
Software for ProvidingRemote User Interfaces|the RTC LibraryFirst Revision, printed June 17, 1997R. J. Kirkham

Commonwealth Scienti�c and Industrial Research OrganisationDivision of Manufacturing TechnologyMelbourne LaboratoryCorner of Albert and Raglan Streets, Preston, VictoriaPostal Address: Locked Bag 9, Preston 3072 AUSTRALIATelephone: +61�3�9662�7700 Facsimile: +61�3�9662�7851World Wide Web: http://www.mlb.dmt.csiro.au/

DRAFT DOCUMENTDocument HistoryJune 17, 1997 First Revision

Page ii First Revision

DRAFT DOCUMENTSummaryThis report describes rtc, which stands for Remote Tool Control. rtc is an integration of anrpc (Remote Procedure Call) network protocol with the Tcl (Tool Control Language) program-ming system [4, 8]. It is intended to facilitate the writing of graphical user interfaces to controlsystems remotely through a computer network.rtc uses a somewhat di�erent approach to producing graphical interfaces to that used in thepast within the Division's Industrial Automation Programme. Firstly, the interface itself usesTcl and Tk (Tcl's graphical interface toolkit) [8]. Tcl/Tk permits very fast development ofgraphical interfaces, as a given interface can be implemented with much less code compared tothe traditional C approach. As the language is interpreted, the development/test cycle is fasterbecause there are no compilation delays.Secondly, the underlying rpc protocol used to communicate with the remote computer is �xed.Rpc is a good choice, but in the past a new rpc protocol was developed for each application.This meant that new `glue' code between the protocol and the application has to be re-writteneach time. By �xing the rpc protocol, both the client and the server can be generic, largelypre-written and available in the rtc library, eliminating much application-speci�c C code.The remote procedure call protocol rtc provides is modelled after the Tcl function call: thefunction accepts a number of string arguments, and produces a string result. This protocol hasbeen found to have considerable advantages, and integrates smoothly with both Tcl clients andC servers.The rtc system provides a Tcl run-time loadable module, used in Tcl rtc clients, and a libraryfor linking with rtc clients and servers written in C. There are also some diagnostic programsuseful for interface development. The system, or appropriate parts thereof, has been tested onSolaris, SunOS, LynxOS, Linux, and vxWorks operating systems.Following a short introduction to remote user interfaces in general, this report describes how touse rtc, through simple examples and descriptions of the Tcl procedures, C library functions,and diagnostic programs. This is followed by a section dealing more speci�cally with Tcl userinterfaces using rtc, including a case study of the pirat user interface [1, 7]. A �nal sectiondescribes how to install the rtc `distribution'.

The RTC Library Page iii

DRAFT DOCUMENT

Page iv First Revision

DRAFT DOCUMENTContents1 User Interfaces for Remote Systems 11.1 Introduction . 11.2 Why have a Remote Interface? . 11.3 Why not have a Remote Interface? . 22 Using RTC: An Example 42.1 User Protocol De�nition . 42.2 Server Side Implementation . 42.3 Implementing the Rest of the Server . 52.4 Compiling and Testing the Server . 72.5 Tcl Client Side . 82.6 Completing the Tcl Client . 92.7 Further Examples . 113 Library Function Descriptions 123.1 Server Side C Functions . 123.2 Client Side Tcl Functions . 133.3 Client Side C Functions . 163.4 Other C Functions and Variables . 174 Utility Programs 194.1 Program rtcsvc . 194.2 Program rtcclnt . 194.3 Program rtcping . 205 Practical User Interface Design using RTC 215.1 Designing the User Protocol . 215.2 Server Stub Functions . 215.3 Stateless Clients . 225.4 Stateless Servers . 225.5 Connectionless versus Connection-oriented Transports 235.6 Using catch around RTC calls . 235.7 Using the server catalogue . 245.8 Background Polling for Remote Information . 255.9 Program Numbers and the RPC Port-Mapper . 255.10 Multi-threaded Clients and Servers . 265.11 Server Access Control . 265.12 RTC in the pirat System . 276 Conclusion 28References 29
The RTC Library Page v

DRAFT DOCUMENT

Page vi First Revision

DRAFT DOCUMENT1 User Interfaces for Remote Systems1.1 IntroductionSeveral projects conducted within the Division's Melbourne Laboratory in the last few yearshave included a graphical user interface to control a remote system. The interface, generally anX Windows program written in C, runs on a unix workstation and uses an application-speci�crpc (Remote Procedure Call) protocol to send commands to and receive data from the remotecomputer through a network. In other words, the interface runs on one computer, the programor system it controls on another, and the two communicate using a custom protocol.For example, the Buderim Ginger system featured an elaborate XView user interface running ona Sun workstation, which communicated using two linked rpc protocols with the mvs (MachineVision System) processor [5, 6]. The interface controlled and monitored the mvs, displayed itsstate to the operator,
ashed up the mvs's alarm messages, and at the same time allowed theoperator to edit the ginger sorting programs.These interfaces use rpc not because the remote system is actually physically distant (althoughit can be), but because the remote system does not provide a suitable graphical user interfaceinfrastructure. The vmebus microprocessor modules frequently used for real-time systems (suchas the mvs) rarely have a video adaptor to use for an interface, and if they did, it would meanporting a great deal of graphical user interface code to the real-time kernels generally used onsuch hardware.These interfaces are graphical because of the perceived need to surface prototypes with a fancy,colourful veneer|to show they are `hi-tech'. This seems to occur even when such an interface isnot completely appropriate, such as with the Buderim system. There, the factory-
oor operatorshave to enter the air-conditioned room where the Sun workstation is kept, remove their rubbergloves, and �ddle with the interface to enter two pieces of information, before they can actuallyturn the machine on.Leaving aside the question of appropriateness, the author has never been very convinced ofthe e�ciency of the current method of constructing such interfaces|rpcgen and the XViewtoolkit|for reasons described shortly [4, 3]. Over the past few years he has sporadically tinkeredwith various other approaches, before the imperatives of the pirat project led him to implementrtc the remote interface system that is the subject of this report [1, 7]. Before describing rtchowever, it seems worthwhile to examine some general matters related to remote user interfaces,starting with the apropriateness issue mentioned above.1.2 Why have a Remote Interface?A variety of reasons are pro�ered for having remote graphical interface. Not all of these aregood reasons. A few are examined below, along with some counter-arguments:The remote system is indeed remote. It's hard to argue with this, of course. An excellentexample of this situation is the Safe-T-Cam system, where computers at unmanned sitesaround New South Wales are linked by an isdn network to a centre in Sydney [?]. Eachsite can be represented by an interface window on an operator's screen and be convenientlyinterrogated and commanded through it. However, this is not necessarily an argument fora graphical user interface: see the points below.The computer has no display hardware. The vmebus computer hardware usually oftenat the heart of high-performance industrial real-time systems is notorious for providingThe RTC Library Page 1

