and test programs

The nodes in the toolkit have example X3D filesoaggted with them. They are located
in the examples subdirectory. These were usedribtesting, but may also be a valuable
source of information on how to use the classes.

There is a table matching individual nodes to eXxasim the file, ExamplesList.txt.
The examples referred to in this document areerdibc subdirectory.

TroubleShooting

1. “Could not create <Some Node>. It does not exishanH3DNodeDatabase.

Check that you have either
<ImportLibrary url =".\bin\H3DNetworkingUtils_vc9_d.dll "> or
<ImportLibrary url =" .\bin\H3DNetworkingUtils_vc9.dll ">

at the top of your x3d file and that the path igect to find the dll.

2. A Client program does not connect to the correspanserver.

a. Make sure that the server is running, that thedidtess or hostname in the
client matches the server’s IP or hosthame andlhlegbort numbers
match.

b. Check that firewalls do not prevent access (trpgiing the server from
the client.)

3. “packet ID does not match any known field”.

a. Check that the remoteField id’s match in both seaval client. This
message is generated when a remoteField on ohe afdachines has an
ID that has no match on the other machine.

4. remoteFields linked together have strange, or maweur.

a. Check that remoteField ID’s on client and servetamaThis problem can
occur if a remoteField of one type is connected (aatching IDs) a
remoteField of some different type (e.qg. floatrtt).i

5. “HL_DEVICE_ERROR( The operation could not be penfied. )”.



a. You may be trying to run two H3D programs on themsamachine, both
trying to connect to the one haptic device. Chamgeof the programs to
use the MouseHapticsDevice instead (aaning the examplés

Appendix

There is a misconception with networked haptics itha possible to feel what another
user is feeling, or experience what another usexperiencing in the real or virtual
world. That is, if two users are haptically conmel;twhen one user moves and interacts
with an object (either real or a virtual objectlie scene), the other user could feel what
the experience is like. It has been said thatskiiuld be taught or transferred in this
way.

This is, in fact, not possible. When a person makes hand towards an object, their
muscles and tendons are tensing or stretching t@ i@ hand forward, and their brain is
commanding them to do so. When the hand collidés an object, a reactive force
works against that forward motion. The understagaif what that object feels like is a
combination of the knowledge of the muscles movorgvard and the reactive force.
With a haptic system, we can transmit that readtivee, but we cannot make the other’s
hand and muscles move in the same way as the atogiwas doing. Therefore the
reactive force just arrives ‘out of the blue’ witliany movement for it to work against.
In the extreme case, the distant user just hashhbed lying relaxed holding the haptic
device when the force arrives. It would be a suddgain a certain direction and would
be meaningless.

A suggested alternative has been to use the Haptie to pull the distant user’s hand in
the same movement as the local user before thisioall However, in that case, with the
same haptic device providing both the guiding fand the collision reactive force when
the collision occurs, the two forces cancel eatleiobut (that is why the local user’s
hand stops moving). So the resulting force to aedgmitted to the other end would
therefore be zero at the time of collision. So befwllision there would be a dragging
force towards the collision and at collision tirttee force drops to zero. Obviously not
what is desired.

The only possible way of doing it may be with twapkic devices, one perhaps joined to
the far users forearm and the second one held tigrimahe hand. However, this setup
would, | expect, still not be very convincing.



