
H3D Networking Utilities Toolkit

1. Introduction
The H3D Networking Toolkit allows H3D scenes to be shared across a network. It is a 3rd
party extension to H3D (www.h3d.org) with features for real-time collaboration. It
enables users of the H3D API to link two machines together via the internet and have
certain parts of the scenes on each machine interact and keep in sync. The developer
achieves this by adding a few extra lines to their H3D X3D scene-graph file. It has been
developed by Chris Gunn of the CSIRO Immersive Environments Team.
(http://www.ict.csiro.au/staff/Chris.Gunn).

Most of this document (apart for the executive summary) is written assuming that the
reader has knowledge of the H3D API, scene-graphs and object-oriented programming.
However, no knowledge of networking protocols or software is needed to use the toolkit.

2. Overview

This toolkit allows:

1. Fields of objects to be connected (routed) from one machine to another

2. Bi-directional routing across a network without causing circular event
propagation.

3. Dynamic objects that move when pushed by the haptic tool.

4. Grabbing and pulling of dynamic objects.

5. Dynamic objects that can be linked (routed) to each other across a network, and
will move in unison, with some resilience to latency.

6. Ability to route together across a network a subset of an array of values (i.e. a
subset of an MF field)

7. Mechanisms for compensating for connecting together computers running at
different speeds.

8. A course-grained inter-object collision mechanism.

9. A hand-shaking or hand-guiding feature, that can update at haptics rates for
smooth physical person-to-person guidance across a network.

10. A mechanism to reduce network latency and also jitter in the latency, to improve
mechanical stability in dynamic objects.

An H3D scene-graph is a description of a three dimensional scene and how the objects in
that scene interact. It consists of Nodes which are associated in a parent-child hierarchy
(e.g. a Group node has a number of children, a Shape node has an Appearance and a
Geometry node). Nodes have attributes, called fields (e.g. a Material node has the fields

of diffuseColor, shininess etc). The fields of nodes can be connected to each other via
routes. In that way, if one field is changed by user-interaction, an event can be sent along
a route to some other field (usually in another node) which can also then change if
necessary. Chains of routes can propagate events through the scene-graph. When a
developer builds a scene-graph s/he connects together the parent child associations of
nodes and also connects routes between fields.

The H3D Networking Toolkit extends the concept of ‘routes between fields’, so that a
field in a scene-graph on one machine can effectively be routed to a field in a
corresponding scene-graph on another machine. This is referred to within the toolkit as a
“remote route”. Once in place, these remote routes allow a user’s interaction with objects
in a scene to be reflected in another scene running on a different system, across a
network. The remote routes are bi-directional, so that two users can simultaneously, and
co-operatively, interact with the same scene-graph objects. The interaction involves both
graphic and haptic effects, with the proviso that once haptics are involved, care needs to
be taken to avoid feedback and instability issues when the latency of the network
becomes significant. Components of the toolkit have been developed to directly address
these issues and accommodate considerable latency under certain constraints. Using these
components, it has been possible to have dual haptic interaction with scene objects over a
network with latencies up to 290 mSec. As an example, this has allowed a haptic scene to
be shared between a computer in Australia and one in the U.S. (using the Internet2
network). Examples of this interaction are two users grasping a simulated body organ,
such as a liver, and stretching it between them, or one user haptically ‘holding the hand’
of the other to guide them within the scene. Also possible, is the ability to draw and
indicate in the scene and have those annotations appear on the networked system.

It is important to note that creating a useful and efficient collaborative application may
involve the careful selection of which nodes and fields within a scene that it makes sense
to connected across a network, and how that connection is made. It may be wasteful to
connect every possible field of every node to its equivalent across a network. Instead, it
may be more suitable to do local processing on each connected machine for some
behaviours, while limiting the network transmission to only those events that need to be
synchronized. For example, a field of grass waving in the breeze would not need the
motion of each blade transmitted and reproduced. Instead, a single wind vector could be
sent and the grass motion reproduced locally. The design of the networking toolkit allows
this selective network routing. As such, the toolkit is NOT a utility that will automatically
find all fields and hook up two complete scenes without developer input. The ability to
pick and choose what is connected to what, gives the developer the flexibility to
introduce interesting behaviours, because fields on one machine do not necessarily need
to be routed to the identical field or node on the remote scene. Using this, a developer can
create a ‘master-slave’ system where actions are not exactly symmetrical. An example of
this would be where one of the two connected systems does some physics calculations
which are relayed to the other system. Another interesting example of an asymmetric
connection, is a system we developed which allowed a user to sculpt clay spinning on a
virtual potters wheel. A networked user could simultaneously work on the spinning clay,
but could also choose to make the clay spin at a different speed or even around a different
axis.

The toolkit is also not a system which will transmit a new 3D scene to a remote machine.
It is assumed that the H3D file containing the scene has previously been sent to the
remote machine so that both machines start up with the same scene in the same state.

As well as the Nodes directly related to networking, the toolkit also contains other Nodes
that promote collaboration. The Nodes can be described in four categories:

• Networking Nodes – performing the network messaging

• Object Movement Nodes – allowing objects to be manipulated either individually
or in collaboration, whilst accommodating network latency.

• Hand Guiding Nodes – allowing one user to hold and guide another user’s hand
(actually their haptic tool). These nodes also enable tele-operation of one haptic
tool from another across a network.

