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Summary

This report describes 110, the Industrial Input Output library.

The term ‘industrial 10’ refers to computer peripherals such as analogue-to-
digital and digital-to-analogue converters, lamp, relay and solenoid drivers, or
timers, counters and interrupters. The term ‘industrial’” discriminates such de-
vices from the more traditional forms of computer 10, such as graphical displays,
disc drives, or serial ports.

The 110 library simplifies the writing of software which uses this industrial 10
hardware in practical computer control applications. It comprises a generic ‘core’,
presenting a standardised interface to the user software, and an array of ‘module
drivers’ which deal with the intricacies of individual hardware modules. It makes
user software independent of the particular brand or model of hardware. If the
hardware is already supported by the library, 110 frees the programmer from the
need to write a module driver, or, if not, provides a framework within which a
new module driver can be written.

The library also simplifies the management of such computer-controlled instal-
lations. All the configuration information and 10 channel assignments for all the
hardware in the system is entered into a configuration file. This file is intended
to relate closely to the installation’s wiring diagram, assisting programmers and
system integrators to agree about the type and naming of all 10 devices.

Structure of the Report

The first part of this report is intended for C programmers wishing to make use
of the 110 library in application programs. After an introductory section, the
specific concepts and terminology used by 110 are introduced. Then follows a
description of 110’s very simple C language interface. The next section explains
how to write 110 configuration files. A general understanding of ¢ programming
and industrial 10 hardware is assumed for this first part of the report.

The second part assumes a deeper knowledge of real-time programming, de-
vice drivers, computer architecture and 10 hardware. It is meant for people who
want to extend, improve or repair the 110 library. Section B is a step-by-step
description of how to write and install module drivers for new hardware. The
following section deals with a number of specific issues related to module drivers.
Finally, the internals (and hopefully, some subtleties) of the 110 core library are
exposed.

The report ends with a short concluding assessment, followed by a number of
appendices. Most important is Appendix [, which contains the module driver
descriptions. The 110 library currently supports over twenty-five such modules.
This is followed by a description of the 110 interactive shell, which is useful for
testing configuration files and installations. The library installation and mainte-
nance procedures precede listings of important header files and an index.

Changes to this Report

This report has been changed to conform to Release 11 of the 110 sources. All
significant changes to the text since the December 1997 edition are indicated by
change-bars in the right-hand margin, as shown. The changes are summarised in
Appendix D.
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Section 1

Introduction

For a control engineer, there is little point in a real-time computer system that
cannot be connected to ‘the real world’ through practical industrial-grade sen-
sors and actuators. A computer with the standard forms of 10 (Input Output)
devices—such as a keyboard, disc drive and graphical screen—may be useful in
the design of a control system, but not in its implementation.

This is not because of a lack of suitable 10 hardware. There is a huge range
of industrial-grade interface hardware, which can be used to couple virtually any
digital or analogue sensor or actuator onto any common computer system, from
an industrial VMEbus rack, to a engineering workstation, to a Linux laptop pC.

The main problem is the operating system, which supports the traditional
forms of 10 very well, but hardly ever supports this industrial 10. It is easy to
write software which uses the traditional devices, because the operating system
deals with all the details of the device hardware, and presents a neat, virtualised
software interface to the user’s program. When it comes to industrial 10, however,
users are frequently on their own. They must write software routines (‘drivers’)
to directly access the device hardware in whatever way the application requires.

Unfortunately, operating systems such as UNIX actively prevent user software
accessing hardware directly, as this is considered a risk to the system’s integrity
(which it is). Users are instead expected to write a kernel device driver and install
it in the system. This is not always easy, and means users must deal with what is
usually the least documented part of the system. They must also choose between
implementing the driver as a stream device, like a serial port or network interface,
or as a block device, like a disc drive. Sometimes neither is appropriate.

The smaller real-time kernels, such as vxWorks or RTEMS, are somewhat better
in this respect. While they usually provide a UNIX-like 10 system for traditional
devices, they do not force the programmer to use it, and do not obstruct direct
access to the hardware. Real-time UNIX systems, such as LynxOS, fit in the
middle somewhere, having UNIX-style kernel drivers, but allowing user programs
to access hardware, with a little extra work. Still, none of these more industrially-
oriented operating systems greatly assist the industrial 10 programmer.

This means that the driver code for accessing the 10 hardware tends to get
included in application programs, where it does not really belong. Ideally, the
application programmer should be able to deal with industrial 10 devices in a
generic way, through a neat, vitualised software interface, just like the traditional
devices. The programmer should not know or care what brand of hardware is
used to implement the 10, any more than they care what brand of disc drive or
serial board is installed.

This practice of writing driver code into application programs also tends to
discourage both portability and software re-use. Firstly, there is little impetus to
make the driver code portable, because the application may be a one-off, and so
certain peculiarities of the operating system may get written into the driver. In
turn, the application itself may end up having certain peculiarities of the driver
or hardware written into it. In the end the system becomes bound to a certain
model of hardware, and little of the software can be re-used in a new context.

If a clear distinction can be made between the application program and the
driver software, as occurs with traditional forms of 10, many of these problems
will disappear. If the driver software can be amalgamated in the form of a
portable library, code re-use becomes simpler. If the programmer’s interface to
the library can be standardised, higher-level generic program modules become
feasible. These are the principal purposes of the 110 library.
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SECTION 1. INTRODUCTION

1.1 Industrial versus Data Acquisition 10

The term ‘industrial 10’ in the 110 sense includes:

e analogue-to-digital converters (ADCs), which measure voltage, cur-
rent, temperature or other scalar quantity and supply the result to
the computer

e digital-to-analogue converters (DACs), which produce scalar voltage
or current on demand from the computer

e digital or binary inputs, such as from relay contacts, switches, prox-
imity detectors, external logic, and so on

e digital or binary outputs, to drive lamps, solenoids, relays, external
logic, and so on

e digital counters and timers, such as for incremental encoders, event
counters, interrupters, and so on

e motor servo controls.

The term ‘industrial 10’ tends to suggest professional vMEbus hardware and
the like, but the type of construction is not important. The style of operation,
from both the electronic and the software programming viewpoint, is more signif-
icant. Firstly, the hardware tends to be a component in a complete system built
for some purpose, and, once installed and configured, is generally not altered
frequently. Secondly, the hardware is almost always operated by the software in
a ‘sample-on-demand’ mode. In other words, the timing of inputs or outputs is
controlled by the application software (using a real-time kernel).

This distinguishes industrial 10 from ‘data acquisition 10’. The latter generally
consists of a multi-channel selectable-gain ADC coupled with a time-base and
sample buffer memory. This kind of hardware is more often used in laboratory or
temporary settings, and acquires large sets of samples on a regular (and possibly
quite fast) time-base. The software merely starts and stops the hardware, and
usually does not process or act on the data, except perhaps to graph or store it
after acquisition. This style of hardware (or at least, its operation in such modes)
is beyond the current 110 scope.

1.2 Configuring Software for Hardware

The driver software must provide a set of function calls that perform actual input
and output operations on the industrial 10 hardware. Often the relationship
between the functions and the low-level register reads and writes is quite simple.
This apparent simplicity tends to obscure other issues, particularly those related
to configuration, which have more bearing on the re-usability or convenience of
the driver and application code.

Most hardware modules have a number of switches of shorting-jumpers which
configure various features of the hardware’s operation. Most important is the
base address, the location in the computer’s address space at which the hardware
registers can be read or written. However, other important factors, such as the
voltage ranges of ADCs or DACs, are often configured by jumpers.

These configuration details need to be conveyed to the driver software for it
to work properly. The most common method is to encode the configuration in
#define pre-processor directives which are compiled into the driver object code.
This means the driver needs to be re-compiled and the application re-linked
whenever the hardware configuration changes. It also makes it very difficult to
use more than one of a given type of hardware in a system.

A slightly better solution is to add a configuration function to the driver,
so that the base address and other details can be supplied to the driver by the
application at initialisation time. However, this means that the application pro-
gram must obtain and deal with hardware-specific data, which compromises its
portability.
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1.3. COMMERCIAL 10 SOFTWARE LIBRARIES

A complication to both of these approaches is that the base address setting
of the hardware is not necessarily going to be the address the program will need
to use to access the registers. An address that is written into the driver or
supplied through the application will have an implicit assumption about the
processor hardware and operating system the application is running on, because
a logical or virtual address used in a program is usually subjected to a number
of transformations before it emerges as a physical address on the hardware’s
bus. Often this difference is ignored or simply accepted by the programmers and
system integrators.

Another issue is the identification of particular input or output units (chan-
nels, in 110 parlance). The application program obviously needs to know which
channel is connected to which device in the system. Again, #define directives
are frequently used to assign symbolic names to channels.

Clearly, then, any generic approach to industrial 10 will have to deal with
issues such as the hardware configuration details, the naming of channels, and
the resolution of physical to logical addresses. These are issues that will apply to
almost any piece of industrial 10 hardware, which suggests a software design com-
prising a central core of generic interface, addressing and configuration functions,
surrounded by an expandable set of hardware module-specific drivers.

1.3 Commercial I0 Software Libraries

Manufacturers of industrial 10 hardware often include sample driver code—often
written in assembly language—along with their products. In the author’s ex-
perience, these routines are sometimes so badly written or so narrow in their
applicability that they are useless. Frequently code examples depend on non-
standard ¢ compiler peculiarities, or even complete misunderstandings of the
language. Usually it is safer to start from the hardware manual and write a
driver from scratch.

A few larger manufacturers sell separate software libraries for their products,
which are presumably of higher quality. Some of these are intended for execution
on a particular operating system. For example, vMIC, a producer of VMEbus
hardware, sells toworks, which is intended for use with vxWorks, although ports
to other operating systems are promised.