DRAFT DOCUMENTno user interface hardware beyond a serial port, so networking it with another computerthat does have a display seems an obvious step. However, since these computer modulesare usually there to control application-speci�c hardware, it is not clear why adding somerelatively simple hardware to provide a user interface is apparently overlooked. Section ??describes local interface options further.The operating system does not support a display. This tends to be the case with theshared-memory real-time kernels, such as vxWorks and rtems [9, 2]. To an extent thisrelates to the preceeding point, although these system's philosophy is often to provide onlybasic multi-tasking and IO facilities, and let the programmer write or obtain software forthis application-speci�c feature.They unify a disparate system. A complicated system which involves a number of comput-ers, even if not remote, might use remote interfaces to collect the controls for each nodeonto a workstation screen for the bene�t of a single operator. For instacnce, it was themain reason for choosing to use remote interfaces in the pirat system.They make the system easy to use. This is often asserted in favour of graphical user in-terfaces in general, but is of course only true for a good graphical user interface. In fact,a good design will have distilled the interface/operator interactions down to the optimumset required for e�ective control of the system. This set is independent of the interfacetechnology. In other words, a well thought-out interface constructed using old-fashionedelectrical buttons and lamps might well be easier to use than a hastily assembled graphicalinterface.They look good. This argument is typically allied with the preceeding one, in the context ofproviding a `professional' looking system. Clearly a completed system should be aesthet-ically pleasing, but in the author's view the aesthetic extends beyond a colourful displayto engineering design issues such as its appropriateness to purpose.1.3 Why not have a Remote Interface?As well as good (and not so good) arguments for having remote graphical interfaces, there aregood arguments against having them:The users might not want one. An excellent example is the Buderim operators with theirrubber gloves. While graphical interfaces are becoming widespread, they are not yetcommon on factory automation, and may be unfamiliar or inconvenient for many people.Clearly the design and technology of the interface must consider its �nal users.The software structure is more complicated. A remote interface complicates the struc-ture of a system, because a network communication protocol must be devised, and codewritten to interface it to both the main application and its remote interface. This meansthe system will contain more code than if the interface had been integrated into the mainapplication, assuming this is possible: from this it follows that the system will take longerto design, implement and test.They show up unreliability. Two separate programs must cooperate e�ectively over a net-work. Any unreliability in either computer or the network between them will be re
ectedat the most visible point|the user interface. Designing software to cope with unreliabilityin a safe and convenient manner is not always easy. And while the user may be merelyinconvenienced by the lock-up of a graphical interface, someone else may be placed indanger by machinery under control of the failed system.Page 2 First Revision

DRAFT DOCUMENTThey might be insecure. Most networks are subject to an unauthorised access risk to somedegree. The dangers of placing control of a system in a network protocol must thereforebe carefully considered from that point of view as well.They mean another computer has to be there. Where the remote interface is not actu-ally remote, it means there are two computers in proximity, with presumeably twice (orwhatever) the capital and maintenance burden. This may be signi�cant, especially if thepreferred platform for the graphical interfaces a Sun Workstation.

The RTC Library Page 3

DRAFT DOCUMENT2 Using RTC: An ExampleAn interface using rtc can be developed server-�rst, client-�rst, or both can be worked ontogether. It is probably more straightforward to establish the server apparatus �rst, test it, andthen work on the client side.To illustrate using rtc, an example application is presented here. It is very simple indeed|and correspondingly useless|but can be tried to make sure you can compile and link servers,and use wish with rtc. For the sake of brevity, the example lacks some of the error checkingcode that would normally be included on both the Tcl and C side. The source of the exampleprograms can be found in the rtc distribution.2.1 User Protocol De�nitionLet us assume that we want a graphical interface (client) for printing messages on one of anumber of serial terminals connected to a remote computer (server). The client might have towork with a couple of di�erent servers, which might have di�erent numbers of serial ports.This suggests the server should provide two remote functions: one to report the names of theavailable serial port, and the other to print a message on a given serial port. The client shoulduse the �rst function to present a list of ports to the user to select from, then accept a messagefrom the user, and use the second function to print it.2.2 Server Side ImplementationThe server side in the rtc system is always written in C. It comprises a number of stub functions(in this case, two), and a main() function which:� initialises the server part of the rtc library� registers the stub functions with the server, and� enters the server wait-loop itself.The server skeleton looks like this:#include "rtc.h"char *listports(int argc, char *argv[]) {return "OK";}char *message(int argc, char *argv[]) {return "OK";}int main(int argc, char *argv[]) {/* initialise RTC server library */rtcServerInit();/* register server stubs */rtcServerRegister("message", message);Page 4 First Revision

DRAFT DOCUMENTrtcServerRegister("listports", listports);/* enter server loop */rtcServer("udp", 33, argv[0]);}The two stub functions are called listports() and message(). Note that the arguments arestrings, passed using the argc/argv convention, just like function main(), but unlike main()the function must return a string pointer result.The server guarantees that the stubs are always called with at least one argument: argv[0] isthe Tcl name the function was invoked by, and argc is always 1 or greater. Real argumentsbegin at argv[1]. The server also guarantees that argv[argc] is always NULL.The main() function �rst initialises the server part of rtc library, and then registers our towstub functions, using rtcServerRegister(). The �rst argument is the name by which thefunction will be known, and the second is a pointer to the function.If desired, a stub function can be registered under more than one name (the stub can use argv[0]to tell what name it was invoked under). Stubs can also be re-registered and de-registered, evenafter the server has started. This permits `dynamic protocols' to be implemented, somethingthat is not possible using traditional static rpc.Finally main() enters the server loop, from which it should never exit. The server accepts atransport type argument (here, the User Datagram Protocol udp has been selected), a programnumber (more about this later), and a string used to identify the server in any log messages itmay produce.2.3 Implementing the Rest of the ServerNow that the skeleton of the server is in place, the server stubs can be
eshed out (alternatively,you may wish to try to compile and test the server as it stands, as described in the followingsection|it should work).The simpler of the two stubs is message(). We will make the �rst argument to this functionbe the name of the serial port, and the second the message string to write to it:#include <stdio.h>char *message(int argc, char *argv[]) {FILE *port;/* open the serial device */if (! (port = fopen(argv[1], "w")))return "ERROR Can't open port";/* print out message, close port */fprintf(port, "message: %s\n", argv[2]);fclose(port);/* return ok result */return "OK";}The RTC Library Page 5

DRAFT DOCUMENTThe function returns a string indicating its success or failure. It is up to the user client software,which calls this function through the rtc mechanism, to interpret the result, and take action:rtc does not interpret the return strings in any way, and does not care if a stub function thinksit has failed.The listports() stub is a bit more complicated. It ignores any arguments, but returns a quitelong string containing a space-separated list of the �lenames of all the serial port devices it can�nd. It assumes that any �le in the /dev directory with a name beginning with tty is a serialport, and uses the unix directory-searching functions to compile the list:#include <fcntl.h>#include <string.h>#include <dirent.h>char *listports(int argc, char *argv[]) {DIR *dirp;struct dirent *dirent;int length = 100;char *result = rtcServerBuffer(length);/* open directory */if (! (dirp = opendir("/dev")))return "ERROR Can't open directory";/* go through each directory entry */while (dirent = readdir(dirp))/* accept only names that start with "tty" */if (strncmp(dirent->d_name, "tty", 3) == 0) {/* extend result string as required */if (strlen(result) + strlen(dirent->d_name) + 8 >= length) {length += 100;result = rtcServerBuffer(length);}/* append to result */strcat(result, " /dev/");strcat(result, dirent->d_name);}closedir(dirp);return result;}Up until now, we have only seen stub functions that return static strings as results. How-ever, they may also return one of their own arguments (or a sub-string of an argument), or adynamically allocated string obtained through the function rtcServerBuffer().This function is used by stubs to get working memory for bu�ers or for returning results, espe-cially when the length of the result isn't known in advance, as in the example. You should usePage 6 First Revision

