
DDX: A Distributed Software Architecture for Robotic Systems

Peter Corke, Pavan Sikka, Jonathan Roberts and Elliot Duff
CSIRO ICT Centre

PO Box 883, Kenmore, Qld 4069, AUSTRALIA
Email: firstname.lastname@csiro.au

Abstract

The Dynamic Data eXchange (DDX) is our
third generation platform for building dis-
tributed robot controllers. DDX allows a coali-
tion of programs to share data at run-time
through an efficient shared memory mechanism
managed by a store. Further, stores on mul-
tiple machines can be linked by means of a
global catalog and data is moved between the
stores on an as needed basis by multi-casting.
Heterogeneous computer systems are handled.
We describe the architecture of DDX and the
standard clients we have developed that let
us rapidly build complex control systems with
minimal coding.

1 Introduction

For nearly 10 years we have been building complex
robotic systems. Over time we have developed a series of
software platforms to facilitate this endeavour. This pa-
per describes our third generation platform which we call
DDX for Dynamic Data eXchange. It builds upon ideas
we have previously presented in Roberts et. al. [Roberts
et al., 1999]. Analyzing the common requirements from
many applications we find the following issues to be im-
portant:
• an application is composed from numerous small,

simple and well-tested programs that form a run-
time coalition;

• an application may involve several processes run-
ning on a heterogeneous network of computers;

• the need for a low-overhead, but safe, mechanism to
share data;

• an ability to log data to disk for debugging and pre-
sentation; and

• associating timestamps with all data.
There is a considerable literature on the topic of robot

software architectures. The IPC [Simmons and James,

2001] system, as well as systems based on CORBA
[Schmidt, 2004], provide similar functionality. They
both provide the means to transfer data objects and
synchronize between processes running on heterogeneous
computer systems. They are both based on underlying
network communications. A significant disadvantage of
these systems is that even if all processes run on the one
computer the data will pass through a significant por-
tion of the network protocol stack. All communication
in these systems is point-to-point; therefore, there is no
single place at which all communications can be moni-
tored. Furthermore, this causes data duplication when
there are multiple clients.

IPC has bindings for C, C++, Allegro Common Lisp
and Java, and has been ported to Solaris, Linux, WinNT,
Win98, VxWorks, IRIX and MacOS. The central server
provides a switch-yard for messages (by default) and can
provide logging of message traffic. The TAO CORBA
package[Schmidt, 2004] has C++ bindings and the ob-
ject request broker (ORB), called TAO, has been ported
to most versions of Windows (include WinCE) and Unix,
VMS, LynxOS, VxWorks, QNX Neutrino, and OS9. IPC
and TAO are both available in source form with gener-
ous license conditions. An application of TAO to tele-
robotics is given in [Bottazzi et al., 2002].

CORBA-based approaches require a description of the
data objects, an IDL file, that must be compiled to pro-
vide access to the object. In contrast, IPC and DDX
both use run-time type descriptions. This has a signif-
icant advantage in terms of simplifying code develop-
ment.

An alternative form of communication that has be-
come popular recently is publish/subscribe [th Eugster
et al., 2003; Pardo-Castellote et al., 2001; 1997]. This
form of communication has also been recently standard-
ized by the OMG. This form of communication has been
used in industrial networks such as DeviceNet but is
only now beginning to find some use in robotics appli-
cations. Unlike the communication systems mentioned
above, this form of communication optimizes network



CATALOG

Memory
Shared STORE

Memory
Shared STORE

CLIENT CLIENT CLIENT

Computer 1 Computer 2

TCP/IP Connection

UDP/IP Multicast Group
Shared Memory Reference 

Shared Memory Create and Manage

Figure 1: DDX components.

traffic amongst various computers so that a data packet
is transmitted only once and is then delivered to all
clients across the network only once. It maps onto the
mechanism of multi-casting as defined by the UDP/IP
protocol. DDX relies on this form of communication to
transfer data between processes running on networked
computers. DDX also provides a very efficient shared
memory mechanism to allow processes running on the
same computer to share data.