10works supports most of all of vMIC hardware range, although support for
third-party hardware can be written and integrated. It appears to be a Win-
dows NT application that emits hardware interface code, which is then compiled
into applications to run on the real-time system. It also features a Windows NT
server application, allowing graphical interfaces to access 10 devices on hosts on
a network.

Similarly, GreenSpring, originator of the IndustryPack 10 mezzanine modules,
has released QuickPacks, software libraries that support ranges of IndustryPacks
in a reasonably generic manner. For instance, the ADC-oriented library allows
the the application program to read ADC channels in real units without having to
know the particular model of ADC module. This package comes as source, and the
user compiles it into the application, and provides the operating system support
the packages requires. It is not clear how the 1P configuration information is
handled.

Both of these solutions are acceptable if the hardware in the system is all of
the same brand, but this is rarely the case. An application may end up using a
number of these libraries at once, which will at best be untidy and at worst will
cause conflict.
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SECTION 1. INTRODUCTION

1.4 The PIRAT CSDB Software

The general issue of 10 driver software, and the desire for a more generic solution,
tended to emerge each time a new project began. This was particularly true when
it came to write the 10 hardware drivers, which is a fairly unrewarding activity.
Usually, however, deadlines were such that there was no time to consider anything
better than a quick fix to get the system running.

Within the PIRAT project, however, the opportunity was taken to test some
ideas. The PIRAT Command/Sensor Data Board (CSDB) was the computer inter-
face to a fibre-optic data link from the tele-operated in-sewer vehicle to the surface
support van. It provided an array of up- and down-channels, each connected to
to a sensor or actuator in the vehicle.

Instead of assigning symbolic names to the channels using #define, or us-
ing the channel numbers directly in the application programs, the names, types,
bit-widths, scale factors and channel numbers were assigned in a configuration
file, read during system start-up. Application programs that operated channels
first ‘opened’ the channel by name, and were returned a ‘channel descriptor’, in
a similar way to opening a file by name and receiving a file descriptor. The de-
scriptor was used for subsequent read or writes to the channel, until the program
was finished with the channel, when it closed it.

The configuration file and late name-binding approach was particularly useful.
When channel wiring or sensor calibrations or assignments changed, only the
configuration file needed to be altered. But further, it allowed the system sensor
logger, the safety limit monitor, and the sensor and command displays on the
operator interfaces to become almost completely generic. All they required was
the list of channel names to be logged, monitored or displayed. This delivered
considerable economies of code and conveniences in operation.

1.5 The ITIO Development

Many of these ideas from the PIRAT CSDB software, and the concerns about mod-
ule configuration information and address resolution, mentioned in Section [22,
went into the design of the 110 library.

The opportunity to develop a first version of 110 was provided within the con-
text of the CSIRO DMT Mining Equipment Group. Following a proposal accepted
in May 1996, early versions of the library were working by September of that
year, and significant improvements were made up until February 1997.

Work concentrated on designing and implementing the framework or structure
of the system, rather than supporting a large number of hardware modules. Mod-
ule drivers were only completed, or partly completed, for modules immediately
required in the Dragline Automation project, or for testing purposes.

This report is the sole documentation of the library and that work.
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Section 2

Concepts and Nomenclature

The 110 system is based on a number of reasonably simple concepts, which are
described in this section. This is done independently from descriptions of the ¢
language application program interface to the 110 library, which is the subject
of Section f. Allied with these concepts is a nomenclature, comprising common
words with more specific meanings in the 110 context. Defining instances of this
nomenclature are introduced in italics in this section.

2.1 Configuration File

The complete configuration of an industrial 10 system is defined by the single 110
configuration file. The file tells 110:

e what hardware modules are in the system
e how the hardware modules are configured
e the properties of individual 110 channels.

The configuration file is a plain text file with a simple syntax, described in full
in Section B. It is read by the 110 library as it is initialised after an 110-using
application is started.

An important point is the all the configuration information is in the config-
uration file: there is no other source of configuration details. Furthermore, this
configuration is constant. 110-using applications cannot change the configuration
while they are running. This is essential so all the running 110 applications have
the same ‘view’ of the system, so they can safely share the necessary state data
and exclusion locks, and so they will agree about the name and data they read
or write from a given channel.

2.2 Modules

A module in the 110 nomenclature refers to a distinct hardware unit, board, or
box. A VMEbus board is a module, as is an IndustryPack (IP), an 1P carrier
board, a PC motherboard, or a serially-addressed remote data-acquisition unit.
In other words, a module is something a computer can use to do industrial 10
through.

The use of the term device is avoided, because this term is commonly associ-
ated with traditional forms of 10 hardware, such as serial ports and disk drives,
and also their representation in the UNIX operating system.

2.2.1 Model and Module Ident Codes

Modules are represented by model ident codes. Each distinct module of hard-
ware has such a code, which uniquely identifies it, at least within the 110 system.
A model ident is a short alphanumeric string, which should not contain spaces,
punctuation, or any other non-alphanumeric characters. Case is significant but
generally lower-case letters are used. The code is usually derived from the man-
ufacturer and/or model number of the hardware.

For instance, mvme 162 is the model ident for a Motorola MVME-162 CPU board,
vmivme2534a is that for a vMIC VMIVME-2534A digital 10 interface board, and
ipdac is that for a GreenSpring IP-DAC digital-to-analogue IndustryPack module.
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Each module installed in a system must be listed in the configuration file,
using a module directive, its model ident code, and the module parameters (see
below). 110 assigns a module sequence number for each module of a given model
as it encounters it in the file, so that that module can be identified later. The
sequence number starts from zero and is attached to the model ident code with
a period ‘.’ to form the module ident code.

Thus, the first module with model ident code vmivme2534a will be assigned
the module ident vmivme2534a.0, the second will be assigned vmivme2534a.1,
the third vmivme2534a.2, and so on, up to the total number of vmivme2534a
modules in the system. Similarly, the first (or only) ipdac module will have
module ident ipdac.0, the second ipdac.1, and so on.

In other words, the model ident code refers to a particular kind of hardware
module, while the module ident code identifies a specific instance of that module
in the system. The module sequence numbers are assigned in the order that the
modules of each model are encountered in the configuration file. In particular,
they are not related to the base addresses of the modules, as they often are for,
say, UNIX device numbers.

2.2.2 Module Drivers

Each module has a module driver. The module driver is the piece of software
which deals with the intricacies of each individual module, and interfaces it to a
standard, internal 110 format. The model ident tells 110 which module driver to
use to access the module hardware.

110 cannot use a module which does not have a module driver, but it is
reasonably straightforward to add new drivers to the 110 library (see Section f).
Application writers are encouraged to do so, rather than bypassing 110 if there is
no 110 driver.

2.2.3 Module Parameters

The module parameters appear with the model ident code in the module directives
of the 110 configuration file. Module parameters tell the 110 module driver how the
module has been set up—the base address the board is set to, what configuration
jumpers are fitted, and so on.

Some modules permit some of these parameters to be read directly from the
hardware (although not usually the base address). 110 however requires them
to be specified in the configuration file, partly because 110 module installation
must be done without accessing hardware, and partly for consistency. Where the
specified parameters can be checked against the hardware, the 110 module drivers
will do so.

The parameters are specified in the module directive using UNIX-command
style options (with a leading ‘-") followed by the argument values. Some options
are mandatory, while most are optional and have appropriate default arguments.
The module description pages in Appendix [Al list the parameters a module can
have.

2.3 Channels

The word channel refers to a single, addressable, input output unit, through
which a single scalar value can be read or written on demand (in 110 parlance,
with a channel operation). A single analogue-to-digital converter is a channel, as
is a digital 10 port, or a counter, timer, or interrupter.

Each module provides a certain number of channels to 110. The channels are
named, numbered and organised into several structured lists, so that application
programs can access the channels in a variety of ways, as described below.
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Application programs open channels by name, perform operations on the open
channel to do 10, and then close the channel. The scenario is very similar to the
way programs use ordinary files: they open them, read or write to the open file,
then close it. Section A deals with how application programs use 110.

Channels are also used to identify address spaces, such as an IndustryPack
slot or a VMEbus. While application programs will generally not use these chan-
nels directly, they are important to module drivers in the 110 address resolution
mechanism. This type of channel is described in more detail in Section b-3-4.

2.3.1 Channel Type

Channels have a generic type and a specific type. The generic type indicates
what the channel is: an analogue-to-digital converter, a digital 10 port, and so
on. Each channel type known to 110 has an alphabetical acronym. The current
list of channel types appears in Table E.I. Each channel type has an model of its
behaviour, which is described in Section EI0.

The specific type supplements this generic type with the channel width—the
width of the channel in bits. Thus, a 12-bit analogue-to-digital converter has
generic type adc and specific type adc12: a 32-bit digital output channel has
generic type do and specific type do32 (note there is no dot between the type
and the width).

The general idea of channel type is to indicate whether channels can be in-
terchanged, at least logically. In principle, one adc12 is the same as another
adc12, is similar to a adc8, but definitely not the same as a dac14. Applications,
when they open channels, can choose whether they specifically need a 12-bit ADC
(by using a specific type) or any ADC (using a generic type), because the type is
encoded in the channel names.

2.3.2 Channel Names

Channel names, in a similar way to module idents, are strings comprising the
channel type code and a channel sequence number, separated by a period ‘.’.
Thus, the analogue-to-digital converters in a system have channel names adc.O0,
adc.1, adc.2 and so on, up to the total number of ADCs present. Analogue-to-
digital converters are used here as an example, but the same system applies to
all channel types.

Unlike modules, however, each channel actually has at least four names, that
is, it fits into in four different numbering sequences. The simplest sequence is
called the global generic sequence, because it is the global (110 system-wide)
sequence of channels with the generic type adc. All ADCs of all widths appear in
this list.

There is also a sequence for each specific type. Each channel that appears
on the generic sequence will also appear on exactly one of the specific sequences.