DRAFT DOCUMENTit instead of malloc() and realloc() because the memory allocated by rtcServerBuffer()is automatically reclaimed by the rtc server after the stub function returns.The �rst time rtcServerBuffer() is called, it returns a pointer to a guaranteed clear bu�er ofat least the requested size. Subsequent calls re-size this bu�er, larger or smaller: if necessary,it moves its contents to a new location. This feature is exploited in listports() above; as thelength of the list of ports gets longer, the bu�er containing it is expanded (in lots or 100 bytes,for the sake of e�ciency).Since this function has to return a list, it might be argued that the result should be returned inan argc/argv[]-format as well. However, this makes the stubs more complicated, and besidesTcl is very good at dealing with space-separated tokens|this is what a Tcl list is. So, Tclfunctions such as lindex and constructs such as foreach can be used to deal with these sortsof results.2.4 Compiling and Testing the ServerAssuming all this server code is in the �le server.c, you can compile and link the server:magni% gcc -o server server.c -lrtc-sparc-solarisYou will probably need some -I and -L compiler options so it can locate the rtc header�le rtc.h and server library librtc-sparc-solaris.a, and on operating systems other thanSolaris, di�erent libraries. Once compiled, the server can be run (do this on a separate window,if possible):magni% server &[1] 15259magni%The trailing & puts the server process in the background. Now, the server code can be tested,using the rtcclnt program, part of the rtc package:magni% rtcclntThis is an RTC processLibrary timestamp 970304174233magni/0>rtcclnt is a command-shell rtc client program which allows the user to interrogate and testrtc servers (without actually using Tcl: see Section 4.2).There are commands to set client parameters, and perform remote calls and view the results(the command help prints a menu). Firstly, we have to use the program command to set theprogram number to 33, which is the number our server was registered with. (There is nothingspecial about 33, it's just the number being used for this example). Then, we can try a remotecall on our server, using the call command:magni/0> program 33magni/33> call cataloguelistports message ping cataloguemagni/33>The RTC Library Page 7

DRAFT DOCUMENTThe remote call we tried was called catalogue. rtc servers always have two in-built remotefunctions, ping and catalogue. ping always returns the name by which it was invoked (usually,"ping"), and catalogue returns a space-separated list of the names of all the remote functionsregistered with the server. Note that our two server stubs, listports and message, appearhere.Now we can try calling one of these . . . the moment of truth!magni/33> call listports/dev/tty /dev/ttyp0 /dev/ttyp1 /dev/ttyp2 /dev/ttyp3 /dev/ttyp4 /dev/ttyp5 /dev/ttyp6 /dev/ttyp7 /dev/ttyp8 /dev/ttya /dev/ttybmagni/33>The list has wrapped around the screen, but this does not matter: our function seems to work.We can test the message function as well:magni/33> call message /dev/tty Hello!OKmagni/33>Over on the window where the server was running, we should see the output:message: Hello!2.5 Tcl Client SideHaving proved the server is functioning correctly, development of the Tcl client can commence.Using rtc in a Tcl ot Tcl/Tk application script is a three-stage process. The script must:� load the rtc loadable object module� obtain and con�gure an rtc handle� use the handle to perform remote procedure calls.rtc is implemented as a loadable object module, which can be loaded into a running Tclinterpreter using the load command, which is available in Tcl versions 7.5 and later. (Previously,the rtc routines were statically linked with Tcl and Tcl/Tk to produce the special interpretersrtclsh and rwish).While loadable modules solve the considerable problem of multiple, incompatible versions of Tcland Tcl/Tk interpreters each with di�erent Tcl extensions built in, they introduce the lesserproblem of locating the correct loadable module for the binary architecture of the computer.At present, the best solution to this is not yet apparent, and for our example we will use thefollowing, based on the platform script:# load the RTC moduleset RTC /opt/rtcload $RTC/lib/rtc-[exec platform].so RtcThe rtc module adds one new command to the Tcl or Tcl/Tk interpreter: logically enough, itis called rtc. The command rtc creates an rtc handle|in fact, a new Tcl command|whichPage 8 First Revision

DRAFT DOCUMENTrepresents a particular server. The name of the handle is the �rst argument to rtc (similarto the Tk class commands). Optional arguments specify the hostname the server is on, itsprogram number, time-out periods, and so on:# create an RTC handlertc remote -server magni -transport udp -program 33This has created a new Tcl command called remote, representing a rtc server providing pro-gram 33 running on host magni|in other words, matching our example server above. The rtccommand does not actually communicate with the server, or use rpc at all; this only happenswhen the handle is actually used.You can have as many handles as you wish, representing di�erent servers, or even the sameserver. The only requirement is that the handles have di�erent names (and are di�erent fromany existing Tcl function names).The handle is invoked with one of three action arguments: call, configure, and destroy. Toactually do an rtc call to our server, use call:# get the 3rd port from the server and say hello to itset ports [remote call listports]remote call message [lindex ports 2] Hello!This calls our server's listports remote procedure, and stores the list in the ports variable.This will be a list variable, so the Tcl lindex command can be used to extract simple itemsfrom it. Assuming we want to say hello to the third port on the list (which happens to be/dev/ttyp1), the second line calls the message remote procedure, passing the selected �lename as the �rst argument, and Hello! as the second. If all goes well, a message shouldappear on the server on /dev/ttyp1.The rtc handle's con�guration can be changed at any time using the configure action argu-ment; configure accepts the same options and arguments as the rtc command that created it.Once the script has �nished using the remote server, it can invoke the handle once more, but thistime with the destroy action argument, which, as might be expected, closes any connectionswith the server and reclaims the resources used by the handle.2.6 Completing the Tcl ClientFinally, having shown we can call a remote server from Tcl, we can complete our simple serialport message application with a reasonably glossy Tcl/Tk graphical user interface. To operate,the user types an message in the box at the top, selects the port they want from the list, andpresses Send:The RTC Library Page 9

DRAFT DOCUMENT
The Tcl script that produced this interface is below. It begins as a standard shell script, butwith a cunning prologue that re-executes itself as the standard wish Tcl/Tk interpreter, withthe rest of the script as source. The script then loads rtc and creates an rtc handle asdemonstrated above.Then follows a sequence of standard Tk commands to create the user interface. There is anentry box for the message, a Send button, and a scrollable list box for the available serial ports.The �rst rtc call, which gets the list of ports from the remote server, occurs just after theinitialisation of this list box. The names of the ports are inserted one by one into the listusing a foreach loop. Note that an initial entry for /dev/null is inserted beforehand; this isso the list will have at least one sensible entry, in case the server does not report any availableports. The list box is in single-selection mode, so only one serial port can be selected at once.The second rtc call occurs only when the user presses the Send button, because the call ispart of the button's -command option. The selected serial port name comes from the list box (atwo-stage process), and the string to print from a variable controlled by the entry box.#!/bin/sh# the next line restarts using wish \exec wish "$0" "$@"# load the RTC moduleset RTC /opt/rtcload $RTC/lib/rtc-[exec platform].so Rtc# create an RTC handle called remotertc remote -program 33# set up message entry and send buttonset entry Helloentry .entry -textvariable entrypack .entry -side top -fill xbutton .send -text "Send" -command {Page 10 First Revision

DRAFT DOCUMENTremote call message [.list get [.list curselection]] $entry}pack .send -fill x# set up scrolled listbox of available portslistbox .list -selectmode single -width 20 -relief raised \-yscrollcommand ".scroll set"pack .list -side leftscrollbar .scroll -command ".list yview"pack .scroll -side right -fill y.list insert end /dev/null.list selection set 0# get the ports from the server, insert into listset list [remote call listports]foreach port $list {.list insert end $port}2.7 Further ExamplesHopefully, this simple example has shown how easy it is to write rtc servers in C, test themout, and then write Tcl/Tk rtc clients to use them.The example has a number of shortcomings, which the careful reader may have already noticed.In the Tcl/Tk client, there is no way to specify the remote server (by default it is the localhost), the network transport to use (the default is udp), or any program number other than 33.There is also no handling of the error strings the remote calls might send back, or the Tclexceptions that might be raised should the rtc/rpc mechanism fail somehow. More subtle isa problem in the server: the message() stub might block inde�nitly writing to a busy serialdevice, which will freeze the interface until the rtc call times out.So, while using rtc is quite easy, there are pitfalls as well. Section 5 of this report attempts toalert the reader to some pitfalls that have already been fallen into.
The RTC Library Page 11