The remainder of this paper is structured as follows.
Section 2 describes the fundamental mechanisms for data
exchange, and Section 4 describes a large family of com-
pliant clients that can be assembled into an application.
Section 5 describes the means to coordinate the execu-
tion of the components across multiple computers, and
Section 7 concludes and presents current directions.

2 Core components

DDX provides its functionality through two programs
(catalog and store) and a client library libddx.a. Fig-
ure 1 shows how the various components can be put to-
gether to implement a distributed system based on DDX.

The store implements most of the functionality re-
quired for a single machine. The store provides client
applications with a block of shared memory that is used
by clients to store shared data. The store also provides
clients with global process-shared semaphores (in shared
memory) that are used for synchronized access to the
shared data.

The catalog provides a global repository of data
stored across machines in a distributed system. DDX
requires a store to be running on each machine that

forms part of the application. All of these distributed
stores reference one catalog that is common to the
application. The catalog controls the transfer of data
amongst the stores by instructing stores to transmit data
updates to all other stores using UDP/IP multi-cast.

2.1 Store

The store is one of the key components of DDX. It
provides its clients with the ability to create and share
data efficiently. It also allows synchronized access to the
shared data. Finally, it allows clients to specify shared
data as native ’C’ data-types. This ability is critical to
multi-architecture support.

Shared memory

The store creates and manages a block of shared mem-
ory used by clients to store data. The store maintains
an internal table that contains information about the
data stored in its shared memory. Clients map this
shared memory into their own process-space and then
have direct access to the data through memory pointers.

The store “understands” native ’C’ declarations (in-
cluding typedefs). When a client wishes to access some
data in the store, it provides the store with a ’C’ decla-
ration for the data. The client is responsible to provide
all type definitions required to parse the data declara-
tion.

The store parses the data declaration provided and
then allocates space in the shared memory block for the
data. The store respects the architecture constraints in
terms of primitive data sizes and alignments. The store
then provides the client with the location of the data in
the shared memory block.

This ability to understand native ’C’ data declarations
is key to efficient storage and manipulation of shared
data. On a single machine, the shared data is stored in
the native format. Therefore, clients are able to access
data as if it was local to the program. The representation
is efficient since no data translation is required (cf other
RPC mechanisms). Clients use native ’C’ declarations
to define the data to be stored in shared memory. The
only additional requirement is that the client needs to
generate a string representation of the data declarations
so that they can be communicated to the store. This
can easily be done using some standard macro facilities
provided by ’C’.

Global process-shared semaphores

The store creates a block of shared memory for
global process-shared semaphores. The store creates a
semaphore for each client for each data-item referenced
by the client. These semaphores allow the clients to have
synchronized access to the data.



Implementation issues
The store is implemented in ’C’. It confirms to the
POSIX.1, POSIX.1b and POSIX.1c standards, and this
is both an advantage and a limiting factor. Since the
implementation makes extensive use of the facilities pro-
vided by these standards, DDX is only available on sys-
tems that provide fairly complete implementations of
these standards.

We have tested the implementation on Solaris (Sparc),
Linux (i586+), LynxOS (i586+) and QNX Neutrino
(i586+). The Linux implementation requires the NPTL
library and the 2.6 kernel (or a 2.4 kernel with Redhat
patches to support NPTL).

2.2 Catalog
The catalog is critical to the sharing of data across com-
puters in a distributed DDX application. It provides a
global repository of information across all the computers
that make up a distributed DDX system. The catalog
maintains a list of all the stores connected to it. The
catalog also maintains a list of all the data-items that
have been created by clients. Each element of this list
further contains a list of the stores that have clients
with references to the data-item.

Whenever a client requests access to some data, the
store checks to see if the data exists locally. If not,
the store forwards the request to the catalog. If the
data does not exist in the system, the catalog records
information about the data in its internal tables and then
instructs the store to create the data.

Inter-store communications
However, if the data already exists, the implication is
that it was created by a client on some other store
within the application. Therefore, the data needs to be
shared across stores. The catalog accomplishes this
by:

1. instructing the store to create the data and to en-
able multi-cast, and

2. instructing the other store to enable multi-cast for
this data-item.