The toolkit was developed to connect two machines together. However, since the
networking has been encapsulated into a scene-graph Node, it is possible to add the node
multiple times in the scene-graph. It therefore should be possible to build in a connection
to more than one machine, thus allowing three-way (or even N-way) systems, although
this has not been tested.

3. Package
The package consists of source files, a MSVisualStudio build environment (modeled on
the H3D one), documentation and example x3d files.

The bin directory contains dlls built using MSVisualStudio V9 (2008). If those binaries
do not work on your system, you may need to rebuild within your environment. (see
section 4).

As with H3D, the dlls contain nodes that can be used in x3d files. You can also inherit
from the nodes to develop your own nodes. In most cases, e.g. RemoteCoordPoint, an
existing node can be used as a template on how to implement a similar node if needed.

4. Running the examples
There is an example folder with x3d files testing all the classes. The file ExamplesList.txt
specifies which x3d file uses which Node. These can be used to see the effect of each
node and also as examples of how to use them.

Some of the x3d files will run by themselves with H3DLoad, just like normal H3D files.

Others require a server and client program to run. These all have matching server and
client x3d files, identified by the “Server” or “Client” at the end of their filenames.

e.g. BufferedMFieldTestServer.x3d and BufferedMFieldTestClient.x3d

It makes most sense to run these on different machines. If you are doing that, you will
need to edit the client version of the file, to contain the hostname or IP address of the
server machine in place of the word “server_hostname” in one or two places in the files.

You can, however, run both on one machine, for testing purposes. If that is the case, you
will need to run at least one of the two programs in ‘mouse-mode’. To do this, you can
put the word localhost” in the file in place of “server_hostname”, but comment out the
line

<IMPORT inlineDEF =" H3D_EXPORTS" exportedDEF =" HDEV" AS=" HDEV" />

And uncomment the lines:
<!-- MouseSensor DEF="mouse"/>
 <DeviceInfo>
 <MouseHapticDevice DEF="HDEV">
 <MouseSensor USE="mouse" containerField="m ouseSensor"/>
 <RuspiniRenderer/>
 </MouseHapticDevice>

 </DeviceInfo -->

5. Building the library
Pre-built dlls are included with the package. They have been built using Visual Studio
V9. However, the configuration for this build may not match your system. If the
examples fail to run, try building as detailed here.

This library is built in the same way as H3D.

Run CMake:

Set source code pointing at your H3DNetworkingUtils/build

Set binaries pointing at your H3DNetworkingUtils/build/mySubDir

Configure

Set CMAKE_INSTALL_PREFIX pointing at your H3DNetworkingUtils

Set EXECUTABLE_OUTPUT_PATH pointing at your H3DNetworkingUtils/bin

Set LIBRARY_OUTPUT_PATH pointing at your H3DNetworkingUtils/lib

Configure again

Generate

Run H3DNetworkingUtils/build/mySubDir/ H3DNetworkingUtils.sln

 View/Solution Explorer

 Choose Debug

 Choose INSTALL

Choose Release

 Choose INSTALL

Build solution

6. Detailed Description
The toolkit is open source using the MPL license (http://www.mozilla.org/MPL). It
consists of C++, X3D and python source code. The C++ code compiles into a dll
(dynamically linked library). Individual class documentation is available in the doc
directory. You will need the usual H3D environment to work with this library.

The toolkit allows you to link a field of a node on one machine to a similarly typed field
of any node on another machine, such that they keep each other informed of their current
values. We refer to this connection as a ‘RemoteField’, since it is analogous to the field
routing system within a H3D scene-graph, except that it works remotely, i.e. to another
machine.

Figure 1. RemoteField connected via field routes.

Typically you would route an H3D field to the RemoteField in your scene-graph. The
H3D field update system will update the RemoteField as soon as an event occurs
(RemoteFields are always ‘AutoUpdate’). The RemoteField then sends the field’s value
to the far machine. Typically, the far machine will have its RemoteField routed to some
field in its scene-graph. That field will then receive the new value.

Although you can think of the RemoteField as a single field, it is, in fact a Node and it
contains several fields of its own (see below). One important field of a RemoteField
node, is its fieldId . Each RemoteField in the scene must have a unique fieldId number.
Unfortunately, in the current implementation, there is no check on this – beware!

The advantage of having a node control messages travelling in both directions is that it
can prevent a circular event lockup – a message arriving and being sent on to a scene
object cannot be reflected back to its source.

6.1. Client, Server, Ports and Sockets
The two collaborating machines must be declared as a client and server. It doesn’t matter
which machine is the client or server, as it is only in the initial connection that they differ.
The client and server have slightly different scene-graph code, but this amounts to a
difference of only two or three lines in the H3D file. The difference is that the server

Machine B Machine A

field

RemoteField
Field

RemoteField
Field

field

routes routes
RemoteRoute
(Internet)

must be ‘listening’ for a connection from any client, whereas the client must be told the
specific name of the server that it needs to connect to.

They communicate via a port, which is identified by a port number. It is convenient to
think of a port as the termination of a communications wire from one machine to another.
This is obviously not correct, as a computer can have a large number of ports open
simultaneously, and typically it only has one physical communications cable. But
logically this can be assumed. A port is often associated with a socket. The socket and
port can both be referring to the same communications line termination. A socket is a
term for software providing the low level code that handles the communications protocol.
The port is a reference the operating system uses for the line termination, regardless of
the socket code using it. The toolkit makes available two socket types: TCP and UDP,
which can be used simultaneously in the same scene, for different fields. TCP is slower
than UDP, but guarantees that each and every message gets through. (More on this later).