DRAFT DOCUMENT3 Library Function DescriptionsThis section details the C and Tcl functions provided by the rtc library.To use the rtc library from a C program, you must include the header �le rtc.h. This �lecontains ansi prototypes of the C functions, manifast contants, and macros. You must link theprogram against the library librtc-<cpu>-<os>.a, where <cpu> and <os> represent the cpuand operating system names, as revealed by the platform script. The library contains both thertc server and client functions.To use rtc in a Tcl script, you must �rst load the shared object module rtc-<cpu>-<os>.so.Most of the rtc C functions return an integer result, zero on success, or non-zero on failure.In the latter case the function rtcMessageGet() can be called to return a string describing theerror. Refer to Section 3.4 for details.3.1 Server Side C FunctionsRTC STATUS rtcServerInit(void)This function must be called before any of the other rtc server functions, because itinitialises the rtc server data structures. It also registers the two standard rtc remotefunctions, ping and catalogue.RTC STATUS rtcServerAuth(RTC AUTH tag, ...)This function is called to add further entries to the server access control lists described inSection 5.11. The arguments are a set of one or more tag/argument pairs, terminated bya zero. The tags and argument types are:Tag Argument Type Argumentrtc auth host char* client hostnamertc auth uid int unix user-id numberrtc auth gid int unix group-id numberrtc auth user char* unix user namertc auth group char* unix group nameNote that the same tag may appear more than once within the same call. String data isduplicated by the function, so string arguments need not be static.The authorisation lists initially contain the hostname of the server machine, and the user-id and group-ids of the server process. There is no way to remove an entry from the lists;in practice this has not been found to be necessary. rtcServerAuth() can be called atany time, even after the server has been entered.RTC STATUS rtcServerRegister(char *name, RTC EXEC function)Register the C server stub function function() with the server under the name name.The function will subsequently be invoked by the server task or process when a request toexecute function name comes from a remote client, and it passes the autorisation check.The stub function must conform to the prototype:typedef char* (* RTC EXEC)(int argc, char *argv[]);In other words, the function must accept argc/argv[]-style arguments, in the same wayas the normal C main() function, but should return a character pointer. This must pointPage 12 First Revision

DRAFT DOCUMENTto either static storage, to one of its argv strings (or a sub-string), or to dynamic storageobtained from rtcServerBuffer() below.Only one stub function can be registered with a given name: subsequent registrationsreplace earlier ones. However, a stub function can be registered under many di�erentnames. Functions can be de-registered by passing NULL for the function argument.char* rtcServerBuffer(unsigned size)Server stub functions can call rtcServerBuffer() to get a pointer to dynamic memory forreturn values or scratchpads. The size of the bu�er is given by size, and is guaranteed tobe zeroed. The bu�er is automatically de-allocated by the server after the call to the stubfunction is complete and the string has been transmitted back to the client. This permitsstub functions to return large or variable size strings|and remain re-entrant|withoutfear of memory `leaks'.The bu�er can be re-sized simply by calling rtcServerBuffer() with the new size: thisis equivalent to realloc(). Note that the location of the bu�er may change, and thefunction returns a new pointer. In this case the contents will be copied, so any pointersinto the bu�er will need to be re-computed.RTC STATUS rtcServer(char *transp, unsigned prog, char *name)Establish an rtc server, and enter the server main loop, and do not return. In single-threaded unix systems, this is called at the end of main() after the server authorisationparameters have been set up using rtcServerAuth(), and the server stubs have beenregistered using rtcServerRegister(). In multi-threaded unix systems, and shared-memory multi-tasking systems, a new thread or task is generally established, which callsrtcServer(); rtcServerAuth() and rtcServerRegister() can be called before or after.Section 5.10 deals with multi-threaded environments in more detail.Parameter transp is a string indicating the network transport type or types the servershould provide. Generally this will be of the form "tcp", "udp" or "tcp udp", althoughsome systems may provide additional or alternate transport types. Refer to Section 5.5for a discussion of transport types.Parameter prog is the rtc program number, given to this user protocol. Clients use theprogram number to �nd the server they want. Only one server per computer should have agiven program number Section 5.9 deals with program numbers in more detail. Parametername is a name for the server messages (argv[0] is normally used).RTC STATUS rtcServerShow(void)Prints out a short summary of the server data structures, including the contents of theserver authorisation lists and the names and addresses of all registered server stubs.RTC STATUS rtcServerDone(void)This function deallocates the server data structures. On some systems it may attempt toremove the server thread or task. On single-threaded unix systems, there is no place toactually call this function from, but on these systems there is no particular need to, thethe system will reclaim the resources itself.3.2 Client Side Tcl FunctionsThe rtc Tcl interface|the client side of the system|has been modelled on the object-orientedstyle used by the Tk widget functions. In that arrangement, new widget commands with namesThe RTC Library Page 13

DRAFT DOCUMENTgiven by the programmer are created using Tk's class command functions (such as buttonor scrollbar). Most of the parameters of the widget are speci�ed by options to the classcommand. The widget is subsequently controlled by invoking the widget command with one ofa set of action arguments (such as configure, call or destroy) and associated arguments.rtc <handle> [-server <server>] [-program <program>][-transport <transport>] [-timeout <timeout>] [-retry <retry>][-recreate] [-norecreate] [-debug] [-nodebug]Create an rtc handle with name handle . handle can subsequently be called as a Tclfunction to invoking remote function calls <handle> is the only mandatory argument tortc: all options have useful default arguments. The options are described below. If anoption is repeated, the last one prevails:-server <server> (default localhost)Argument <server> is the hostname of the machine running (or which will run) the rtcserver the handle will represent.-program <program> (default 0)Argument <program> is the program number on the given <server> the rtc server thehandle will represent. Program numbers are discussed in Section 5.9.-transport <transport> (default udp)Argument <transport> speci�es the network transport type the handle will use. Unlikertc servers, clients can only use one transport type at once. The available transporttypes are system-dependent, but will generally be either tcp or udp, corresponding tothe Internet protocols tcp/ip (connection-oriented) or udp/ip (connectionless). Refer toSection 5.5 for a discussion of transport types. This option replaces the two former option
ags -tcp and -udp.-timeout <timeout> (default 25.0 seconds)Argument <timeout> speci�ed the maximum overall period of a remote call (executedusing <handle> call below). If the server fails to respond within this period, a Tclexception will be raised, and the call will return an error string. Refer to Section 5.6 fordetails on how to deal with the exception.-retry <retry> (default 5.0 seconds)Argument <retry> is only applicable to connectionless transports, such as udp/ip, andis otherwise ignored. If a remote server fails to respond, the call is tried again after adelay of <retry> seconds. This process continues until the overall <timeout> period haselapsed. The value of <retry> is thus somewhat smaller then that of <timeout> .-recreate/-norecreate (default -norecreate)Setting -recreate mode forces the rtc handle to be `re-created' just before each remotecall. This means the server port-mapper is re-consulted to locate the server port, and onconnnection-oriented transports the old connection is closed and a new one opened. Thisis quite ine�cient, but makes clients more robust in the face of server unreliability. It isparticularly useful during server development.-debug/-nodebug (default -nodebug)Setting -debug mode causes miscellaneous debugging messages to be produced on thestandard error stream, or the logging stream where there is one.Page 14 First Revision