Type Description Type  Description

di Digital in port bi Bitwise digital in port

do Digital out port bo Bitwise digital out port

dio Digital in/out port bio Bitwise digital in/out port
oco Open-collector output port ocio Open-collector in/out port
boco Bitwise open-collector out port bocio Bitwise open-collector in/out port
rdio Reversible digital in/out port enc Incremental encoder

adc Analogue-to-digital converter dac Digital-to-analogue converter
sc Servo controller vme VMEbus address spaces

ip IndustryPack 1P spaces isa ISA address space

adam  Adam 4000 serial module address null Null device

Table 2.1 110 Channel Types
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Thus, all the 8-bit ADCs will be in one such sequence, and will have global specific
names adc8.0, adc8.1, adc8.2 and so on, up to total number of 8-bit ADCs in
the system. All the 12-bit ADCs will be in the sequence adc12.0, adc12.1, and
SO on.

The relationship between the generic and specific sequence numbers of a given
channel depends on the particular modules in the system. Different modules will
contribute different numbers of different channel types and widths into the global
pool of channels. 110 arranges the channels into contiguous sequences in the same
order as the contributing modules appear in the configuration file. Thus, adc12.9
(the tenth 12-bit ADC) might happen to be adc.35 (the 36" ADC in the system).

There are two other sequences a channel will form part of, giving it two further
names: the local generic name and the local specific name. The local sequences
contain the channels that are provided by each particular module in the system.
The names comprise the module ident, a colon ‘:’, and the generic or specific
channel type and sequence number. The sequence numbers start from zero for
each module. Thus, the ADCs on (say) the second xyzzy1234 module would have
local generic names xyzzy1234:adc.0, xyzzy1234:adc.1, xyzzy1234:adc.2 and
so on, up to the total number of ADCs on that module. Similarly, there is a
sequence for each specific channel type the module provides, with names such as
xyzzyl1234:adcl12.0, xyzzy1234:adcl12.1, and so on.

The example in Table 2.2 should help to clarify the relationship between the
four forms of channel name. Each row in the table represents an ADC channel,
and the four columns the four forms of its name. The system, for the sake of
argument, comprises two xyzzy1234 modules (providing four 8-bit and two 12-bit
ADCs) and one zog43 module (providing three 10-bit and five 12-bit ADCs). In
the configuration file, the zogd3 module appears in between the two xyzzy1234
modules.

The list in Table g7 is shown in the order of the global generic sequence
number, but it is possible to show it in three other orderings. Again, analogue-
to-digital converters are used, but the same system applies to each channel type.
However, the simple digital 10 channels (types di, do, dio, oco and ocio) and
the bitwise channels (types bi, bo, bio, boco and bocio) have an additional,
special relationship, described next.

Global Local
Generic  Specific Generic Specific
adc.0 adc8.0 xyzzy1234.0:adc.0 xyzzy1234.0:adc8.0
adc.1 adc8.1 xyzzy1234.0:adc.1 xyzzy1234.0:adc8.1
adc.2 adc12.0 xyzzy1234.0:adc.2 xyzzyl1234.0:adc12.0
adc.3 adci2.1 xyzzyl234.0:adc.3 xyzzyl1234.0:adcl2.1
adc.4 adc12.2 xyzzyl234.0:adc.4 xyzzyl234.0:adcl2.2
adc.5 adc12.3 xyzzyl234.0:adc.5 xyzzyl234.0:adcl2.3
adc.6 adc10.0 zog43.0:adc.0 zog43.0:adc10.0
adc.7 adc10.1 zog43.0:adc.1 zog43.0:adc10.1
adc.8 adc10.2 zog43.0:adc.2 zog43.0:adc10.2
adc.9 adcl12.4 zog43.0:adc.3 zog43.0:adc12.0
adc.10 adc12.5 zog43.0:adc.4 zog43.0:adcl12.1
adc.11 adc12.6 zog43.0:adc.5 zog43.0:adc12.2
adc.12 adc12.7 zog43.0:adc.6 zog43.0:adc12.3
adc.13 adcl12.8 zog43.0:adc.7 zog43.0:adc12.4
adc.14 adc8.2 xyzzyl234.1:adc.0 xyzzyl1l234.1:adc8.0
adc.15 adc8.3 xyzzyl234.1:adc.1 xyzzyl234.1:adc8.1
adc.16 adc12.9 xyzzyl234.1:adc.2 xyzzyl234.1:adcl2.0
adc.17 adc12.10 Xyzzyl1234.1:adc.3 xyzzyl1234.1:adcl2.1
adc.18 adcl2.11 xyzzyl1234.1:adc.4 xyzzyl1234.1:adcl12.2
adc.19 adcl12.12 xyzzyl234.1:adc.5 xyzzyl234.1:adcl2.3

Table 2.2 Example Relationship between the Four Forms of an 110 Channel Name
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2.3.3 Bitwise Digital Channels

Industrial 10 modules frequently provide digital 10 channels. These input or
output a scalar binary number (as opposed to a voltage or current, as does
a analogue-to-digital or digital-to-analogue converter). Sometimes this binary
number is significant in its own right, and connects to a sensor or actuator which
has a parallel binary interface (such as an absolute position encoder or a seven-
segment display).

More often than not, however, individual bits, or groups of bits, from a digital
10 channel are connected to unrelated sensors or actuators. Applications thus
need to conveniently address individual bits, or ranges of them, in digital 10
channels, without disturbing any adjacent bits. It is for this purpose 110 provides
the bitwise-digital channels, which operate in parallel with the digital channels.

Bitwise channels are always one bit wide. For each real digital channel pro-
vided by a module, 110 provides a set of virtual bitwise-digital channels, one for
each bit of the underlying digital channel. In effect, all the bits of the digital
channels are laid out side-to-side, and each bit in the resultant large array is
given its own sequence number. It is very similar to the way all channels of
a given type from all modules are laid out side-by-side, and assigned a global
generic sequence number.

This is done for the five simple digital channel types: do.* channels cor-
respond to the bitwise-digital channels bo.*, di.* channels to bi.*, dio.* to
bio.*, oco.* to boco.*, and ocio.* to bocio.*.

Thus, the individual bits of a digital channel do8.5 might be otherwise opened
as eight separate bitwise-digital channels bo.30, bo.31, bo.32 and so on up to
bo.37.

An application program can access the bits through either the digital channel
do8.5 (or any of its other names), or the bitwise-digital channels, or both (al-
though the latter is confusing and is not recommended). When a bitwise-digital
channel is altered, the other bits in the underlying digital channel are unaffected.

The same rules pertaining to global and local sequence numbers also apply
to the bitwise channels, so applications can refer to bits in the global sequences
or local sequences. (There is no effective distinction between generic and specific
bitwise-digital channel names, as bitwise-digital channels are always 1-bit wide).
Table B3 illustrates the relationship between several dio3 and dio5 channels and
the global and local bio channels, from different modules (the sequence continues
at both ends).

It could be argued that bitwise-digital channels could be handled by extending
the channel name system for digital channels (or indeed generally), rather than
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Table 2.3 Example Relationship between Digital and Bitwise-Digital Channels
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introducing a new, parallel channel type. Perhaps a syntax like do16.5#4, with the
#4 indicating bit 4 could be used. However, the bitwise-digital types permitted re-
use of much of the 110 library mechanism relating to sequence number assignment
and decoding. They also fitted far better into the channel range idea described
next.

2.3.4 Channel Ranges

A very important feature of 110 is the ability to access channels in arrays called
channel ranges as simply as they are individually. Reading or writing a channel
range is exactly the same as doing so on a simple channel, except the data for
the read, write, or other operation is in vector, rather than scalar, form.

Generally, the 110 module driver code will repeat the operation for each sim-
ple channel in the range. However, some module drivers, such as those for
simultaneous-sample ADC and simultaneous-output DAC modules, can perform
the operation on all members of a range at once, with attendant benefits.

Channel ranges are indicated using a dash ‘-’ and an extra sequence number
in the channel name. Thus, dac.4-7 refers to a range of four DACs, with global
generic sequence numbers 4 through 7. Nonsense ranges such as dac.7-4 are not
permitted; the range dac.4-4 is equivalent to the simple (single) channel dac.4.

Ranges can be used in all the channel name forms. However, they are espe-
cially useful with the global forms, because the range may then straddle modules.
Thus, with reference to Table -2, the range adc.4-11 refers to ADCs on both
xyzzy1234.0 and zog43.0. Note that this channel range contains a mixture of
12-bit and 10-bit ADC channels. Alternatively, the range adc12.4-11 comprises
only 12-bit ADCs, now spread over three modules.

It should be noted that even if modules feature simultaneous-sample hard-
ware, 110 cannot guarantee the simultaneous capture across the whole range if
it straddles modules, although it will be simultaneous for the sub-ranges within
by each module. It does guarantee that the operation is atomic, that is, will be
completed for the whole range before any other operation on the range, but only
if the same channel descriptor (see Section [.J) is used by the potentially con-
flicting operators. Atomicity is guaranteed for the sub-ranges contained within
modules.

2.3.5 Bitwise-digital Ranges

Ranges can also be used on the bitwise-digital channel types, where they refer
to bit-fields within or straddling the underlying digital channels. This is a very
useful feature for sensors or actuators that require only a few bits, as several can
be packed into one digital channel yet accessed separately. It avoids the ‘mask
and roll’ bit-twiddling usually used in such cases (in fact, the 110 library does the
twiddling).

There is an important difference in the way user data for bitwise-digital chan-
nel operations is presented, compared to other channel types. The data is bit-
packed into a single unsigned integer, instead of a vector or array. Bit 0 of the
data integer corresponds to the lowest-numbered bit of the bitwise-digital channel
range. This is a more natural format for bit-fields, but it follows that a bitwise-
digital channel range cannot have more bits than an unsigned integer, generally
32.