6.2. RemoteConnection
Before a RemoteField can send values back and forth, some ‘hand shaking’ and
initialization must happen. It is convenient to encapsulate this in a node, called a
RemoteConnection. A RemoteConnection firstly creates extra threads to handle the
reading and writing to the communication line (your H3D program probably already has
more than one thread running). The RemoteConnection then connnects to its
corresponding RemoteConnection node on the remote machine and prepares for the
sending of data. A RemoteConnection is, in fact, a Group node that is a container for a
number of RemoteFields. Having done its setup, it then services its children
RemoteFields, sending their data when necessary. Its RemoteFields can be sending
several different data types: Vec3f, Vec2f, Float, Int32, Rotation, Bool, Time etc. It can
also send arrays of these types.

You won’t actually see the word, “RemoteConnection”, in an H3D file, however, since
it is actually an abstract node. The implementations for either a server or client are in one
of the nodes: RemoteServer and RemoteClient, which both inherit from
RemoteConnection. Then RemoteTCPServer, RemoteTCPClient, RemoteUDPServer
and RemoteUDPClient inherit from them and are the final concrete instantiations that
appear in your H3D file.

There is no difference between the server and client nodes once they are running - they
differ only in their startup hand-shaking. A RemoteServer starts by ‘listening’ on a port
number, when it is opened. This means that any machine that tries to contact it on that
port will be ‘heard’. Consequently, a RemoteServer needs a field, listeningPort, which
is an integer providing the port number on which to listen. (It should be noted that care
should be taken when choosing a port number – see below).

A RemoteClient needs to be told either the host name or IP address of the machine it
needs to connect to, as well as the port number. It therefore has these two fields -
remoteHost and remotePort. When it is opened, it sends a message to the specified host
and port, and if that host is in fact running a RemoteServer on that port number, they
will set things going.

The RemoteServer or RemoteClient should be included in your H3D file within the
same scene-graph as your scene objects.

Here is an example of how to include these new nodes in the scene-graph for the server
machine:

Here is an example of how to include these new nodes in the scene-graph for the client
machine:

You will note that there are no RemoteFields mentioned and that there are, instead, new
node types like “RemoteSFVec3f”. This is because RemoteField is an abstract class.
The concrete specializations of it are:

RemoteSFBool for a remote single field of Boolean.
RemoteSFColor, for a remote single field of color.
RemoteSFFloat for a remote single field of float.
RemoteSFInt32 for a Reomte single field of int.

<RemoteTCPServer DEF=" server "
 listeningPort =" 40000 "
 open =" TRUE" >
 < RemoteSFVec3f DEF=" graphic_tool_pos " fieldId =" 0" />
 < RemoteSFBool DEF=" button " fieldId =" 1" />
 < RemoteSFInt32 DEF=" choice " fieldId =" 2" />
 < RemoteSFColor DEF=" clr " fieldId =" 3" />
 < RemoteSFFloat DEF=" transp " fieldId =" 4" />
 < RemoteSFRotation DEF=" rot " fieldId =" 5" />
 < RemoteSFString DEF=" str " fieldId =" 6" />
 < RemoteSFTime DEF=" time " fieldId =" 7" />
 < RemoteSFVec2f DEF=" particleSize " fieldId =" 8" />

 </ RemoteTCPServer >

Figure 2. Example server H3D code

<RemoteTCPClient DEF=" client "
 remoteHost =" localhost "
 remotePort =" 40000 "
 open =" TRUE" >
 < RemoteSFVec3f DEF=" graphic_tool_pos " fieldId =" 0" />
 < RemoteSFBool DEF=" button " fieldId =" 1" />
 < RemoteSFInt32 DEF=" choice " fieldId =" 2" />
 < RemoteSFColor DEF=" clr " fieldId =" 3" />
 < RemoteSFFloat DEF=" transp " fieldId =" 4" />
 < RemoteSFRotation DEF=" rot " fieldId =" 5" />
 < RemoteSFString DEF=" str " fieldId =" 6" />
 < RemoteSFTime DEF=" time " fieldId =" 7" />
 < RemoteSFVec2f DEF=" particleSize " fieldId =" 8" />

 </ RemoteTCPClient >

Figure 3. Example client H3D code

RemoteSFRotation for a remote single field of rotation
RemoteSFString for a remote single field of string.
RemoteTime for a remote single field of time.
RemoteSFVec2f, for a remote single field of Vec2f.
RemoteSFVec3f, for a remote single field of Vec3f.
RemoteSFVec3fPair, for a remote single field consisting of a pair of Vec2f.
RemoteMFBool for an array of boolean
RemoteMFFloat for an array of float
RemoteMFInt32 for an array of int
RemoteMFString for an array of string
RemoteMFVec3f for an array of Vec3f

Note that in the code above, each RemoteField has a fieldId number. The fieldId s of the
RemoteFields in both the client and server must match. For example if a remote field, of
type RemoteSFVec3f, has fieldId ‘7’ on one machine, there should be a
RemoteSFVec3f with fieldId ‘7’ on the other machine, to allow data to flow between the
two. The fieldId is used by the system to deliver the correct data to the correct
destination, as the system actually multiplexes the different elements of data during the
streaming process. Note also that, although they are called “RemoteFields”, each
RemoteField is not a field at all, but a Node, containing fields of its own. The fieldId is
one of those fields. This is because, although logically it helps to think of RemoteFields
as fields which can be routed together, they need to have their own attributes associated
with them, and therefore these attributes are set via the usual H3D field mechanism.