DRAFT DOCUMENTNote that only the syntax of arguments is checked: creating an rtc handle does not cause aremote call or any other network activity. Incorrect arguments (wrong server, program number,etc) will only be detected when the handle is actually used.The handle created by rtc, <handle> , can be invoked with one of three action arguments, call,configure or destroy:<handle> call <name> [<arg> ...]Call the remote server function registered with the name <name> , passing it the givenargument list, and returning the result string.The rtc <handle> call function returns an error status (TCL ERROR) if:� the <handle> call <name> is called incorrectly (<name> is mandatory, al-though arguments for the remote function are not)� the underlying rpc mechanism failure reports an error. There are several pos-sible causes for this:� the remote server machine cannot be reached or does not exist� the server has no port-mapper daemon� the server isn't running the desired rtc server (identi�ed by the rtcprogram number; see Section 5.9)� there is a communication failure, leading to loss of the request or re-sponse packet (more common on connectionless transports)� the client's authorisation credentials are rejected by the server (see Section 5.11)� the remote server does not have a function called <name>.Note that these errors are related only to the rpc and rtcmechanism|which is concernedonly with delivering requests to the user's remote server stub functions and getting theresults back. Errors detected within the user's server stub functions do not cause Tcl errorsto be returned. These `user errors' can be signalled back to the calling client through thereturn string only, as they form part of the user protocol (see Section 5.1).If an error occurred, the return string contains an error message indicating the sourceof error. Note that the call function may block for up to the <timeout> period beforereturning an error. Section 5.6 discusses a way of dealing with such errors in Tcl scripts.<handle> configure [-server <server>] [-program <program>][-transport <transport>] [-timeout <timeout>] [-retry <retry>][-recreate] [-norecreate] [-debug] [-nodebug]Alter the con�guration of <handle> according to the given options, which are identicalto those for the rtc function. Like the rtc handle creation function, con�guring a handledoes not cause a remote procudure call, or any other network activity. Only <handle>call invokes remote calls.Calling <handle> configure with no arguments returns a string containing the currenthandle con�guration.<handle> destroyDestroys the rtc handle, closing any connection with the server. The command <handle>is removed from the Tcl interpreter, so any subsequent attempt to use it will cause anerror.The RTC Library Page 15

DRAFT DOCUMENT3.3 Client Side C FunctionsThe rtc system can also be used directly from a C program, using the functions described below.This defeats much of the purpose of rtc, but is necessary for situations where a computer doesnot have Tcl, yet should be a client of an rtc server.The client side C functions correspond closely with the Tcl functions described above, becausethe Tcl loadable module is implemented using them. The rtc utility program rtcclnt (Sec-tion 4.2) allows these functions to be executed directly from a command-line environment.In C programs, client handles are represented by objects of type RTC, which is a pointer to anopaque structure holding the con�guration information and the rpc CLIENT pointer.RTC STATUS rtcClientInit(void)This function must be called before any of the other rtc client functions, because itinitialises the rtc server data structures. It takes no parameters.RTC STATUS rtcClientCreate(RTC *rtc, RTC CONFIG tag, ...)Creates a client handle object, and places a pointer to it in the location given by thertc argument. The handle is then con�gured using the following arguments, a set oftag/argument pairs, terminated by a zero. The tags and argument types are:Tag Argument Type Argumentrtc config name char* handle namertc config server char* server hostnamertc config program int program numberrtc config transport char* transport type stringrtc config timeout int timeout in millisecondsrtc config retry int retry in millisecondsrtc config recreate RTC BOOL recreate handle each callrtc config debug RTC BOOL produce debug messagesThe meanings of the tags and arguments is exactly the same as the client options describedin the previous sub-section in relation to Tcl client handles, except that here the timeoutand retry periods are speci�ed in milliseconds. The handle name argument relates to theTcl <handle> name, and need not be used in C programs.The same tag may appear more than once, per call; the last such tag/argument pairprevails. String data is duplicated by the function, and so need not be static. TheRTC BOOL
ag has values rtc bool true or rtc bool false (1 or 0).Errors in the con�guration information, such as non-existant server hosts, wrong pro-gram numbers, and so on are generally only detected when a remote call is initiated byrtcClientCall() below.RTC STATUS rtcClientConfigure(RTC rtc, RTC CONFIG tag, ...)Con�gure an extant client handle rtc. It accepts the same zero-terminated tag/argumentlist as rtcClientCreate().RTC STATUS rtcClientInterrogate(RTC rtc, RTC CONFIG tag, ...)Extract con�guration information from an extant client handle rtc. It accepts the sametags as rtcClientCreate(), but with pointers to the appropriate user objects.Page 16 First Revision

DRAFT DOCUMENTA pointer to a dynamically allocated duplicate string is returned into the user's pointerfor string type con�guration data. These strings should be subsequently deallocated bythe user using free().RTC STATUS rtcClientCall(RTC rtc, int argc, char *argv[], char **resp)Perform a remote function call using the handle rtc. Pointers to the individual argumentstrings are in the array argv[]; argv[0] points to the name of the remote function to becalled. Parameter argc is the number of arguments, counting argv[0].Parameter resp is a pointer to a string pointer, which after the call contains a pointer toa dynamically allocated string containing the result of the remote call, or if the call failed,a descriptive error message. A new response bu�er is allocated for each call. The callershould subsequently free the bu�ers using rtcClientResponseFree() (not with free()).If the remote server is not responding, this function will block for up to the currentlyspeci�ed timeout period, and will return an error status. Other errors may be detectedimmediately.RTC STATUS rtcClientResponseFree(char **resp)Free the response bu�er from a previous call to rtcClientCall(). Note that this functiondoes not require the original client handle.RTC STATUS rtcClientShow(RTC rtc)Print out the con�guration information of handle rtc.RTC STATUS rtcClientDestroy(RTC rtc)Destroy client handle rtc, deallocate its associated data structures and close any �le/socketdescriptors. The handle cannot be used again.RTC STATUS rtcClientDone(void)This should be called when the user program has �nished with the rtc library. Note thatit does not close any outstanding client handles; use rtcClientDestroy() to do this �rst.3.4 Other C Functions and VariablesMost rtc client and server C library functions return a status value of type RTC STATUS. Thishas the following values:Name Value Meaningrtc status ok 0 function suceededrtc status error -1 recoverable failurertc status fatal -2 fatal errorThe user should check the return status from each function call, and act appropriately. Mostcommonly, an error status is caused by a remote call timeout due to the server disappearing,or incorrect client con�guration in the �rst place.Fatal errors are caused by memory allocation failures, NULL pointers, corrupted data structures,and so on. The rtc library attempts to print a diagnostic trace to the standard error or loggingstream. The user program generally cannot continue if this happens.In either case, an error string can be obtained:The RTC Library Page 17

DRAFT DOCUMENTchar* rtcMessageGet(void)Return a pointer to a descriptive string indicating the cause of a recoverable failure orfatal error. This string should not be altered by the user.