2.4 Channel and Module Aliases

As well as the four standard ways of naming a channel, channel name aliases
may be defined in the configuration file. An alias is a text string, containing
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any non-space characters except a period ‘.’ or a colon ‘:’. Each channel name
alias has an alias value, which is substituted for the alias whenever it appears as
the name of a channel, or part thereof. Aliases are used to give useful, symbolic
names to channels, so that the arcane channel name syntax or the installation
wiring numbering system does need not be written into application code.

There are actually three kinds of aliases:

e global aliases, which stand for complete channel names. The alias value,
which may be a global or a local channel name, is simply substituted then
interpreted as normal. Thus, a global alias outside-temp might be an
alias for adc12.56: if channel outside-temp is opened, it is equivalent
to having opened adc12.56. Global aliases, which are the most common
kind, are created in the configuration file with channel or alias directives

(Sections B.4 and B.3).

e module aliases, which are aliases for the module ident part of a local channel
name, and thus can only appear to the left of the colon ‘:’. Thus, a module
alias upper can be made for the module xyzzy1234.1, and channels on
that module opened using names like upper:adc.2. Module aliases are
created in the configuration file using the module or the alias directives

(Sections B.2 and B2J).

e local aliases, which are aliases for the channel part of a local channel name.
These can only appear to the right of the colon ‘:’. If left-temp is a lo-
cal alias for adc.2, then that channel on the xyzzy1234.1 can be opened
as xyzzy1234.1:1left-temp. Combining it with the module alias described
above, the same channel can be accessed as upper:left-temp. Local aliases
can only be created in the configuration file using the alias directive (Sec-

tion B-J).

Alias substitution is performed only once for each type of alias. In other
words, an alias cannot be made for another alias. However, the result from a
global alias substitution, if it contains a colon, will be subject to alias lookups for
the module and the local channel halves. So, if a global alias important-temp
expands to upper:left-temp, this will further expand to xyzzy1234.1:adc.2.

Global and local aliases may also stand for channel ranges, as well as for
simple channels.

2.5 Why so many channel name options?

It can be seen from the preceding sections that 110 features a quite rich channel
naming scheme. The need for such a complicated approach might be questioned.
It was implemented because of the observation that there are a variety of ap-
proaches to wiring up industrial 10 systems, each of which is useful in different
situations.

For instance, in a laboratory situation, a computer might be wired up to an
experimental rig, and a small application program written to operate the rig. The
experimenter knows which channel number connects to what, and which module
he or she is using, so the program uses local channel names. This minimises
changes to the configuration file—other modules in the system can be simply left
alone, and the program can be certain it is accessing the correct module.

Alternatively, a generic data-logger might have several input modules con-
nected internally to a set of numbered input sockets (starting from 0, of course).
In this case, the programmer will not be interested in which module the inputs
are being accessed through, but will be interested in having the channel names
corresponding with the numbers on the sockets. Thus, global generic channel
names would be used.
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In large industrial systems, with many hundreds of channels, it is not un-
common to number 10 channels in a similar way, with the numbers following the
conductors through the wiring loom to remote 10 panels. Again, global generic
channel names may be appropriate, particularly if it matches the traditional
numbering scheme used in an installation.

However, in most installations is is usually worthwhile to use aliases to give
channels symbolic names related to the function of the sensor or actuator the
channels connects to. Thus, a channel like adc.14 can be given the global alias
fishtank-temp, and fishtank-temp can be written into the application pro-
gram. This makes the program easier to understand, and if the wiring was re-
organised and the fish-tank temperature sensor was moved to adc.17, only the
alias definition in the configuration file need be altered to make the application
work again.

Local aliases may be useful when the same ‘mini-installation’ is repeated a
number of times, with a 1:1 correspondence between the mini-installations and a
module. For instance, perhaps the computer is to monitor many fish-tanks using
a custom front-end for an ipadc module: there is one ipadc and front-end per
fish-tank. In the configuration file, local aliases temp for adc.0, pressure for
adc.1, and bubbles for adc.2 and other quantities could be defined. The appli-
cation could then open the various quantities using names like ipadc.2:bubbles,
ipadc.7:temp, and so on. Module aliases could also be made for each fish-tank,
making the names tank2:bubbles or tank7:temp. If global aliases were used,
rather than local alias combinations, many aliases would have to be defined for
all the combinations of module (fish-tank) and input (quantity), to get a similar
effect.

More often than not, however, sensors and actuators from various sections
and sub-sections of an installation are wired into a set of modules that don’t
match the logical structure very well. Global aliases can be used to sort these
into a more structured, hierarchical arrangement. Sections, sub-sections and so
on down to individual sensors and actuators can be given descriptive names.
These names are concatenated with a suitable separator character (such as ‘_’,
‘=71 or ¢/’) to form the full channel alias, in the same way as a file-name in a
hierarchical file-system is prepended with its various parent directory names to
form the full file-name.

It is possible even to have several naming schemes at once, as many aliases
can refer to a single channel. Thus, a control application on a system might
open channels using symbolic names, while another application, perhaps a generic
channel monitoring program, might open the same channels using a numeric alias
system, or even the real channel names. The actual scheme chosen is completely
up to the system integrator.

2.6 Operations on Channels

The names by which a channel can be opened for use in an 110-using application
have been described. Having opened and obtained a descriptor for it, what can
be done with it?

10 operations refer to the simple 10 actions a program can perform on an
open channel. 110 attempts to carry out the operation as quickly and efficiently
as possible, in the context of the calling task or thread. There is no buffering
or queueing of operations or data. Operations involve either zero or one data
elements per channel, and are either basically write operations, in which the
data flows out of the system, or read operations, where data flows in.

2.6.1 Operation Codes and Channel Type

Traditional file and stream 10 has several basic functions, read (), write(), and
ioctl (). 110 has a single operation function, which accepts a channel, the user’s
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Table 2.4 Channel Operation Codes versus Channel Type. The symbol B indicates the operation

should be implemented for the channel type. [ indicates the operation should not be

implemented. X indicates the operation is optional. H indicates the operation may be

required in future.
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data, and an operation code, which tells 110 (or more specifically, the module
driver) what to do. This was done because the 110 interface had to cope with a
wide range of operations without suffering an endless proliferation of operation
functions. As new types of 10 hardware is supported, new operation codes can
be added as required, without disturbing the form of the programmatic interface.

The codes thus range from generic iio_op_read and iio_op_write operations
through to fairly channel type-specific, like iio_sc_read_gain p. All the current
operation codes are listed in Table 2. Section 10 describes the meaning of the
operation codes—although most are fairly obvious—in the context of the models
for each channel type.

This table divides the operation codes into various groups, which roughly align
with some of the channel types. The table precisely indicates which operations
apply to which channel types.

The generic operation codes are by far the most commonly used, and apply
to most of the channels types. iio_op_read reads input data from sampling-
style channels, such as analogue-to-digital converters (type adc) or digital input
latches (di or bi). iio_op_write writes output data to output-style channels,
such as digital-to-analogue converters (dac) or digital output latches (do or bo).
iio_op-read does not apply to these channels, but iio_op_readback will return
the current output value. iio_op_clear is equivalent to writing a zero value.
iio_op_nop and iio_op_show are for testing module drivers only.

The address space operation codes are used with the address space channels
mentioned in Section B3 to perform address mapping and resolution, the trans-
lation of register physical addresses to the logical or virtual addresses needed to
actually access them. Section p-3-4 discusses address mapping and resolution and
these operation codes in detail.

The distinction between the trajectory generator and servo controller opera-
tion codes is somewhat arbitrary, particularly as these codes both apply to the
servo controller type channel sc. These channels attempt to control an output
value (such as a position) using a feedback loop, with a reference input derived
from a trapezoidal trajectory generator. This type of channel and its operation
codes are discussed in detail in Section ETO3.

2.6.2 Operation Function Data Types

There are three basic forms of the operation function, one for each of the three
basic data types that 110 deals in. The actual C-language operation functions a
program would call are described in Section £4.

Integer. The primary data format is a signed integer. This is the same format
as the module drivers deal in, and is frequently the data is read or written to the
module hardware without alteration. The only transformations the driver will
apply to a datum will be:

e zero-shifting for ‘offset 800’-style ADCs and DACs, so that a zero datum
always corresponds to zero voltage

e sign-extension to the normal word-width for channel types where this
makes sense (currently adc, dac, enc, and sc)

e application of the factory calibration correction parameters, where
this is feasible.

The only transformations the 110 library will apply will be:

e on write-style operations only, limiting the integer value to the max-
imum and minimum channel properties, described in Section P72
below.

Integer is the fastest and most precise format, and should be used wherever
practical.
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Real. The ‘real unit’ format is the integer data converted to floating-point and
into the actual units of measurement. For instance, an ADC can be read and the
result obtained in Volts. The conversion is done by the 110 library, not by the
module driver. Output values are also limited as with integer format. Section -1
details the channel properties that apply to real unit format.

Address. The final form of operation function is for memory address data.
This form is generally only used for the address space channels, and generally
only within module drivers. No transformations or limitations are applied to the
data at all.

It is up to the module driver to decide what to do with erroneous data from
the application program. In general, these errors are not returned to the user.
DACs and similar output devices limit their output to their inherent maximum or
minimum, as appropriate, for out-of-range output data, whereas digital outputs
and bitwise-digital outputs would tend to mask the data to their own width, and
ignore out-of-range bits.

2.7 Channel Properties

Aside from having at least four possible names, and being able to be addressed
in ranges, and operated upon by application programs, all channels have a set of
channel properties, which can affect the results of operations.

These properties are initially assigned to the channel by the module driver,
and can be subsequently altered by a channel directive in the 110 configuration
file. The channel directive, explained more fully in Section B4, can alter the
channel properties of a single channel or a channel range.