In the examples so far we have set up a server and client. You may have noted that both
the client and server have an open=”TRUE” field setting. Before connection can happen,
the server needs to be “open”. However, if the client is “open’ at startup, it would
repeatedly try to connect to the specified server, and this may be a nuisance if the server
was not running yet, as it blocks the main graphics thread occasionally while it tries to
connect. A more typical situation would have the client start up with open set to FALSE,
and have some user-interface widget, such as a button, or perhaps a keyboard key, routed
to the open field, to turn it on when the user decided to try a connection. However, for
simplicity in our examples, we will set the client to be open from the start. This will still
work, even if the server is started up after the client.

6.3. Routing to the RemoteFields
Having a remotely connected scene will not actually do anything unless we route values
in and out of these RemoteFields. We have already come across the fieldId field of a
RemoteField. The two other most important fields in these nodes are toBeSent and
received. We route any value that we want to be sent to the other machine, into the
toBeSent field. We route the received field to any value that we want to change when the
remote end changes (see figure 2)..

You may notice from Figure 2, that there seems to be a circular connection: The SFVec3f
on machine A is connected through to the SFVec3f on machine B, but that is also
connected back to the original SfVec3f. The toolkit has an in-built mechanism that
prevents circular lockups of events. (The data sent across the networked is time-stamped
so that the system can identify which event caused a data transmission and can therefore
block the same event being reflected back to the originating machine.)

Figure 2. Routing to RemoteFields

RemoteSFVec3f

toBeSent received

RemoteSFVec3f

toBeSent received

SFVec3

H3D Node

SFVec3

H3D Node

Machine A Machine B

Network “remote routes”

6.4. A Simple Scenario
Suppose we want to display each user’s stylus in the scene of each other’s machine. Let’s
assume that, to differentiate it from the local user’s stylus, we want to display it as a
simple cylinder. We could use the code in figure 3, below (also reproduced in
Example1Server.x3d). This creates a graphic to represent the other user’s haptic tool, a
RemoteClient containing 3 RemoteFields, and routes between the relevant fields.

The code for the corresponding server would be identical, except for three changes:

1. the node RemoteTCPClient would be replaced with RemoteTCPServer

2. the “remoteHost” line would be removed

3. “ remotePort” would be replaced with “listeningPort”

<Group >

 < ImportLibrary url =" ..\bin\H3DNetworkingUtils_vc9_d.dll " />

 < IMPORT inlineDEF =" H3D_EXPORTS" exportedDEF =" HDEV" AS=" HDEV" />

 <!-- Represents the other user's tool -->
 < Transform DEF=" rem_graphic " >
 < Transform rotation =" 1 0 0 -1.57 " >
 < Shape>
 < Appearance >
 < Material DEF=" mat1 " diffuseColor =" 0.6 0.9 0 " />
 </ Appearance >
 < Cylinder radius =" 0.005 " height =" 0.1 " />
 </ Shape>
 </ Transform >
 </ Transform >

 < RemoteTCPClient DEF=" client "
 remoteHost =" 152.83.70.187 "
 remotePort =" 40000 "
 open =" TRUE" >
 < RemoteSFVec3f DEF=" graphic_tool_pos " fieldId =" 0" />
 < RemoteSFRotation DEF=" graphic_tool_or " fieldId =" 1" />
 < RemoteSFBool DEF=" button " fieldId =" 2" />
 </ RemoteTCPClient >

 <!-- Sending and receiving the tool position -->
 < ROUTE fromNode =" HDEV" fromField =" proxyPosition "
 toNode =" graphic_tool_pos " toField =" toBeSent " />
 < ROUTE fromNode =" graphic_tool_pos " fromField =" received "
 toNode =" rem_graphic " toField =" translation " />

 <!-- Sending and receiving the tool orientation -->
 < ROUTE fromNode =" HDEV" fromField =" trackerOrientation "
 toNode =" graphic_tool_or " toField =" toBeSent " />
 < ROUTE fromNode =" graphic_tool_or " fromField =" received "
 toNode =" rem_graphic " toField =" rotation " />

 <!-- Sending and receiving the button -->
 < PythonScript DEF=" ps " url =" Example1.py " />
 < ROUTE fromNode =" HDEV" fromField =" mainButton " toNode =" button " toField =" toBeSent " />
 < ROUTE fromNode =" button " fromField =" received " toNode =" ps " toField =" boolToFloat " />
 < ROUTE fromNode =" ps " fromField =" boolToFloat " toNode =" mat1 " toField =" transparency " />

</ Group >

Figure 3. Code for a simple server. Example 1

The server code is contained in Example1Server.x3d

Note that in the figure 3, the field that is routed into the toBeSent field is not the one that
the received field at the other end routes to. In our scenario, we are displaying the remote
user’s stylus - we want our own stylus to move quite differently. This is an example of
asymmetric connection of fields. Connecting up two scene-graphs is not usually a case of
simply connecting every field of every node to its equivalent on the other machine.

Note the line:
 < ImportLibrary url =" ..\bin\H3DNetworkingUtils_vc9_d.dll " />

This contains the Networking Toolkit and is a dll (dynamically linked library) which is
loaded at run time.