Page 18 First Revision

DRAFT DOCUMENT4 Utility ProgramsThere are three utility programs for testing out rtc clients and servers. They run only on unixsystems. These programs are run from the bin directory of the rtc distribution, once compiled.4.1 Program rtcsvcProgram rtcsvc is an rtc server featuring only the two standard rtc remote calls, ping andcatalogue:rtcsvc [-p <program>] [-t <transport>][-h <clienthost>] [-u <username>] [-g <groupname>] [-r <name>] [-d]Starts an rtc server o�ering program number <program> , on the network transport type<transport> . Option -t may be repeated to add more than one transport type. Thedefault (possibly system dependent) is to provide both tcp/ip and udp/ip transports.The default program number is 0.The -h option adds host <client> to the server's host authorisation list. Option -u addsthe unix user-id number for <username> to the user authorisation list, while -g adds theunix group-id number for <groupname> to the group authorisation list. These optionsmay appear any number of times.Option -r registers a stub function with the name <name> ; this function behaves iden-tically to the standard stub function ping, i.e. returns its own name. This option berepeated for di�erent names.Option -d enables the logging of debugging messages to the standard error or loggingstream. The messages indicate the source of remote call requests, whether they passedthe authorisation test, and if so, their arguments and reponse.This program can be used for testing clients (to an extent) by acting as a placeholder for aprojected server. In this case the -d option is used to add all the remote function names theserver will provide: of course, the server's responses cannot be simulated.4.2 Program rtcclntProgram rtcclnt is an interactive shell-like program used to test servers, before the matchingclients are completed. Its use was demonstrated in Section 2.4.The command prompt displays the current rtc server hostname and program number (rtcclntcan only deal with one rtc server at once). The commands server, program, transport,timeout, retry, recreate, and debug are used to alter the con�guration of the client, one itemat a time. The client con�guration can be printed out using show.Command call initiates a remote call. The call's result string, or an error message, is printedout.Program rtcclnt can execute canned sequences of commands, using the script command, orcan execute any unix command using shell. In scripts, lines beginning with # are ignored, butthere are no control structures (if you want them, use Tcl!).The command help print a complete list of commands and the arguments they take:% rtcclntThis is an RTC processThe RTC Library Page 19

DRAFT DOCUMENTLibrary timestamp 970307125521magni/0> heCommands:call <name> [<arg> ...] do remote call of <name> with <args>server <server> set RTC server host to <server>timeout <period> set timeout period (seconds)retry <period> set retry period (seconds)recreate [y|n] toggle/set recreate flagtransport [tcp|udp|...] set network transport typeprogram <program> set program number to <program>debug [y|n] toggle/set debug flagshow print RTC client informationsource <file> read in/run RTC commands from <file>shell <command> [<arg> ...] run UNIX <command> with <args>help print this message# lines beginning with # are ignoredquit quit programCommands can be abbreviatedmagni/0>4.3 Program rtcpingProgram rtcping is a Tcl/Tk program, whose sole purpose is to test the ping remote call, butwith a graphical interface, which looks like this:
Operation is largely self-explanitary: the con�guration of an rtc handle can be altered usingthe widgets at the top of the interface: a ping remote call is initiated by pressing the Pingbutton. If there is an error, a pop-up appears with the error string in it.Page 20 First Revision

DRAFT DOCUMENT5 Practical User Interface Design using RTC5.1 Designing the User ProtocolIn traditional rpc programming, the user's protocol for a particular application is staticallyde�ned in a �le with a formal protocol description language. Usually this �le is then parsedby a program (such as rpcgen) which produces skeleton code for the client and server and fordata encapsulation. The user then
eshes this out by writing server and client stub functions,gluing the rpc data transfer structures produced by rpcgen with the data structures of theapplication program.With rtc the situation is much freer; there are really no data structures (although there maybe structured data), and so the protocol is e�ectively de�ned by the set of stub functions theserver provides, and the set or responses they will produce. This protocol can be thought of asthe `user protocol', as it is overlaid on the rtc rpc protocol, but de�ned by the user in muchthe same way as ordinary procedures and functions. There is still glue code to be written, butthere is less of it, and it is easily debugged, because the user protocol is human-readable.Despite there being no need for a formal protocol de�nition, it is worth planning and document-ing it, like any other programming exercise. Unlike most rpc protocols, the user protocol canbe extended dynamically|the server can install new stub functions at the request of clients,and clients can interrogate servers about their capabilities and adapt accordingly.5.2 Server Stub FunctionsThe server stub functions receive their arguments as strings in the traditional argc/argv format.argv[0] is the name the function was invoked (registered) as; argc is always greater than zero;and argv[argc] is always NULL. Traditional string handling functions, such as atoi(), atof(),strtol(), strtod(), strcmp() and sscanf() can be used to analyse the arguments.The server stub function's output is a single string, which can be constructed using sprintf(),strcat(), and so on. The function can return a constant string, a pointer into a static stringbu�er, a pointer into an argument string, or memory obtained using rtcServerBuffer() (Sec-tion 3.1).Because there can only be one rtc server thread per address space (see Section 5.10) serversstubs can safely use local static bu�ers and return pointers into them. However, the single-thread restricion may one day be lifted, so this practice is not recommended.Users can adopt any style of stub function argument passing they desire. While unix command-line options
ags and arguments can be used (along with getopt(), although it is not reentrant),a positional style, where an argument's position in the argument list indicates what it is, isgenerally simpler and more e�ective.Thus, argv[1] means one thing, argv[2] another, and so on. If arguments are optional, theappropriate argument can be passed a DEFAULT string, which the C stub functions chan check forand substitute the appropriate value. A more
exible arrangement is to arrange the argumentsin order of decreasing usefulness, so that commonly speci�ed argument come �rst and lesscommonly used ones (i.e., the more optional ones) come later.Stub functions should be relaively relaxed about argument parsing, and should try and dosomething sensible with whatever arguments are passed, rather than returning error messagesto the client. This minimises the need for error handling code on the Tcl side, which tends toclutter up scripts. In general it helps for the stub functions to be arranged to suit easy TclThe RTC Library Page 21

DRAFT DOCUMENTimplementation, rather than the other way round.5.3 Stateless ClientsIn any network client/server arrangement, it is much easier if the clients can be made stateless,or at least mostly stateless. `Stateless' means that they do not make any assumptions aboutthe server's state, or try to maintain duplicates of it.This is simply because the server state might change, but the client will not know about it.Servers might change their state unilaterally, or in response to other clients. As well, the clientmay lose communications with the server temporarily. The client cannot assume an element ofserver state is going to have the same as what it set it to last time. If it needs to use a dataelement, it must fetch it from the server each time.Consider the situation of a server providing a remotely controlled voltage output, such as adigital-to-analogue convertor. In providing a remote graphical interface using rtc and Tcl/Tk,the obvious approach is to use a Tk scale (slider) widget controlling a Tcl variable. The tracevariable function can then be used to arrange for a user function to be called whenever thevariable changes, which does the remote call to update the server voltage. The value displayedon the slider should thus re
ect the voltage coming out the digital-to-analogue convertor on theserver.This will be true, until another client changes the voltage. The second client will then bedisplaying the correct voltage, and the �rst will be wrong. The only way the �rst will be able todisplay the correct voltage is by querying the server to `read back' the output voltage, as thereis no way the server can tell the client it has changed. The only way the clients will alwaysdisplay the correct voltage is by continually querying the server, or in other words, polling.Polling is not particularly elegant, but it is robust, and ensures that the client needs only veryshort-term display state. Section 5.8 shows how such polling can be put in the background.On the other hand, there will be cases where a server response can be assumed to be �xed,and retaining the reponse as client state justi�able. For instance, in the example of Section 2,the list of serial port devices was assumed to be �xed, and fetched from the server only once.Since the number and names of device nodes on unix systems are quite static, the assumptionis reasonable in this case.5.4 Stateless ServersServers should also maintain the minimum of state required to do their job. In particular, theyshould not assume any particular behaviour from clients, such as expected sequences of remotecalls, because such expectations will be confounded by two clients using the server at once. Theserver stub functions are not passed any information about the identity of the clients.Servers should help their clients to be stateless. The remote functions they provide should makeit convenient and e�cient for clients to poll for displays of the server state. For instance, onthe server controlling the digital-to-analogue convertor, there should be a function that sets theoutput to a given voltage, and another that returns the current voltage.There should not be a function that, for example, increments the output voltage be a givenamount, as to use this the client needs to assume it knows the current voltage, which mighthave changed since it last read it.Page 22 First Revision