This sequence of instructions causes the stores to cre-
ate internal threads that “listen” for multi-casts of the
data-item and then update the data-item whenever a
successful multi-cast message containing the data-item
is received. These threads also provide any translation
that may be required due to differences in architecture
(size, alignment and byte-order). The multi-cast mes-
sages are posted automatically whenever the data-item
is updated by a client.

When the clients are finished accessing the data,
they inform the store which then informs the catalog.
When the number of stores that have clients interested

in the data-item comes down to 1, the catalog instructs
the store to disable multi-cast for the data-item.

3 Client API

The following short example of C code shows the major
features of the DDX client API. The code reads the value
of an encoder from the store. Note that another program
(the producer) is responsible for actually interfacing with
the encoder and writing its value to the store. Often, a
DDX client is both a “producer” and a “consumer”.

In summary, the code performs the following steps:

1. Declare a structure using the DDX STORE TYPE
macro. Typically this declaration is performed in
a header file that is shared by all clients with an
interest in the structure.

2. The ddx client init() function is called which
initializes the shared memory data structures.

3. The ddx store open() function is called that opens
a connection to the store running on the local ma-
chine. This function returns a handle to the store.

4. The encoder structure is looked-up in the store us-
ing the ddx store lookup item() function. This
function returns a handle to the encoder structure.

5. The value of the encoder structure is read from the
store continuously while its data is valid. The data
is read using the ddx store read() function which
can be used in a blocking or non-blocking mode.
In this example the read is blocking and will only
return when new data arrives in the store.

6. Finally, the store client side is cleaned up.
/* Declare encoder type */
DDX_STORE_TYPE (Encoder,
struct {

double value;
int valid;

} );

/* Declare variables */
DDX_STORE_ID *storeId;
DDX_STORE_ITEM *encoderItem;
Encoder enc;

/* Initialise DDX client side */
ddx_client_init(0);

/* Open local store */
storeId = ddx_store_open(NULL, 0, 2);

/* Lookup encoder structure */
encoderItem = ddx_store_lookup_item(

storeId, "encoder", "Encoder",
sizeof(Encoder));

/* Print out value */
enc.valid = 1;
while (enc.valid) {



ddx_store_read(encoderItem, &enc,
NULL, 1.0, 1);

printf("val = %f\n", enc.value);
}

/* Cleanup DDX client side */
ddx_store_done_item(encoderItem);
ddx_store_close(storeId);
ddx_client_done();

4 Standard clients

4.1 Sensors
We have developed several applications that acquire data
from various standard robotic sensors and write it to the
store:

gps A generic GPS utility that reads standard NMEA
messages from a serial port and writes them as
structures to the store.

imu A generic IMU utility that reads data from a Cross-
bow DMU or CSIRO EiMU IMU via a serial port
and writes the data to the store.

pls A utility that interfaces with a SICK PLS or LMS
2D laser scanner via a serial port and writes data to
the store.

IIO IIO is a library developed by the Automation group
to streamline access to sensors. It was originally de-
veloped for Industry Pack (IP) modules within a
VME/VxWorks environment but has since been ex-
panded to include support for the PC parallel port
and Modbus/TCP modules within a POSIX frame-
work. It provides a uniform API to access a large
variety of sensors that are easily described in a con-
figuration file. The DDX IIO application reads its
configuration from a file. It allows for different sam-
ple rates for individual sensors. It reads sensor data
and writes it to the store. It can also read data
from the store and write it to output modules (dig-
ital/analog outputs).
Command line options on these utilities allow us to
specify the variable name within the store, update
rate and other sensor specific options. These options
can also be specified in a configuration file.

4.2 Logger
In our experience with commissioning many robotic sys-
tems, we found that lack of data about what happened
prior to a failure was a major limitation. With the DDX
architecture all data pertinent to an application passes
through the store and this is an ideal point at which to
record it. The logger application accepts command line
options (or a configuration file) specifying the variables
to be logged and the interval (can specify every nth up-
date to be recorded, useful for high frequency signals). A
separate thread within the logger monitors each variable

and changes are written to a ring buffer. The priority of
each thread can be specified if required. The ring buffer
is written to disk by a low-priority thread within the
logger. Log files can be rolled over when they reach a
specified size, after a specified time, or on receipt of a
Unix signal.