6.5. TCP and UDP
The two types of RemoteConnection nodes in example1 (figure 3) - RemoteTCPServer
and RemoteTCPClient, are implemented using TCP sockets. TCP sockets are reliable
(i.e. they can’t lose data and the data is guaranteed to arrive in the correct order), but can
be slow or have irregular delivery rates (i.e. jitter). An alternative method is UDP, which
is, faster and more regular, but unreliable. That is, a packet of data may become lost
altogether and not arrive at all, or packets of data may arrive out-of-order. This may
sound dire at first, but there are circumstances, especially in haptic interaction, where this
is preferable to having the longer latency and jitter of TCP.

The toolkit has RemoteUDPServer and RemoteUDPClient, using UDP, which can be
used in your scene-graph. In fact, you can have both TCP and UDP running
simultaneously in the same scene – but you must make sure that they use different ports.
The UDP code is encapsulated in the nodes: RemoteUDPServer and
RemoteUDPClient.

You may be wondering why we might want to use something that is unreliable. In fact, a
lot of the time the data that we send back and forth need not actually arrive every time –
we can get away with missing a bit every now and then. With the reliable TCP, if a
packet of data gets lost along the way, the TCP system repeatedly resends it until it is
correctly received. This means that there is a delay while the system sorts itself out. To
lose a bit of data may be preferable to the delay required to fix the problem. Where we
have two parts of the scene that are tightly connected haptically, such as the two tools
linked together directly with a simulated spring, we need minimum latency, and can
tolerate an occasional lost value, because another, very similar value will be coming
along straight away. In that circumstance, we have found that the UDP version works
better. It doesn’t matter that much if a small movement of one user’s hand is lost, as long
as we get the most up-to-date position that we can. We are better off getting the most up-
to-date value, rather than spending time checking and resending one which would be out
of date anyway.

However, is data arrived out-of-order it could in fact cause problems. An old position
value coming in after the user’s hand has moved smoothly further along could cause a
momentary force backwards. This is something that cannot be tolerated in our scenes, as

a data value arriving that is out of date could cause a violent jitter. The toolkit has its own
sequence checking algorithm embedded in the code which will throw away out-of-order
data.

In certain circumstances, however, we must use the TCP versions, as we can’t afford to
lose a single value. An example of this would be a Boolean field - if a change from true
to false was lost, the scene behaviour could be dramatically different from that intended.

The UDP implementation has the added advantage that you can schedule it to send data
at rates faster than the graphics refresh rate – right up to the haptics refresh rate (1000hz)
in fact.

The same RemoteField nodes (RemoteSFVec3f etc) can be used with both TCP and
UDP implementations.

6.6. Routing into the Haptics Thread
Typically, you would route from a received field of a RemoteField node into a field that
is used by the graphics thread of your H3D program. An example might be from a slider
value on one machine to a slider value on another, so that the second user would see the
slider move. Note, however, that the value can arrive into the RemoteField
asynchronously, since the data-reading code has its own thread that is not synchronized
with the graphics thread. If the field mechanism fed the data immediately into the
destination, it may change the value at an inappropriate time relative to the work that the
graphics thread is currently doing.

H3DNetworkingUtils has an inbuilt protection mechanism that prevents this problem.
This mechanism delays data updates reaching the destination field until an appropriate
time in the graphics cycle.

Sometimes we may want to use data as soon as it arrives (e.g. with values that are to be
used in the haptics thread). If this is the case, we can turn off this protection mechanism,
to allow the data to go straight through. This can be used in conjunction with the
RealTimeAttractor node, which uses locking to extract the data and set it into the haptics

Figure 6. Receiving thread

Network
reading loop
(thread)

From network
Graphics loop
(thread)

route

RemoteConnection

Remote
Field

H3D Node

H3D
field

thread for immediate use. To do this, the field isHapticField (which by default is FALSE)
can be set to be TRUE.

Sometimes you need a value sent as soon as a new connection to the remote system is
made, even when the local value has not changed. This is achieved by setting the
sendOnConnect field of RemoteField node to TRUE.

As we saw in Figure 3, we are displaying the movement of the remote user’s stylus and
our own stylus quite differently. However, there are circumstances when you would like
the two networked representations of the same logical object to stay ‘in synch’ with each
other - i.e. you want both users to see a single object move in the same way to give the
impression that they are interacting with the one, single object. In that case, you can
route the same fields of the same nodes in each scene together. There is a mechanism to
prevent circular events in this case.

6.7. Making sure you get all values
In an earlier section it was mentioned that, using the TCP version, delivery of all data is
guaranteed. This is true within the reading thread of the program. However, it can happen
that two or more updates to the same data can arrive on the network within the time taken
for a single graphics cycle (remember that the graphics thread is cycling independently of
the reading thread). In that case a value may change two or more times before the
graphics thread cycles around and is aware of any change at all. This can typically
happen if the two machines communicating have different capabilities and are running at
different frame rates.

There are certain circumstances where this is undesirable. Take, for example, the case
where you are sending a ‘button-down’ Boolean, generated by the user pushing a button
momentarily. If the data for the “down=true” and “down-false” arrive during one
graphics cycle, the fact that the button was pushed at all can be lost. To prevent this loss,
we can set the bufferReceivedVals field of RemoteField to TRUE. The effect of this is
for the receiving thread to buffer all values received, and to release them to the graphics
thread one at a time – i.e. the graphics thread is passed one of the new received values
each graphics cycle, until the buffer is exhausted. Associated with this is another setting
on the RemoteField, bufferStrategy. If bufferStrategy is NONE, no buffering is done. If
bufferStrategy is SET_ONE_PER_CYCLE, a single received value is released from the
buffer to the graphics cycle on each time round the graphics loop. If it is SET_ALL, each
received value is released in sequence to the graphics thread, but they all in the released
in the next single loop of that thread. SET_ALL only has an effect if the field that you are
routing into is AutoUpdate.