DRAFT DOCUMENT5.5 Connectionless versus Connection-oriented TransportsAllied to statelessness is the choice of network tranport protocols. Generally this is a choicebetween a connectionless (datagram) transport, such as upd/ip, or connection-oriented (stream)transport, such as tcp/ip.In general, connectionless transports are preferable for user interfaces, particularly during de-velopment. They ensure a `loose' coupling between servers and clients, which can be killed andrestarted without having to wait for connections to time-out and close.However, they bring into relief the issues of statelessness discussed above. An rpc exchange ona connectionless transport is the exchange of two datagrams, the request and the reply. Eitherdatagram might be lost in transmission. If a client has not received the reply for its requestwithin the retry period, it sends the request again, and continues to send it until it gets a reply,or the overall time-out period has elapsed. Now, if it was the reply datagrams that were beinglost in transmission, the server would have recieved a whole sequence of identical requests, whichit would have faithfully executed. As long as one reply datagram makes it back to the server,the rpc exchange is regarded as sucessful.In the case of our server with the voltage output, there would be no problem with the multiplerequests if they were to simply set the voltage. The voltage would be set to the same value anumber of times, but this would not matter. If the requests were to increment the output, thesituation would be very di�erent!Connection-oriented transports bypass this problem (but this should be no excuse for writingstateful clients). They tend to give better performance on lossy networks, such as serial links andpacket radio systems. However, on local ethernet networks they seem to have little advantage.When using connection-oriented transports (or at least, tcp/ip), case is required to properlyshut down the connection, otherwise one end (usually the client) will be left `dangling', inoper-ative until the connection times-out, which can take some minutes. rpc servers generally don'tclean up on exit very well, and on vxWorks and similar systems, the server is usually terminatedby the reset and reboot of the whole computer. For these reasons, connectionless protocols areusually preferble.5.6 Using catch around RTC callsTcl functions, including the rtc handle operations, return both a string result and a statuscode. The status code indicates if the procedure suceeded, or if there was an error; in thelatter case, the result string is supposed to indicate what the error was. Errors are returned forconditions where the Tcl script cannot normally continue, such as when functions are given thewrong number of arguments, underlying system calls fail, and so on.When a function returns an error, the Tcl interpreter halts execution of the script and printsout the return string as the error message, along with a stack dump. (Tk does much the samething, but in a pop-up window). In most cases errors occur infrequently enough to leave theirhandling to the default Tcl mechanism. However, remote procedure calls require more carefultreatment. Because they depend on network infrastructure, remote daemons and servers, andauthentication processes working together properly, they are more likely to fail.In a remote user interface application, handling errors of this nature is very important. Theinterface can be the user's only `view' of a system, and problems and frustrations that occurhere re
ect badly on the system as a whole. The interface should never `lock up', nor shouldthe end user ever be presented with a stack dump.The RTC Library Page 23

DRAFT DOCUMENTThe Tcl catch function can be used to deal with errors from rtc calls before the Tcl mechanismdoes. Assuming we have an rtc handle called remote and a remote function called ls:if [catch {remote call ls $args} result]# an rpc error occurredmessage_popup "Can't contact remote server: $result"...} else {# check for a user errorif {[lindex $result 0] == "ERROR"} {message_popup "There was a remote server error: $result"...}# deal with a good response...}In this case, a message pop-up is thrown up if an error is caught, which is only a marginalimprovement on the default Tk mechanism. However, the pop-up could, for instance, permitthe user to select a di�erent server and retry the operation.Remember that rtc calls return Tcl errors only when the rtc or rpc mechanism fails, and notwhen the user server stub functions report errors through their return string. In the example,the �rst token of the return string is checked for the word ERROR, but the user may choose toemploy any protocol (Section 5.1).5.7 Using the server catalogueAll rtc servers provide a catalogue function, which returns a list of the names of all functionsregistered on the server. This can be used by clients in various ways.The catalogue functions can be used as part of the user protocol, in cases where servers o�era variable number or range of services which must be adapted to by a single client.The example given in Section 2 is like this: the client doesn't initially know how many terminaldevices the server has, or what their names are. An alternative implementation could have theserver register an rtc stub function for each terminal device available, rather than listportsand message. The client would use catalogue to get the available functions (e�ectively, thelist of ports), and would call one of the functions directly to print the message.If users do not like the <handle> call <name> call syntax, they may insert <name> into theTcl interpreter directly, by de�ning a procedure:proc name args {if [catch {remote call name $args} result] {...}...return $result}This has the advantage of hiding the catch mechanism (and user error handling as well, ifdesired). The catalogue function can be used to automate this process, inserting every remotefunction o�ered by the server into the interpreter:Page 24 First Revision

DRAFT DOCUMENTif [catch {remote call catalogue} allfuncs] {...}foreach func $allfuncs {proc $func args {if [catch {remote call $func $args} result] {...}...return $result}}In this case, the remote functions have to be fairly consistent in their operation, at least withrespect to errors. It is also important that the names the stubs are registered with in the serverdo not clash with any extant functions or variables on the Tcl client side, or contain illegalcharacters.5.8 Background Polling for Remote InformationOften a Tcl/Tk interface to a system must maintain an up-to-date display of the remote systemsstate or process variables. Unfortunately, the server cannot tell the client when this state haschanged and needs to be re-displayed. The only alternative is for the client to poll the serverat regular intervals, and re-display the data if it has changed.This process can be `backgrounded' using the Tcl after function. After a script has initialisedeverything, it calls a function poll:proc poll {{period 1000}} {display_updateafter $period poll $period}Function display update uses rtc to get new data from the server and display it. Then pollscedules itself to be called back by the Tcl interpreter after period milliseconds, and so on.To be workable, this scheme needs a little re�nement. Polling needs to be disabled while Tkwidgets (such as scales) are being adjusted, or strange things happen. This can be done bybinding a function to the button press/pointer leave events of the a�ected interactors.The pirat user interface Tcl scripts (Section 5.12) used polling for display update. A genericpolling module poll.tcl was used (see the sources).5.9 Program Numbers and the RPC Port-MapperThe rtc program numbers, which are assigned by the user, are equivalent to rpc servicenumbers, which di�erentiate one rpc service from another. The rpc service numbers used byrtc servers and clients are simply the rtc program numbers added to 600 000 000 decimal.This allows rtc to make use of the standard rpc port-mapper daemon that is present onall systems equipped with rpc. (This daemon is variously called portmap, rpc.portmapd orrpcbind). The port-mapper is the clearing-house between rpc clients and servers, and is itselfan rpc server.The RTC Library Page 25