The logger files have a hybrid structure. An ASCII
header contains the start time and date, user name and
the data organization for the binary portion of the file
(endian-ness, alignment). It then describes the types
of all logged variables in a ‘C’ like syntax. Following
this is the data, each object is written in native binary
format with a time stamp and record type. The files are
therefore compact but completely self-contained, since
the definition of the data-types is embedded in the file,
giving robustness with respect to changes in data types.

Log file reading
The ddxreadlog utility allows a user to parse a log file,
and automatically uncompresses the file if it has been
compressed. Options provide the ability to list the vari-
ables within the file, the number of objects of each type
within the file, or the numerical values of specified vari-
ables. The variables can be dumped in ASCII tabular
format (compound objects are “flattened”) or as a Mat-
lab MAT-file in which case compound object structure
is maintained. An example session is shown below.
ratbert.cat.csiro.au% ddxreadlog -l 20040312153345.log
3 top level variables in file
tr_pos [860]
tr_demand [602]
ddx_gps [602]

Matlab interface
A MATLAB M-file provides a convenient wrapper to
ddxreadlog and can optionally re-sample all extracted
variables to the timestamps of the highest sample rate
variable extracted. Having the logged data available
within Matlab greatly simplifies analysis, debugging and
data presentation.

For example, the datafile from above can be loaded
and assigned to the workspace object g whose elements
are vectors of signals whose corresponding time value is
given by the element t. The following example illustrates
this use of ddxreadlog.
>> ddxretrieve(’20040312153345.log’, ...

’g=ddx_gps’)
Fastest sampling is ddx_gps at 0.100000s
Assign ddx_gps -> g
>> g
g =

t: [602x1 double]
Easting: [602x1 double]
Northing: [602x1 double]
velEast: [602x1 double]
velNorth: [602x1 double]
absDist: [602x1 double]
absVel: [602x1 double]

initEast: [602x1 double]



DISK
SENSOR
CLIENT

SENSOR
CLIENT

APPLICATION

DISK

APPLICATION

ddxlog

ddxreplay

store

store

Figure 2: Top: the ‘live’ mode of operation where data
is logged to disk. Bottom: the off-line situation where
data can be replayed through the store.

initNorth: [602x1 double]
gpsStatus: [602x1 double]

x_dmd: [602x1 double]
y_dmd: [602x1 double]

vel_dmd: [602x1 double]
steer_dmd: [602x1 double]
heading: [602x1 double]

>>

Logger API

The hybrid logger data files have become our defacto
standard for recording data. We find it useful in some
applications to read or write these structured files di-
rectly from an application, without the need to run a
store and catalog. A simple ’C’ language API provides
this functionality.

4.3 Replayer

Most control applications take a stream of sensor values
and compute an appropriate control demand. At the
same time, data is logged to disk for off-line analysis.
Figure 2(top) shows this mode of operation where data
is logged from the store to disk (using ddxlog). To facil-
itate testing and debugging offline, we can replay logged
sensor data through the store using the ddxreplay pro-
gram. Figure 2(bottom) shows this mode of operation.

The data can be played back at the same rate as it
was originally generated. This results in a more realis-
tic playback to the rest of the system. During a replay
session, the sensor producer clients (the programs that
actually interface to the sensor hardware) are not run.
Instead the ddxreplay program is run with a log file
containing all the sensor data. This mechanism is an
extremely powerful way to aid with debugging of ap-
plication code, as this code can not tell the difference
between real ‘live’ data and replayed ‘stored’ data.