6.8. Port Numbers and Firewalls
As mentioned above, we need to allocate a port number for our communications.

The IANA (Internet Assigned Numbers Authority), control and assign various port
numbers.

The port numbers 0 through 1023 (called ‘well-known’ ports), are assigned for certain
common applications. For example port 80 is assigned for web servers.

Then the numbers 1024 through 49151 (registered ports), are listed by the IANA as a
convenience for the community to develop conventions. For example ports 6000 through
6063 are registered for X window servers.

Numbers from 49152 through 65535 are available for any use. To be safe from conflict,
choose your port numbers from this group.

Also, it is common for a computing system to have a firewall installed, protecting it from
unauthorized access via the internet. The toolkit will only be able to connect if there are
no firewalls between the communicating machines, or, if there are firewalls, a ‘pinhole’
through the firewall has been set up. A pinhole is simply an entry in the firewall
configuration table that specifies that data from a particular IP address is permitted to a
particular port number. This needs to be set up for both TCP and UDP. You systems
administrator should be able to do this. Usually administrators like to open up a port to
specified external host names or IP addresses only, so they may require both the port
numbers and host names to which you will be connecting.

6.9. Multi-valued fields

The toolkit contains some multi-valued RemoteFields, e.g. RemoteMFVec3f. These
work in the same way as the RemoteSField nodes, but they send an array of values from
one H3D MField to another on another system. However, the MField has no way of
telling the RemoteMField which of the array values have changed. Because of this, the
RemoteMField must send all the values across the network. For large arrays, this may be
wasteful of network resources. The RemoteNodeField nodes were created to overcome
this. The currently implemented instances of RemoteNodeField are:

• RemoteCoordPoint,

• RemoteNormalVector,

To use these nodes you need to know which values in the array have changed. You may
know this from the user input that caused the change. For example, if the user is
sculpting a surface, the code that detects the user touching the surface and changes it
probably knows which vertices on the surface are being changed. You need to route
those indices, along with the MField being changed, to the RemoteNodeField node. It
then extracts only those changed values and sends them, along with their corresponding
indices, across the network to the other machine. The receiving machine then explicitly
sets only those values at the other end. The name RemoteNodeField comes from the fact
that it is designed to work on a particular node and field within that node. For example, a
RemoteCoordPoint will work on the point field in a Coordinate node.

6.10. Haptic Effects
One of the more interesting possibilities of networked haptic programs is the ability to
feel things that the other user is doing. Using the methods described so far, we can move
objects in the scene and another user, connected through the Networking Toolkit, will

feel that movement if they are grasping the same object. They are feeling the motion of
the object, they are not feeling what the other user is feeling.

If we connect through the field network, as we have been discussing so far, the motion is
occurring during the graphics loop, typically at about 30 Hz. If a user is directly grasping
the object, they will feel this as a vibration or ‘grittiness’ during movement. It would be
more desirable to feel the movement at haptics rates, ~1000Hz, as this would feel much
smoother. This can be done with the toolkit. To get the best effect we need to firstly use
UDP transmission of data, and also we need to receive the data into the haptics thread,
not the graphics thread. One useful implementation of this technique is in hand guiding.
Using this, one user can effectively grasp another user’s haptic tool and “pull them
around” in the 3D scene. This is sometimes referred to as “hand shaking”, but it can be
much more useful than the simple novelty of shaking someone’s hand across the internet.
It can be used by an instructor to guide a student to a particular spot, and act in a
particular way. This can be especially useful in surgical training, but is possibly
applicable to other domains as well.

To demonstrate the capabilities of the toolkit we will work through the addition of hand
guiding into Example1. Firstly we will need to add a RemoteUDPServer and
RemoteUDPClient for haptics-related updates. We will add RemoteFields to these, to
send an attraction point from one user’s haptic tool position to the other’s scene and vice-
versa. In this way the two tools will be attracted to each other. We will keep the
RemoteTCPServer and RemoteTCPClient in the scene to perform the graphic updates
as before. We will also take advantage of two other nodes in the toolkit,
ToolPosDetector and RealtimeAttractor .

ToolPosDetector simply detects the haptic tool position and provides an output field
containing it. This sounds just like the proxyPosition or devicePosition in the H3D
HapticsDevice node. The difference is that the position is updated at haptics rates
(~1000Hz) not graphics rates. This gives us a means of sending data across the network
faster than the graphics rate, thus helping with a smooth feel at the receiving end.

RealtimeAttractor is a spring force towards a specified point in the scene. It actually
inherits from Attractor , but differs in that the point in the scene can be changed at rates
faster than the graphics frame rate (up to 1000Hz). The changed point is used in the
haptics loop to modify the force. It has fields relating to how strong the attraction is and
how far it reaches. It also has a withOffset field that can prevent the first ‘grab’ of the
tool causing a jerk towards the other tool position. If this is set to TRUE, when the
attractor becomes active, it uses the current offset of the position as a zero force point and
creates forces when either user deviates from there. This allows a user to grasp the other
tool back along the stylus shaft, or at some distance from the tip, leaving the tip itself
clear of any graphic associated with the grasping tool.