The current set of channel properties relate to:

e the linear scaling between the integer and floating-point user data
formats (the channel scale and offset properties)

e the channel limits, the minimum and maximum values that can be
written to the channel

e channel logging properties, in particular whether channel operations
are logged, and the real units of the channel.

2.7.1 ‘Real Unit’ Linear Scaling

Linear scaling and conversion to or from floating-point format is applied to all
values when channels are accessed using the ‘real unit’ forms of the operate
function (Section 2.6.9 above, and Section [l.4). The idea is that the application
need not worry about the details of the sensors and actuators connected to the
channels, as these details can be encoded in the configuration file. Channels
can be accessed using values expressed in the real units of the quantity being
measured or controlled.

When reading a channel, the integer datum from the driver is converted to
floating point, multiplied by the scale value, and the offset value is added. When
writing, the inverse is applied: the offset value is subtracted, the result is divided
by the scale factor, and the dividend rounded to the nearest integer datum,
which goes to the driver. (The driver may also obtain the un-rounded dividend
if it requires it, which is rare). The need for the inverse to exist has discouraged
implementation of a more general scaling scheme, such as a polynomial, to cope
with sensors with non-linear characteristics, such as thermocouples and some
ultra-sonic devices.

Usually, the module driver pre-sets the scale and offset values to sensible initial
values. For an analogue-to-digital converter, it would set them so that real-unit
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operations work out in Volts. The scale and offset values from a channel directive
in the configuration file are pre-multiplied into these initial properties to form new
scale and offset properties: they do not replace them.

The purpose of this is to simplify configuring channels for use with sensors
or actuators. For instance, in connecting a sensor to a voltage ADC it is only
necessary to specify the slope and offset of the sensor in real units per Volt.
There is no need to know the Volts per bit of the ADC, since this is already in the
initial scale and offset properties supplied by the driver. When choosing sensor
and actuator scale and offset properties, always use basic SI units, such as m, kg,
A, V, N, °C, radians, and so on.

For channel types where scaling to real units does not usually make sense,
such as digital and bitwise-digital channels, scale and offset properties of 1.0
and 0.0 apply respectively. This means there will be no numeric difference in
using integer or real operation functions with these channels. However, scale and
offset properties can still be attached to these channels in the configuration file
if appropriate.

2.7.2 Output Value Limiting

Output integer data, whether direct from the application program or computed
from real data, is subject to simple limiting before it is used by the driver. There
are minimum and maximum channel properties, outside which the output datum
is not permitted to go. Limiting does not cause an error.

The limits are only enabled by setting the maximum and minimum channel
datum properties in the configuration file. If the minimum exceeds the maxi-
mum, the limits are ignored. At present, only module drivers can set the limit
properties.

2.7.3 Channel Logging

The 110 library will print out a line or two to the standard error stream (or
logging stream) for each channel operation, if the channel has the logging property
enabled. The logged output shows the name of the channel and the operation
code for the overall operation, plus a line for each sub-operation (such as each
channel in a channel range, or the components of a bitwise-digital operation).
These lines show the full local specific channel name, the data conversions being
applied, the integer format data, and the real format data, including units.
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Section 3

The I1O Configuration File

The 110 configuration file specifies the model and configuration of the input output
modules in the system to the 110 library. It allows all the information about the
modules and the external system they connect to to be drawn to a single point.
Much of this information was described in the previous section.

The file does not apply to any particular 110 application program, but to all
110 application programs, or more correctly, systems on which 110 applications
can run. While some programs might use certain 10 modules and others other
modules, all programs read the same file and have the same ‘view’ of the system.

The configuration file is /etc/iio.conf on LynxOS systems. On vxWorks
systems it is /vw/iio.conf, or the configuration can also be read from a static
string in memory. This latter method will probably always be the used with
RTEMS. On UNIX systems other than LynxOS, 110 does not presently operate
system-wide, and the file is ./iio.conf in the working directory of the applica-
tion.

3.1 Syntax

The configuration file is a plain ASCII line-oriented file, with space-separated
tokens. It may be created and edited using a standard text editor. The syntax
is as follows:

Lines. Lines consist of a series of white-space separated tokens. Logical lines
can continue over more than one physical line, provided the previous line
ends with a backslash character ‘\’.

Comments. The hash character ‘#’ introduces comments, can can appear any-
where a token can, and also after the line continuation backslash ‘\’. The
comment continues to the end of the physical line (i.e., the ‘\’ does not
continue a comment).

Directives. The first token on a line that is not a hash character ‘4’ should
be one of three configuration file directives: module (Section B.2), alias
(Section B-3) or channel (Section B.4).

Options. A token starting with a dash ‘-’ character is an option, and the token
following it is usually its argument

Strings. Spaces can be preserved inside string tokens if the whole token is en-
closed in a pair of double-quotes ‘"’.

In other words, the configuration file follows a similar syntax to command lan-
guages such as shell-scripts or Tcl. In a sense the configuration file is ‘executed’,
as it is parsed from top to bottom, with each directive initiating various actions.
An example configuration file appears in Section B-j. The following sub-sections
will describe the three configuration file directives.

3.2 The module Directive

The module directive installs and possibly initialises a module. In other words,
it tells 110 that there is a module with model ident <ident> in the system. The
module directive syntax is as follows:
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module <ident> [ -<option> [ <argument> || ...

This directive searches for the model ident code <ident> in the list of known
models, and if located, the module driver code (see Section B.2.3) is activated to
install the module, and then initialise it.

The module parameters (Section P.2.J) which follow the model ident code
comprise options and arguments. Boolean options (flags) do not have arguments.
The module parameters are passed to the module driver, which interprets them
as part of the installation process. The parameters indicate the configuration of
the module, such as its base address, output range, and other settings. The set
of options and default arguments for each module model are given in the module
documentation pages in Appendix [Al.

There are two module directive options that are always available, -alias
<alias> and -log. The former adds a module alias (Section B4) into the alias
list for the module being installed. The latter makes 110 produce log messages
for accesses to all channels on the module (Section R.7.3).

The module driver registers the channels that the module provides. As 110
works through the module directives, the list of available channels grows. These
channels can be referenced be subsequent module, alias and channel directives
in the configuration file, as well as in the application program. Thus, the order
of the module directives in the file is important.

As well as installing the module in this way, the module driver will initialise
the module hardware, if it has not already been initialised. This means output
channel values may change.

3.3 The alias Directive

This directive adds an alias <alias> to the extant channel or module <extant>:
alias [ -global | -local | -module | <alias> <extant>

The qualifier option -global, -local or -module indicates the type of alias; if
omitted, the alias is global. The alias type indicates the context in which the
alias will be expanded when referenced. <extant> need not be defined at the
point the alias is made, but it must be by the time the alias is expanded. 110
aliases are explained in Section £-4.

Note that module aliases are more commonly made using the -alias option
of the module directive, and global channel aliases by the —alias option of the
channel directive. Local aliases can only be made using the alias directive.

3.4 The channel Directive

This directive alters channel properties (Section P.7), or adds channel aliases,
either for a simple channel, or for a channel range:

Option Description

-alias <alias> Add a global alias for <channel>

-scale <scale> Pre-multiply <scale> into the channel scale factor
-offset <offset> Add <offset> into the channel offset value

-unit <unit> Make <unit> the new user unit for the channel
-log Switch on logging for this channel

-no-log Switch off logging for this channel

Table 3.1 Options and Arguments to the channel Directive
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channel <channel> [ -<option> | <argument> || ...

The given channel or channel range <channel> must exist. It can be expressed in
any of the four channel name forms (Section B.3.9) or as an alias. The allowable
options are shown in Table Bl

The <scale> and <offset> factors specified in the configuration file will
in most cases be those of the sensors or actuators connected to the channel.
The channel directive multiplies these into the scale and offset factors initially
installed by the module driver. For ADC, DAC and similar channels, these will
be the factors relating the channel’s integer value with the sensor or actuator’s
natural units. Section Z.7-1] describes this in detail. The —unit option is used to
specify these units, which are used when logging channel operations.

Channel output limits (Section P.7.9) will also be specified using the channel
directive, but this is not yet implemented.

3.5 An Example Configuration File

Here is an example 110 configuration file, illustrating the use of module, alias
and channel directives.

# My system’s IIO configuration file

# Nibor Mahkrik, 19 August 1997

#

module mvmel67

module vmivme2534 -address 0x3600 # another comment
module vipc610 -address 0x6000

module ipdac -slot ip.1 -range 4 -range.2 3 -log

module bvmipadc -slot vipc610.0:ip.0 -alias zog

channel bio.21 -alias fishtank-pump
channel dac.0 -alias fishtank-bubbles \
-scale 2.243 -unit "bubble/s"
channel zog:adc.0 -scale 0.2 -offset 2.3 -unit C
alias fishtank-temp zog:adc.0

alias -local seconddac dac.1
channel ipdac.0O:seconddac -alias fishtank-zap

This system uses a Motorola MVME-167 CPU module, which must appear
first in the configuration file. The MVME-167, as the module documentation in
Appendix [AT5 shows, provides one vme.0 channel, representing the VMEbus.

The next module is a VMIC VMIVME-2534 digital 10 module, which provides
two dio16 channels. As Section P-3.3 explained, they are also accessible as thirty-
two bio channels. This module plugs in the VMEbus, so it most come after the
MVME-167 which provides the vMEbus channel. The -address 0x3600 option
and argument indicate the base address the module has been configured for.

Similarly, another vMEbus module, a GreenSpring vipPC-610 is installed at
address 0x6000. This module provides four IndustryPack slots, and so four In-
dustryPack address space channels, ip.0-3. Two of these are used by Industry-
Packs.