4.4 Interactive text console
The facility to examine the status of a store variable
through a command line interface is extremely useful.
The ddxsh utility allows us to list all registered values
and their types, check or change the current value, and
to see the last time the value was updated. An example
session is shown below:

ratbert.cat.csiro.au% ddxsh -s emma-ph
store@emma-ph: ls
cmplx
pls
test
store@emma-ph: ls -l
cmplx [size = 3168] [count = 1133]
pls [size = 1028] [count = 1133]
test [size = 8] [count = 0]
store@emma-ph: ls pls
struct {

int numPoints;
int range[256];

};
store@emma-ph: ls test
struct {

int x;
int y;

};
store@emma-ph: print test
0.0 [0]
struct {

int x = 0;
int y = 0;

} test;
store@emma-ph: set test 1.0 2.0
OK
store@emma-ph: print test
1079323091.432622000 [1]
struct {

int x = 1;
int y = 2;

} test;
store@emma-ph: ls -l
cmplx [size = 3168] [count = 1199]
pls [size = 1028] [count = 1199]
test [size = 8] [count = 1]
store@emma-ph: quit
ratbert.cat.csiro.au%

4.5 Signal generator
ddxsiggen is a utility that can generate different wave-
forms (for example, sine, cosine, triangle, square etc) and
write them into the store. The waveforms to be gener-
ated and their properties are read from a configuration
file. An example configuration file is shown below:

%
% Comment (Example configuration file)
%

interval 0.01

signal sine
type sine



Figure 3: A screen-dump of the ddxscope utility.

params
A = 10 % Amplitude 10
C = 0 % Phase angle 0 rad
f = 0.5 % Frequency 0.5 Hz
D = 5 % Offset 5

signal square
type square
params
A = 5
B = 10
T = 2

4.6 Scope
ddxscope is a GUI written in Java. It allows the user to
select individual items from the store and then displays
them on a virtual oscilloscope. Figure 3 shows a screen-
dump of this utility. The signals were generated using
the ddxsiggen utility described above.

4.7 Embedded microprocessor interface
Our embedded systems, based on HC12 and Atmel pro-
cessors with a custom multi-threading kernel have the
ability to “export” variables used by the program. A
serial line protocol enables these variables to be read
(polled or periodic) or written. A proxy client reflects
these variables into the store. Therefore when a store
variable is written, the client sends a command over the
serial port to modify that variable in the memory of the
embedded system. Likewise, values can be read peri-
odically and updated in the store. This facility allows
ready integration of low-cost embedded systems within
the overall control architecture.

5 Launcher

As described above, we use DDX to assemble at run time
a coalition of programs to share data and perform a con-
trol function. In general most of the programs in the
coalition are standard: store, logger, and sensor clients.
Generally only the control program itself varies from ap-

plication to application, and even then we are often able
to recycle a considerable amount of code.

The members of the coalition may need to run on
different computers in the network, and starting and
stopping the coalition became something of a problem.
Our answer to this is a helper application we call the
launcher. A configuration file specifies a number of op-
erational run levels (somewhat analogous to the Unix
init.d mechanism) and the programs required at each
level. Typical run levels are:

0 No programs running.

1 Catalog started

2 Stores started on all participating machines.

3 Sensor clients started on all participating machines.

4 Application specific, perhaps low-level loops

5 Application specific, perhaps task planner

6 etc.

The launcher program can take a command line option
to run the system up to a specified level, or in interactive
mode the level can be changed at will with the programs
started or terminated appropriately. If any program in
the ”stack” fails (detected by signals) the level is dropped
to the level below that which the failed program ran at.

Each line in the launcher configuration file contains
the launch level, name of the program, the host it is to
run on and command line options. An additional option
indicates whether the program is ”launcher aware”, i.e.,
it uses a launcher API to signal its launcher that it has
initialized and that the launch sequence should proceed.
We originally used the rsh mechanism but found it was
not sufficiently portable or reliable across platforms.