An attractor has an enabled field which, when TRUE switches on the hand guiding force.

The extra lines that we need to add to Example1 are shown in figure 7. The full H3D
code can be found in Example2Server.x3d and Example2Client.x3d.

You will notice from Example2 that the RemoteConnections have the fields
periodicSend and periodicSendRate. Normally a value is sent across the network only
when it changes. If periodicSend is TRUE, a value is sent to the other end at the
periodicSendRate, regardless of whether it has changed or not. In our case the tool tip
position is being detected at about 1000Hz. We are setting the periodicSendRate at
800Hz (i.e. a lower rate than is available) because by experimentation it was found to still
provide a smooth response, and would reduce the network traffic. UDP is a fairly
“unsociable” protocol, in that it can monopolize a network if it floods it with data, to the
detriment of other users. Although the haptic interaction typically uses a much lower
bandwidth than, say, video, minimizing network traffic should always be a consideration.

There is also a simulatedLatency field. This can be used for testing when you are
working with a low latency LAN but you eventually want your code to work on a WAN
with significant latency. If non-zero, it simulates a latency by queuing all network data

 <!-- For hand guiding -->
 < ToolPosDetector DEF=" haptic_tool_pos "
 enabled =" TRUE"
 />

 < RealtimeAttractor DEF=" attractor "
 point =" 0 0 0 "
 radius =" 0.2 "
 strength =" 8.0 "
 deviceIndex =" 0"
 localEnabled =" TRUE"
 remoteEnabled =" TRUE"
 withOffset =" FALSE"
 />

 < RemoteUDPServer DEF=" udp_server "
 listeningPort =" 40002 "
 open =" TRUE"
 periodicSend =" TRUE"
 periodicSendRate =" 800 "
 simulatedLatency =" 0.000 " >
 < RemoteSFVec3f DEF=" rf_haptic_toolpos "
 isHapticField =" TRUE"
 fieldId =" 0" >
 </ RemoteSFVec3f >
 </ RemoteUDPServer >

 < ROUTE fromNode =" rf_haptic_toolpos " fromField =" received "

 toNode =" attractor " toField =" realtimePoint " />
 < ROUTE fromNode =" haptic_tool_pos " fromField =" localPos "
 toNode =" rf_haptic_toolpos " toField =" toBeSent " />
 < ROUTE fromNode =" button " fromField =" received "
 toNode =" attractor " toField =" enabled " />
 < ROUTE fromNode =" HDEV" fromField =" mainButton "
 toNode =" attractor " toField =" enabled " />

Figure 7. H3D code required for hand guiding (server)

and releasing it at the correct rate after the specified latency. Be aware that it does not
simulate any jitter, however, and the jitter on a WAN can also have an effect on object
behaviour in a haptic scene. A WARNING – make sure you have reverted your
simulatedLatency value to zero before deploying your system!

4. Remotely Connected Dynamic Objects
As mentioned in section 3.6., you may like to keep two networked representations of the
same logical object to stay ‘in sync’ with each other so that they behave as one, single
object. In that case, you can route the same fields of the same nodes in each scene
together.

However, care must be taken when connecting equivalent fields of remote machines. If
the local system has a mechanism determining the movement of an object (such as exists
in the DynamicTransform nodes in the H3D API), it may conflict with any data coming
in from a remote machine. In particular, if two machines are separately calculating the
position of a DynamicTransform, and sending their calculated positions to each other, the
objects may jitter between two positions on the display, as the delay (latency) in the
network may cause a discrepancy between the value received and that calculated locally.
This jitter can, in some cases, accelerate until the system becomes unstable and unusable.

The toolkit contains nodes which overcome this limitation under certain circumstances.

The solution used in the toolkit involves having master and slave dynamic nodes in the
scene. The master can be any of the GrabableDynamic nodes (see below), and the slave
is implemented as a GrabableDynamic with slaveMode set to TRUE.

Another requirement is that users push and pull objects around via virtual springs. In that
way, a number of users can be attached to one object and co-operatively move it. Of
course, the springs can be quite stiff, so that the feel is as if you are grabbing the object
directly. The alternative, of routing a user’s tool position directly to the object’s position,
fails when more than one user is interacting with it, because the movement can often be
in opposition, and the object can jitter between the two alternatives.

The Dynamic node is an extension of the H3D::DynamicTransform node. It adds any
user forces from the haptic tool to the node’s motion, so that you can bump and push a
Dynamic around in the scene. It also has an optional spring force anchoring the node to a
point in space.

A CollidableDynamic adds a course-grained inter-object collision mechanism to this.
The collision mechanism is turned off by default. Te granularity of the collisions can be
set manually by the developer, or automatically by the system. Care should be taken
when using the aut-generation mechanism, however. If it is set too fine, the number of
collision cells can cause the frame rate to drop very low. This can, in turn, cause dynamic
object instability.

The GrabableDynamic inherits from this and adds the ability to grasp and pull on
objects as well push them with the haptic tool.

A DampedDynamic is a GrabableDynamic that has specialized physics that can
accommodate latency. This is the best one to link up with a slave (a GrabableDynamic
with Mode set to TRUE) to solve the stability problem mentioned above.