An GreenSpring IP-DAC is installed in slot B (ip.1). Note there is no base
address to specify, only the physical location (IndustryPack are slot-addressed).
Note that the slot could also have been specified as vipc610.0:ip.1. The output
voltage ranges of the DACs have been configured differently from the factory
default, and the configurations indicated in the module parameters: -range 4
indicates all the channels are jumpered for range 4 (£10V) except for channel
2, where the -range.2 3 parameter indicates it is set to range 3 (£5V). The
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final parameter -log indicates 110 will log a message each time a channel on this
module is used.

Similarly, a BVvM IP-ADC is installed in slot A. This module is given a module
alias zog. If zog is used instead of a module ident (as is done a little later) the
real module module ident (bvmipadc.0) is substituted.

Some of the channel properties are then configured. One digital bit is used to
control a fish-tank pump, so the channel is given the alias fishtank-pump. The
first DAC channel is controlling the bubbles, using some actuator that produces
2.243 bubbles/s for each volt from the DAC. An ADC channel on the BVM IP-ADC
is similarly configured to read a thermometer with a rate of 0.2°C/V and a zero
offset of 2.3°C. Note that the zog module alias is used: in this case, the global
adc.0 or adc12.0 would also have done. Then, a global alias fishtank-temp
is given to the channel, although a -alias fishtank-temp on the previous line
would have had the same effect.

Finally, a local alias seconddac is created, and used to create a further alias
fishtank-zap, which is really channel ipdac.0:dac.1.

3.6 Writing Configuration Files

A configuration file for a serious application would be more regular and consistent
than the example above. There would be more use of local generic channel names
and/or module aliases, since this makes configuration problems less likely, as the
module sequence numbers and global channel sequence numbers change when
modules are added or removed in the middle. Sections 24 and P73 discuss different
approaches to channel naming in a system.

Writing a configuration file should follow on directly from the system wiring
diagram or design. Choose meaningful aliases wherever possible, as the aliases
may be used for an interactive channel display or some similar purpose. For the
same reasons, always enter the scale and offset factors of the sensor or actuator,
even if you expect the application programs to access them using integer operation
functions.

The 110 interactive interface, described in Appendix B, is handy for testing
configuration files.
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Section 4

Using the IIO Library

The 110 library has been designed to have a simple ¢ language application inter-
face, which is described in this section. It builds on the concepts and definitions
expounded in Section B. This section also includes detailed descriptions of the
channel types and the operation codes that go with them.

4.1 Include File

#include "iio.h"

Programs should always include the file iio.h. This file contains function pro-
totypes, enumerated type declarations, and macros necessary to use the library
properly. Normally the application Makefile will set the compiler search path
so this file can be included as shown. A copy of iio.h appears in Appendix 1.

4.2 Initialisation

A call to the function iio_init () must precede any other calls to the 110 library.
This function reads the configuration file, constructs the 110 internal data struc-
tures, locates any other 110-using applications, and, if necessary, initialises the 10
hardware. Like almost all 110 functions, it returns a non-zero value if an error
was detected, or zero if the call succeeded:

if (iio_init(iio_standard, iio_iflag_log)) {
fprintf (stderr, "Ys: %s\n", argv[0], iio_emessage_get());
exit(1);

Function iio_init () accepts two arguments. The first is a pointer to an array of
module driver identification function pointers. This allows applications to specify
a list of module drivers for 110 to use. Most will specify the ‘standard’” module
driver list iio_standard (more about this in Section [l.9). The second argument
is an OR-ed set of initialisation flags from Table E1].

Errors that occur in iio_init() mean the application cannot continue, and
should call exit () like the example above. Errors are generally caused by syntax
errors in the configuration file, or more commonly the configuration file not cor-
responding to the hardware actually installed in the system. The error message
obtained from iio_emessage_get () should be helpful in locating the cause.

Function iio_init() should be called only once, and will return an error
on the subsequent calls. In protected memory environments, such as LynxOS
and UNIX, ‘once’ means once per application program. In shared memory envi-
ronments, such as vxWorks, it means once in total. See Section E.§ for more
information on 110 in multi-threaded situations.

Name Value Meaning
iio_iflagnone 0x00 Nothing special
ijo_iflag log  0x01 Log certain major events

Table 4.1 Flags for Function iio_init ()
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4.3 Opening Channels

Channels and channel ranges are represented by objects of type 110, referred to
as a channel descriptor. (This object is actually a pointer to an internal 110 data
structure). Channels are opened using the iio_open() function:

II0 channel;

if (iio_open("dio.23", iio_oflags_none, &channel)) {
fprintf (stderr, "¥%s: %s\n", argv[0], iio_emessage_get());
exit(1);

Opening a channel is analogous to opening a file, although the call syntax is
a little different to fopen(). The first argument is the character string name of
the channel (see Section P.3.9). This can be in any of the four standard forms
(Section B:377), or name aliases may be used (Section 2.4).

The second argument is an OR-ed set of open flags from Table 4. The logging
flag controls logging of the channel. Operations on the channel are logged if any
of the following are true:

e the module directive in the configuration file installing the module
that provides channel had a -log flag

e a channel directive in the configuration file referring to the channel
had a -log flag

o the channel was opened with the iio_oflag_log flag.

The third argument to iio_open() is the address of the user’s channel de-
scriptor variable. The descriptor value is only written if the open is successful.
Like a file descriptor, the channel descriptor is used for subsequent operations on
the channel.

The same channel can be opened more than once: the two (or more) channel
descriptors are not identical but are interchangeable. The same channel may also
be opened by another program or process in the system. Section [ discusses
multi-threaded issues further.

4.4 Channel Operations

There are six channel operation functions, which perform the channel operations
described in Section P.§ on channels. In other words, they actually perform 10
through the channel or channel range represented by the channel descriptor. The
only difference between the functions is the format in which the user’s data is
accepted (in the case of output) or produced (in the case of input). There are three
such formats, with each format having two operation functions. Section P-6-2
describes the data formats in detail.

Table B4 on page [[3 shows the matrix of operation codes and the channel
types that implement them.

Name Value Meaning
iio_oflagnone 0x00 Nothing special
iio_oflag log  0x01 Log channel operations

Table 4.2 Flags for Function iio_open()
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4.4.1 Integer Operations

The basic data type is an int. This is because most 10 hardware uses a binary
representation and so data can be transferred to and from an int quickly and
without loss of precision.

extern IIO_STATUS
iio_operate(II0 channel, IIO_OP operation, int datal[]),
iio_operate_in(II0 channel, II0O_OP operation, int data);

Function iio_operate() accepts a channel descriptor, an operation code (from
Table P4), and a pointer to integer user data.

The user data array must be the correct size for the channel. For a simple
channel, a single int will do; for channel arrays, there must be one element in
the array for each channel in the range. There is no way for the 110 library to tell
if the data array is the correct size, and only the easily overridden C-language
type system to ensure the type is correct.

There is one important exception: if the channel is a bitwise-digital range,
the data is bit-packed into a single integer. In other words, bit 0 of the data
corresponds to the first channel in the range, bit 1 to the second, and so on. The
size of bitwise-digital ranges is presently limited to the number of bits in an int.

For output operations on simple channels, there is a convenience function
iio_operate_in() (the ‘in’ refers to the direction of data into the function, not
the direction of the channel). Instead of a data pointer, a single integer argument
is passed directly. This is useful for writing constant values to channels, for
instance:

/* switch on the bubbles */
if (iio_operate_in(bubbles, iio_op_write, 1)) {

}

In both functions the output value is subject to limiting, as described in Sec-
tion B-7-2. Input values are never limited.

4.4.2 Real Operations

Real form is integer form scaled and offset by floating-point factors supplied
by the module driver and the configuration file, as described in Section B.7-1l.
Normally these factors convert the integral value to and from one in real units,
such as volts, amperes or degrees. As with the integer form, the output values
are limited.

extern II0_STATUS
iio_operate_real(II0 channel, II0_OP operation, double datall),
iio_operate_inreal(II0 channel, IIO_OP operation, double data);

Function iio_operate_real() is identical to its integer counterpart, except the
data the data pointer points to must be of type double. Again, it must point to an
array of at least the same number of elements as the number of channels in the
channel range. iio_operate_inreal() is for simple output channels channels,
and accepts a single double argument.

4.4.3 Address Operations

Address space channels and operations (Section p.3.4) should be invoked using
the functions iio_operate_addr() or iio_operate_inaddr (). These two forms
are identical to their integer and real counterparts, except that no processing at
all is performed on the data, which should be of address (void*) type.

extern IIO_STATUS
iio_operate_addr(II0 channel, II0_OP operation, void *addr[]),
iio_operate_inaddr(II0 channel, IIO_OP operation, void *addr);
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4.5 Closing Channels

iio_close(channel);

Channels are closed using iio_close(). Generally, channels are opened, used
for the life of the application, and closed when the application cleans up prior
to exiting. Alternatively, applications may choose to open, operate, and close
channels as required. This is not efficient (iio_open() is slow compared to the
operation functions) but may be justified where channel use is sparse. Closing a
channel does not affect its output value.

4.6 Finished using 110

iio_done();

When the application program has finished using 110, it should call iio_done().
This closes any remaining channels, dismantles the 110 data structures and re-
leases resources, such as virtual memory maps. UNIX applications should use the
atexit mechanism, or catch fatal signals to make sure this function is called, as
some operating systems (including LynxOS) do not automatically release these
resources on process exit. Calling iio_done() will not affect the output value of
any channels.

4.7 Error Handling

As mentioned, 110 functions generally return a zero or non-zero error indication.
More specifically, they return a value of enumerated type II0_STATUS (Table f.3).

Fatal errors indicate an internal inconsistency within the 110 library, which
should not in theory occur, or exhaustion of a vital system resource, such as
virtual memory.