An example configuration file is shown below:

% Curb following launch file
#undef linux
1 catalog launch-aware 10 catalog
2 store launch-aware 10 store
3 pls launch-aware 10 pls -d ttyS8 -S
4 gps launch-aware 10 gpslog -store

-nmea ttyS7:9600 -message gpgga,gpllk
-type sr530

5 tractor-server launch-aware 10
tractor-server

6 curb launch-aware 10 curb
7 snake launch-aware 10 snake curbLaser
8 tractor-test launch-aware 10

../bin/i486-linux/tractor-test

6 Future Work

One of the key benefits of DDX is that it provides a
useful level of device abstraction to the consumer. Since
the consumer does not need to be aware of how data
from a device is created by the producer, the data could
be real, pre-recorded, virtual or simulated.



This feature was demonstrated in the control of an
autonomous tractor [Usher et al., 2004], where DDX was
used to create a virtual PLS that enabled the re-use of
existing wall-following code. In this case, the virtual
walls were created from the segmentation of the road
from an omni-directional video camera.

The value of such device abstraction has been well
documented. Of particular note is the Player/Stage
platform[Vaughan et al., 2003]. In future work, we in-
tend to write a number of Player device drivers (laser and
position) that communicate with the store. We have also
recognized that Player/Stage could benefit significantly
by using DDX as an additional transport layer.

Other future work will include language bindings for
Java, Python and Matlab. The latter will allow function-
ality like Real-Time workshop where Simulink blocks can
directly read and write objects in the store, measuring
real-world values and performing control.

7 Conclusion

We have described a distributed software architecture
for robot control systems that is currently deployed in
nearly 10 systems. These span the range from massive
excavators with several networked control computers, to
embedded systems, to high performance servo systems
with 1 kHz sample rates.

This architecture allows us to rapidly develop proto-
type robotic systems with the following attributes:

• an application is composed from numerous small,
simple and well-tested programs that form a run-
time coalition;

• an application may involve several processes run-
ning on a heterogeneous network of computers;

• the architecture provides application processes with
a low-overhead, but safe, mechanism to share data;

• an application has a built-in ability to log data to
disk for debugging and presentation.

Acknowledgment

The authors would like to thank the rest of the CSIRO
Robotics team who have contributed ideas and have
thoroughly tested this software.

References
[Bottazzi et al., 2002] S. Bottazzi, S. Caselli, M. Reg-

giani, and M Amoretti. A software framework based
on real-time CORBA for telerobotic systems. In Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Systems,
pages 3011–3017, Lausanne, October 2002.

[Pardo-Castellote et al., 1997] Gerardo Pardo-
Castellote, Stan Schneider, and Mark Hamilton.
Ndds: The real-time publish-subscribe middleware.

In Proceedings of the IEEE Real-Time Systems
Symposium, 1997.

[Pardo-Castellote et al., 2001] Gerardo Pardo-
Castellote, Stefaan Sonck Thiebaut, Mark Hamilton,
and Henry Choi. Real-time publish-subscribe protocol
for ip-based real-time communication. Instrument
Society of America, 2001.

[Roberts et al., 1999] J.M. Roberts, P.I. Corke, R.J.
Kirkham, F. Pennerath, and G.J. Winstanley. A
real-time software architecture for robotics and au-
tomation. In Proceedings of IEEE Int. Conf. on
Robotics and Automation, pages 1158–1163, Detroit,
USA, 1999.

[Schmidt, 2004] Douglas C. Schmidt. Real-time
CORBA with TAO, 2004.

[Simmons and James, 2001] Reid Simmons and Dale
James. Inter-Process Communication. Carnegie-
Mellon Univeristy, 3.4 edition, February 2001.

[th Eugster et al., 2003] Patrick th Eugster, Pascal A
Felber, Rachid Guerraoui, and Anne-Marie Kermar-
rec. The many faces of publish/subscribe. ACM Com-
puting Surveys, 35(2):114–131, June 2003.

[Usher et al., 2004] Kane Usher, Jonathan Roberts, El-
liot Duff, Peter Corke, and Graeme Winstanley. Road
following using virtual range sensiong and radially
constrained active contours. In Proceedings of the
IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sendai, Japan, 2004. Submitted.

[Vaughan et al., 2003] R. T. Vaughan, B P Gerkey, and
A Howard. On device abstractions for portable,
reusable robot code. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and
Systems, pages 2421–2427, Las Vegas, USA, 2003.