When in slave mode, it does not do any local calculating of its motion, it simply collects
all forces acting upon it and sends them (across RemoteFields) to the master dynamic
node on the other machine. The master node, collects its own local forces (e.g. local user
input, gravity, springs or other forces) along with those it receives across the network,
and uses the resultant force to calculate the new position of the object. It then renders this
new position locally and also sends the new position back to the slave, for rendering
there. The system is not perfect as the rendering still occurs on the systems at slightly
different times (i.e. the network latency) but it has proved to solve the instability effect in
many cases. This logic is contained in the dynamic movement nodes of the toolkit.

As well as this, experimentation discovered that the Newtonian physics model (i.e. the
equations of motion involving force, acceleration, velocity, displacement) , interfered
with the stability of the system when network latency is significant. The toolkit
overcomes this with the DampedDynamic node by removing any momentum completely
from the equations. This produces an unrealistic result – objects only move while forces
act on them and immediately stop when the resultant force drops to zero. However, for
many applications (especially those that don’t involve projectiles), this is sufficient.

6.11. Testing a networked system on one machine
As we have seen, networked systems require two H3D programs, a server and a client,
running, so that they can communicate. Often, when developing a program, it is
inconvenient to use two separate computers. It is possible to run two H3D programs on
one computer, with one haptics device (or even with no haptics devices) connected. To
do so, you need to use the MouseHapticsDevice node, supplied with the toolkit. It
simulates a haptic device with a computer mouse, the left button ‘grabbing’ the haptic
proxy, while movement of the mouse moves it in the x and y direction. Movement in the
z direction can be attained by also pressing the right mouse button. The middle mouse
button corresponds to the mainButton of the haptic device. Note, however, that the
motion is only a graphics rates, and has some jittering artefacts. So actual forces felt on a
connected program with a real haptic device will be rough and not indicative of what you
would feel in a normal setup.

The method of having one phantom and one mouse haptics device on the same machine
is:

1. Have one of your haptic scenes (either server or client – for our example we will use
server), configured with a MouseHapticDevice instead of the real one.

2. Open the H3D Settings GUI.

3. Choose Haptics device = None and Apply changes

4. Start the server

5. Choose Haptics device = Any Phantom device (or whatever you normally chose) and
Apply changes

6. Start the client.

Then you should have mouse control on the server and your haptic device on the client.

7. Examples and test programs
The nodes in the toolkit have example X3D files associated with them. They are located
in the examples subdirectory. These were used for unit testing, but may also be a valuable
source of information on how to use the classes.

There is a table matching individual nodes to examples in the file, ExamplesList.txt.

The examples referred to in this document are in the doc subdirectory.

TroubleShooting
1. “Could not create <Some Node>. It does not exist in the H3DNodeDatabase.

Check that you have either

<ImportLibrary url =" ..\bin\H3DNetworkingUtils_vc9_d.dll " /> or

<ImportLibrary url =" ..\bin\H3DNetworkingUtils_vc9.dll " />

at the top of your x3d file and that the path is correct to find the dll.

2. A Client program does not connect to the corresponding server.

a. Make sure that the server is running, that the IP address or hostname in the
client matches the server’s IP or hostname and that the port numbers
match.

b. Check that firewalls do not prevent access (try ‘ping’ing the server from
the client.)

3. “packet ID does not match any known field”.

a. Check that the remoteField id’s match in both server and client. This
message is generated when a remoteField on one of the machines has an
ID that has no match on the other machine.

4. remoteFields linked together have strange, or no behaviour.

a. Check that remoteField ID’s on client and server match. This problem can
occur if a remoteField of one type is connected (via matching IDs) a
remoteField of some different type (e.g. float to int).

5. “HL_DEVICE_ERROR(The operation could not be performed.)”.

a. You may be trying to run two H3D programs on the same machine, both
trying to connect to the one haptic device. Change one of the programs to
use the MouseHapticsDevice instead (see Running the examples).

Appendix
There is a misconception with networked haptics that it is possible to feel what another
user is feeling, or experience what another user is experiencing in the real or virtual
world. That is, if two users are haptically connected, when one user moves and interacts
with an object (either real or a virtual object in the scene), the other user could feel what
the experience is like. It has been said that skills could be taught or transferred in this
way.

This is, in fact, not possible. When a person moves their hand towards an object, their
muscles and tendons are tensing or stretching to move the hand forward, and their brain is
commanding them to do so. When the hand collides with an object, a reactive force
works against that forward motion. The understanding of what that object feels like is a
combination of the knowledge of the muscles moving forward and the reactive force.
With a haptic system, we can transmit that reactive force, but we cannot make the other’s
hand and muscles move in the same way as the originator was doing. Therefore the
reactive force just arrives ‘out of the blue’ without any movement for it to work against.
In the extreme case, the distant user just has their hand lying relaxed holding the haptic
device when the force arrives. It would be a sudden jerk in a certain direction and would
be meaningless.

A suggested alternative has been to use the haptic force to pull the distant user’s hand in
the same movement as the local user before the collision. However, in that case, with the
same haptic device providing both the guiding force and the collision reactive force when
the collision occurs, the two forces cancel each other out (that is why the local user’s
hand stops moving). So the resulting force to be transmitted to the other end would
therefore be zero at the time of collision. So before collision there would be a dragging
force towards the collision and at collision time, the force drops to zero. Obviously not
what is desired.

The only possible way of doing it may be with two haptic devices, one perhaps joined to
the far users forearm and the second one held normally in the hand. However, this setup
would, I expect, still not be very convincing.