DRAFT DOCUMENTIt operates as follows: a server program initially registers itself with the port-mapper on itsmachine, sending it the rpc service number for the protocol it proposes to serve. The port-mapper returns a new Internet port number, and the server establishes itself, listening forrequests on that port. Clients seeking a particular rpc service initially contact the port-mapperon the server machine, sending the number of the rpc service they desire. The port-mapperreturns the port number the server should be using, which the client then uses to complete theuser's remote call.Clients usually only need to deal with the port-mapper once in their lifetime, because serverprocesses usually have longer lifetimes than clients. During server development, however, thereverse can be true. The rtc `client-recreate' option (in its various forms) can be valuable inthis situation.The port-mapper only remembers a single port number for each service number. If a secondserver of the same service registers itself, the previous registration for that service is lost.However, clients can continue to use the �rst server on the original port, because the new serverwill be given a di�erent port number. New clients will be given the new server's port number.The port-mapper also does not trace server processes. If a server exits, it should in principlecontact the port-mapper daemon to un-register itself, or the daemon will continue to report theabandoned port number to potential clients. Unfortunately, an exiting server can inadvertantlyun-regisiter a newer server of the same service number, resulting in no such servers beingregistered.In general, more than one rpc/rtc server of a given service/program number per machineshould be avoided.5.10 Multi-threaded Clients and ServersThe rtc client library is itself fully re-entrant, and may be safely used in multi-threaded Cprograms, assuming the underlying rpc library can be. This varies from platform to platform,and may apply for some operations and not others.The rtc server is not fully re-entrant, and only one thread per address space may enter theserver loop. (`Address space' means a process on a unix-like system, or a whole system fora vxWorks-like shared-memory kernel). This is mainly because the rpc server loop on mostplatforms is not re-entrant.This does not mean that rtc server processes cannot be multi-threaded, just that there canbe only one thread being the server. Other threads can call rtc server functions, such asrtcServerRegister() and rtcServerAuth(), at any time, as the server lists are properlyprotected by a monitor semaphore.Server stub functions are called in the context of the server thread. It is up to the programmerto use monitors in the stubs if they access thread-shared data, which is fairly likely. Remember,however, that stubs should not block (at least not for long), because the whole server is a�ected.The rpc implementation on Solaris can permit the server to spawn a new thread for eachrequest; this mode is intended for high throughput rpc servers with client functions that mayblock. It not presently supported by rtc.5.11 Server Access Controlrtc o�ers a more sophisticated authorisation control scheme than is generally used in rpcservers, which by default respond to requests from `all comers'. The intention is to limit serverPage 26 First Revision

DRAFT DOCUMENTreponse only to requests from clients on certain machines and having certain unix user-id andgroup-ids. By default, only requests eminating from the same machine and with the sameuser-id and default group-ids as the server has will be honoured (and then, only if the servicenumber described above matches). If the range of acceptable machines, users or groups is to beextended, as is usually the case, the the rtc authorisation functions described in Section 3.1need to be used.The server maintains three acceptance lists, one for machine host-names, one for user-ids, andone for group-ids. There is a function to add an element to each list. When a client sends anrtc request, the rpc mechanism sends with it an auth unix credential. This structure containsthe client machine name, the user-id of the sender, and the group-ids of all the groups the senderis a member of. The server tests the credential to ensure� the client's host-name is in the server's host-name list, AND� the client's user-id is in the server's user-id list, OR� the client's e�ective group-id is in the server's group-id list, OR� any of the client's group-ids are in the server's group-id list.If the test fails, the server refuses the request, and returns a code to the client indicating thatits credentials were not acceptable (AUTH BADCRED).This authorisation system cannot be regarded as `secure', since auth unix credentials are easilyforged. (The more secure auth des system is unfortunately not widely available). Its purpose isnot to increase security from malicious attack|although it is an improvement over normal rpcpractice|but to improve security against accidental errors by developers, or where two usersusing the same rtc application (or service number) on di�erent machines.This
ows from the observation that rpc protocols have occasionally been used to control `real'equipment, such as robot arms, so the security of access to the server is an obvious factor inthe safety of such systems. Equipment of this kind should never be controlled througha computer network unless adequate fail-safe local safety provisions are in place, such aspower-interlocked access gates and emergency-stop buttons.5.12 RTC in the pirat SystemThe rtc distribution includes the Tcl/Tk user interface scripts used by the pirat sewer inspec-tion system. These are of no particular use without the corresponding server, but are useful toillustrate an interface to a complicated system built using an early version of rtc.There are four separate programs dealing with the four main operational areas of the piratsystem: power and data gathering (master mode), vehicle and winch (operator mode), laserscanner, and sonar scanner. These four separate interfaces ran on a Sun workstation, andcommunicated with an rtc server running as a task on a vmebus vxWorks real-time system.The server provided over twenty remote functions controlling or monitoring individual aspectsof the disparate system. The interface programs collected these functions together into a uni�edpresentation, allowing semi-skilled (or sleep-deprived) operators to control the system in relativesafety.
The RTC Library Page 27

DRAFT DOCUMENT6 ConclusionThe remote graphical user interface has become something of a standard feature of systemsconstructed within the Division's Industrial Automation Programme. While the appropriatenessof such interfaces can occasionally be questioned, there is little doubt their provision consumessigni�cant programmer time. The appearance of Tcl (Tool Control Language) and its associatedX Windows toolkit Tk prompted the author to review the mechanisms which these interfacesare implemented. The result was the Tcl extension library rtc (Remote Tool Control), whichhas been the subject of this report.rtc is basically a �xed rpc protocol with a client interface integrated with Tcl, and a pre-written, run-time extendible server core. Server functions are written in C to a standard pro-totype and registered with the server. These functions can then be remotely called from a Tclscript almost as simply as a normal Tcl function.The client side of rtc can be used on any system that provides the Tcl interpreter and thestandard rpc client libraries|almost any unix system. Clients can also be written in C,avoiding the use of Tcl. Implementation on Microsoft Windows platforms may be feasible. Theserver libraries can be compiled for most Unix systems that provide rpc, and will also run onsmall shared-memory multi-tasking kernels, such as vxWorks, also provided that they have rpc.rtc was used to construct the main operator interfaces for the pirat Instrument System, whichprovided an ideal vehicle to test the initial implementation and develop e�ective ways of usingit. The pirat interfaces were developed surprisingly quickly, vindicating the rtc approach.

Page 28 First Revision

DRAFT DOCUMENTReferences[1] G. Campbell, K. J. Rogers, and J. Gib-ert. PIRAT Project, Quantitative SewerInspection|Stage 2: Development andAssessment of a System for Field Use.Con�dential Technical Report MTM-415,CSIRO Division of Manufacturing Technol-ogy, Melbourne, May 1995.[2] On-Line Applications Research Corpora-tion. Real Time Executive for Military Sys-tems: C Applications User Guide. U.S.Army Missile Command, Redstone Arse-nal, AL 35898-5254, July 1994.[3] SunSoft Inc. OpenWindows Version 3:XView Reference Manual. Sun Microsys-tems Inc., 2550 Garcia Avenue, CA 94043,U.S.A, 1991.[4] SunSoft Inc. rpcgen Programming Guide.In SunOS Network Programming Guide.Sun Microsystems Inc., 2550 Garcia Av-enue, CA 94043, U.S.A, 1991.[5] R. J. Kirkham and P. I. Corke. Bud-erim Ginger Project Technical Report: RO-BOSORTER Overview. Con�dential Tech-nical Report MTM-371, CSIRO Divisionof Manufacturing Technology, Melbourne,December 1994.[6] R. J. Kirkham, P. I. Corke, and H. Nguyen.Buderim Ginger Project Technical Report:The ROBOSORTER Machine Vision Sys-tem. Con�dential Technical Report MTM-425, CSIRO Division of ManufacturingTechnology, Melbourne, September 1995.[7] R. J. Kirkham and A. J. Dreier. DataHandling and Control Software. PIRATProject Stage 2 Technical Report MTM-404, CSIRO Division of ManufacturingTechnology, Melbourne, May 1995.[8] John K. Ousterhout. Tcl and the TkToolkit. Addison-Wesley, 1994.[9] Wind River Systems. vxWorks Program-mer's Guide. Wind River Systems, Inc,1010 Atlantic Avenue, Alameda CA 94501-1147, 1992.The RTC Library Page 29