In the examples on the previous pages, the function iio_emessage _get() is
called. This function returns a pointer to a static error string, indicating the
source of the error. If the error originated in the operating system, a pointer to
the operating system’s error message is returned instead.

Within the 110 library, this status-return mechanism is used throughout, aided
by macros for calling functions and returning on error status (iio_eret() and
iio_fret()). These macros allow for stack-collapse traces to be printed for fatal
errors, which helps pin-point bugs in the library. Refer to Section for further
discussion of these macros.

4.8 Multi-Threaded Applications

110 is thread-safe. Each module and each open channel has a mutex semaphore
associated with it which is taken whenever the object is accessed. Where avail-
able, these mutexes have priority inversion protection enabled. 110 and its module
drivers create no threads or tasks, and all processing and hardware accesses occur
in the context of the calling thread.

Name Value Meaning

iio_status_ok 0 No error

iio_status_error —1 A recoverable error occurred
iio_status_fatal —2 A serious internal error in 110 was detected

Table 4.3 110 Function Return Codes
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On multi-processing (protected memory) systems, the module mutexes oper-
ate both process-wide and system-wide, by placing the mutex in a shared-memory
segment. Module state information is also stored in the shared segment. This
means all 110-using threads and processes in the system will agree about the
datum of a channel, and simultaneous access will not corrupt the shared state.

Open channel descriptors may be shared freely between threads within a pro-
cess (or tasks in a system, in the case of a shared-memory multi-tasking system).
Channels can be opened by one thread, used by another, and closed by a third.
The same channel can be safely opened multiple times. Channel descriptors
cannot however be shared between processes (such as through a shared-memory
segment). If two processes both need to access the one channel, they need to
independently open the channel.

Generally, an 110-using application will initialise 110 (using iio_init () ) before
going multi-threaded. Any 110-using threads in the application should be deleted
or caused to exit before iio_done() is called. iio_done() does not need to be
called in the same context as iio_init() was.

4.9 Customising the Driver List

The list of module drivers which 110 can use is stored in an array of pointers
to module identification functions. A pointer to the array must be passed to
iio_init (). Generally, a built-in list of all drivers is specified, iio_standard.

This means that executables will be linked with every driver, whether they
will need it or not. By and large, this does not matter, but it may unnecessarily
increase executable size and linking time.

On occasions when it is necessary to thin down the number of drivers, a
separate driver list can be specified instead of iio_standard. This is usually put
in a separate file within the application sources. The file should resemble this
example:

#include "iio.h"

extern IIO_STATUS iio_atc40(void);
extern IIO_STATUS iio_isapc(void);
extern IIO_STATUS iio_bvmipadc(void) ;

II0_INFOFN myDriverList[] = {
iio_atc40,
iio_isapc,
iio_bvmipadc,
NULL
};

Note that the list is terminated with a NULL. Order is not important, although
alphabetical listing is customary. When the application starts 110, it would supply
myDriverList instead of iio_standard to iio_init (). Obviously, the configu-
ration file can then only contain module directives for atc40, isapc or bvmipadc.

4.10 Channel Types and Operations

Each channel type has a functional ‘model’ which defines what the channel can
do and what operations do it. All 110 module drivers which provide that channel
should conform to it, so that applications do not need to be written around a
particular model of hardware. These informal ‘models’ are described here, for
the channel types application programs will typically use.
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4.10.1 Analogue Channels

Analogue-to-digital converters (channel type adc) sample a continuous scalar
quantity, such as voltage, current, temperature, pressure, and so on, in response
to a iio_op_read operation. The module driver returns a two’s complement
sign-extended integer datum, where:

e zero input corresponds to zero datum, or minimum input corresponds
to zero datum if the input range does not included zero

e one unit change in datum should correspond to the smallest detectable
input change

e numerically increasing input means increasing datum, and vice-versa

e input higher or lower than the input range should be represented by
the highest or lowest datum respectively.

Most ADC hardware already satisfies these requirements.

The module driver should initialise the channel properties so that the units of
real data operations are correct. These units will be Volts or sometimes Amperes,
except where the ADC is permanently connected to a sensor of some kind (such
as for temperature), where the properties should correctly reflect the sensor.

Digital-to-analogue converters create a quantised approximation of a contin-
uous scalar quantity, essentially the reverse of an ADC. The iio_op_write opera-
tion outputs new data, while iio_op_readback returns the current output. The
output datum interpretation should therefore be the same as outlined above, ex-
cept reversed. Identical rules regarding channel properties, including the output
limits, also apply.

4.10.2 Digital Channels

Digital channels are groupings of individual bits, each of which can be only on
or off. The channel input or output is the binary representation of the unsigned
integer datum. There are five types of simple digital channels, do, di, dio,
oco and ocio, and the more complicated rdio channel. Figure f1 shows the
electronic circuits typical of the bits in the digital channel types.

di Digital in channels read a 1 when the terminal voltage is ‘high’, that is,
higher than some threshold voltage, an 0 otherwise.

do Digital out channels drive the terminal ’high’, or above a threshold, whan
a 1 is written to them, otherwise they drive it low. do channels corespond
to TTL ‘totem-pole’ outputs, or other circuits that act this way.

dio Digital in/out channels are a do and a di channel connected to the same
terminal. The reading from the di channel should always correspond to
the setting of the do channel, if the channel is functioning correctly. This
channel type is not common. In previous 110 releases, octo channels were
known as dio channels.

oco Open-collector digital out channels drive the channel low when a 1 is writ-
ten to them (assuming NPN transistor drivers). This is the reverse of the

<~ 2T b BT T

dio ocio

Figure 4.1 110 Digital Channel Types
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do channel. oco channels frequently operate current loads (lamps, relays,
solenoids) wired between positive supply and the terminal, so a 1 corre-
sponds to the on or energised state.

ocio Open-collector digital in/out channels are an oco channel connected to a
di channel. This can serve two purposes:

e the input channel can be used to monitor the output channel,
possible detecting transistor failure, load disconnection or loss of
supply voltage

e the output channel can be left off (by writing a 0 to it) and the
input channel used as a normal di channel.

Because of this flexibility, ocio channels are widely used. In previous 110
releases, ocio channels were known as dio channels.

rdio Reversible digital in/out channels are driven by tri-state totem-pole drivers.
They can be regarded as more like a data bus than a data port, because
input and output data may only be at the terminals fleetingly, and addi-
tional control signals (strobes and direction indicators) are needed to effect
data transfer.

Data for digital channels is subject to the channel scale and offset properties,
if a real-unit operation function is used (by default, these are 1.0 and 0.0). The
output data is subjected to the channel limits, if any, and is then masked to the
width of the channel or bit-range. The output datum can be read back from the
output channels using iio_op_readback.

The bit-arrays formed from concatenating all channels of the simple digital
types can be accessed using the parallel bo, bi, bio, bcoo and bocio channels,
as described in Section EZ373. rdio channels are not concetenated.

Bitwise-digital channels and channels ranges also have channel properties.
These are not very useful for simple bitwise channels, but they may be for bitwise-
digital ranges. The channel properties pertaining the the first (zeroth) bit in the
range are used for the scaling and limiting of the data.

4.10.3 Address Space Channels

Address space channels represent addressing hardware, such as a VMEbus, an ISA
bus, an IndustryPack slot or an ADAM serial-addressable unit address. These
channels and their operations are not generally directly used by application pro-
grams. They are described fully in the context of address resolution in module
drivers (Section p.3.4), module drivers for address space channels (Section B.7),
and ADAM module drivers (Section p.10).

4.10.4 Encoder Counter Channels

Incremental encoders produce quadrature signals which are decoded by encoder
interface hardware into up or down count pulses. These accumulate into counters,
represented by channels of type enc. The datum represents the relative rotational
or linear position of the encoder shaft.

Target | Trajectory | Demand Current
— =

Generator

Kp+Ki/S+KdS M(S)

Figure 4.2 110 Servo Controller Channel Model
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Operations iio_op_read and iio_sc_read_current return the current en-
coder position. Operations iio_op_write and iio_sc_write_current set the
position (or calibrate) the encoder. Further movement of the encoder will be
relative to the new datum.

Encoder counters are also usually equipped with an index register, which
captures a copy of the main counter when the encoder passes its index position.
This index datum is read using iio_sc_read_index. The index datum will not
be consistent with the current datum if the current datum has been written and
the index position has not been passed again.

4.10.5 Servo Controller Channels

The servo controller module is much more complicated than other 110 channel
modules. The controller attempts to keep the current servo value (usually, but
not limited to, a position) as close as possible to an command value, using a
traditional PID control loop, or equivalent. The command value is generated by
a trapezoidal (or higher-order) trajectory generator, based on a target data and
rate limits from the application program. Figure .2 shows the model. Many of
the motion parameters will be constant, and will be specified in the configuration
file.

There are two kinds of operation codes: those that read or write motion
parameters and current data, and those that start or stop motion.

The PID servo loop characteristics are set using iio_sc_write_gain p for
the proportional gain K, iio_sc_write_gain_d for the derivative gain K, and
iio_sc_write_gain i for the integral gain K;. There are three matching oper-
ations for reading back these data. The value and units of these quantities will
depend on the design of the servo controller, particularly its interface with the
actuator and any intervening servo amplifiers: these effects are lumped in M (s)
in Figure .2. New data does not take effect until an iio_sc_start operation is
issued.

The current servo datum can be read using iio_sc_read_current or more sim-
ply iio_op_read. The current datum can be set using iio_sc_write_current,
which calibrates the feedback element, usually an incremental encoder. Op-
erations iio_sc_read_current, iio_sc_write_current and iio_sc_read_index
should behave identically to the incremental encoder channel type, enc, described
in Section AT0O4.
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Figure 4.3 110 Servo Controller Trajectory Generator
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The trajectory generator is driven by the target datum, which is changed
using the operation codes iio_sc_write_target or iio_op_write. The target
datum can be read back using iio_sc_read_target or iio_op_readback.

Apart from the target datum, the trajectory is controlled by two rate param-
eters, set using iio_sc_write_target_dt and iio_sc_write_target_ddt. These
are shown in Figure 3. The first is the mazimum change of the target per
second. (If the target is a position, then it refers to the maximum velocity). The
second is the maximum rate of change of the first (or the maximum acceleration).
Both these parameters must be greater than zero, or no motion can result.

A motion segment is initiated by setting the target data, and then issuing a
iio_sc_start operation. This operation promulgates the motion and feedback
parameters, and makes the servo move, if it is not moving already. The servo
will move until the target datum is reached: the time the segment will take is a
function of the initial difference between the current and target data the and the
maximum rates of change. The target, or any of the other motion parameters
can be changed at any time, and in any order: they do not take effect until a
further iio_sc_start.

Motion can be stopped by using the iio_sc_stop operation, which replaces
the target datum with the current datum at the instant the operation was issued.
The servo can be disabled using using iio_sc_free, which makes it servo to the
instantaneous current position.
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Section 5

Writing Module Drivers

This section is intended for people who want to add support for new hardware to
the 110 library. It describes the structure of a module driver’s code, the things it
must do, the things it can optionally do, and how to integrate it into 110.

5.1 Overview

A module driver is the interface between the core part of the 110 library and the
module hardware itself. There is one module driver for each distinct hardware
model, or variants on a basic model.

The driver must conform to the quite rigid format described here. This is
because the 110 core performs a number of services for the module drivers, such
as managing data structures and providing mutual exclusion locks, in order to
minimise the amount of code in the drivers. This only works, however, when the
driver performs as the core expects.

The driver must restrict itself to calling only the 110 functions described in
this section, and not use any system calls or C library functions. This is all in the
name of module driver portability: as soon as a programmer uses an operating
system call in a driver in 110, the whole library becomes potentially non-portable.

The driver must handle all the resources provided by a module (or, at least,
all resources that are going to be made available to the 110 user). Two drivers may
not share access to a module. This is because the mutual exclusion mechanism
assumes an exact correspondance between a module driver, the driver’s state,
and its hardware.

Furthermore, access to the module cannot be shared with a non-110 driver,
except in cases where there is no possibility of conflict. The same applies to direct
access to the module by the user program outside the 110 structure. Cases such
as this can be handled by using 110 proxy drivers, described in Section B-3.

While they are generally self-contained, drivers may share code. An example
is where a chip driver is used by the module driver. Chip drivers are written
to support specific components, usually peripheral chips, that appear, or might
appear, in otherwise unrelated modules. Section B explains chip drivers in
detail.

The driver must contain at least four specific functions:

e The identification function, which is called by 110 core before the configu-
ration file is read, and even if the module is not installed in a given system.
The function registers various details about the driver with 110 by calling
back the library (a style of operation that is used throughout the module
driver interface).

e The installation function, which is called if the module is specified in the
configuration file with a module directive. The function parses the module
parameters, initialises the module data structures, and registers the chan-
nels the module is going to provide to the 110 core. It does not access the
module hardware itself.

e The initialisation function, which is called directly after the installation
function only if the 110 code knows the module hardware has not been
initialised. The function must perform the initialisation and also initialise
the module state structure, if there is one.
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e The operation function, which is called when the user calls iio_operate()
or one of its variants. The function must obtain the user’s data and perform
the desired operation. There may be more than one operation function,
usually when a module has channels of more than one type.

The first three functions are called by 110 as a result of the user program calling
iio_init (). The operation function is called when the user calls iio_operate ()
or a variant. (There is no driver function which corresponds to iio_open()).

There are also two data structures defined by the module driver:

e The register structure, which is established by the installation function. It
contains pointers to the module hardware registers, and any configuration
information digested from the configuration parameters. Once established,
it should not be changed, and in particular it should not contain any module
state.

e The state structure, which is established by the initialisation function, does
contain module state, and is shared amongst all 110 processes and tasks
using 110. It is protected by the same mutual exclusion mechanism as the
module itself. It typically contains shadows of write-only register values.
The state structure is optional, as simple modules may not require it.

The following four sub-sections (-3 to p-f) describe each of the four functions
and the two data structures, what they should do, and hopefully why they should
do it. Each sub-section also describes the 110 core functions that should or can
be used by the driver at each stage.

Section pb-G deals with more practical aspects of writing a driver module and
integrating it into the 110 library. Section B.]] describes how to write and integrate
chip drivers and other generic driver components.

5.2 Identification Function

The module identification function is the only public symbol the driver must
provide. The function, which is called by 110 once only during the initialisation
phase, must register certain details about the module driver with the 110 library,
by calling the function iio minfo(), as in this example:

II0_STATUS iio_xyzzy1234(void) {
return iio_minfo(
"xyzzy1234",
"XYZCom XYZZY-1234 Thingy Interface",
"$Revision: 1.6 $",
iio_multi_yes,
iio_xyzzy1234_install,
iio_xyzzy1234_init
);
}

The first argument is the model ident for this module, as described in Sec-
tion B2270. It is a short string containing letters and numbers which uniquely
identifies the module; usually, the module’s model number is used. The model
ident is the name used to identify the module in the configuration file.

The second argument is a fuller description of the module; this should include
the name of the manufacturer (or a common abbreviation), the full model number,
and a quick description of the module. The next argument is the version of the
module driver software; normally the CvS/RCS revision number keyword is used,
as shown.

The iiomulti_yes argument indicates the module driver may be installed
more than once, if there is more than one such module in the system. This will
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be the case with most modules, but modules with fixed bus addresses, or modules
such as CPU boards, will typically specify iio_multi_no.

The last two arguments are pointers to the installation and initialisation func-
tions, which are described in the next two sections. As mentioned, the identifi-
cation function is the only public symbol the module driver must provide; all the
other functions are called through pointers passed back to the 110 core. This is
purely to simplify the process of patching in new module drivers.

The identification function can call iio_minfo() more than once, in order to
register the module driver with different model idents. This permits a module
driver to support a number of similar but distinct models. For instance, the
xyzzy1234 might be very similar to the xyzzy1235, such that the same driver
can handle both. Normally, the same installation and initialisation functions are
specified for all variants: it is possible for the installation function to establish
which variant was specified in the configuration file later. If the differences be-
tween the variants turn out to be any more than minor, you should probably be
writing separate module drivers for them.

5.3 Installation Function

The installation function is called indirectly by the 110 core when the module’s
model ident is given in the configuration file in a module directive. It should
conform to the prototype

II0_STATUS iio_xyzzy1234_install(IIO_MODULE *module, char *argv([]) {

}

The module argument is a pointer to the 110 data structure that represents an
installed module. This pointer should be passed to the 110 core functions called
by the installation functions, but not otherwise used. argv is the tokenised list of
parameters from the module directive in the configuration file. There is no argc:
the list is terminated by a NULL pointer.

The installation function is frequently the largest function in the module
driver. In short, it must perform all the initialisation that can be done with-
out actually accessing the module hardware. The function is expected to:

allocate the register structure (Section p.3.1])

allocate the state structure (Section p.3.2)

destructively parse the module parameters (Section p.3.9)

map the module and resolve the register addresses (Section 5.3.4)
register the channels the module provides (Section 5.3.9)

Should anything go wrong in the installation function—or any of the others—
an error status, with accompanying static error message string, should be re-
turned, using the iio_error() or iio_fatal() macros. The error string is ulti-
mately returned to the application program. The installation function will typi-
cally only generate error returns for bad or missing configuration parameters.

Similarly, an error status should be returned immediately should any of the
110 functions the driver calls fail. An easy way to do this is to enclose these calls
in an iio_eret () macro, as is shown in the examples. Section B-I2 describes the
error handling system further.

5.3.1 Register Structure

The installation function should first allocate a module-specific register structure.
This structure, always of type II0_MREG, should be defined at the top of the mod-
ule driver code. It contains pointers to each of the module’s hardware registers,
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plus any of the configuration details decoded from the arguments that may be
required later. A pointer to the register structure is passed to the subsequent
calls to the initialisation and operation functions.

For our example xyzzy1234 module, the register structure might be defined
like this:

struct ITIO_MREG {
volatile iio_uint8_t *csr; /* control/status register */
volatile iio_uint16_t *dr[4]; /* four data registers */

II0_BOOL invertflag; /* data inversion flag */
int range; /* output range setting */

};

The first element is a pointer to the module’s 8-bit control register, and the
second is an array of pointers to the module’s four 16-bit data registers. Always
use pointers to each individual register and choose the pointer type to match the
width of the register. Never attempt to lay a C structure or array over the device
registers, as is sometimes suggested. While a little neater, the results of this
practice are compiler and architecture dependent, and therefore not portable:
the pointer approach is. (For similar reasons, C bit-field structures also cannot
be used: this is a great shame).

Note also the use of the volatile declaration qualifier. This is essential to
force the compiler to actually access the register when the program demands, and
not optimise away accesses that it thinks are redundant. It is also necessary to
force the compiler to access the register with the specified bus cycle width.

The actual values of the pointers (i.e., the register addresses) are determined
from the configuration parameters, parsed using the argument decoding functions
in Section p.3.3, and the address mapping/resolution functions in Section p.3.4.
Section B.4 deals further with register addressing issues.

The register structure can also contain flags or variables which indicate con-
figuration of the module to the initialisation and operation functions. These
values for these are also decoded from the configuration parameters, using the
argument decoding functions. In this example, there is a flag that indicates that
output stages are to be inverted (or perhaps that inverting output stages are
fitted to the board), and a number that indicates an output range setting. Only
constant configuration information that is actually required by the initialisation
and operation functions should go in the register structure.

The structure itself must be allocated using a call to iio_module_reg(), which
accepts the module argument passed to the installation function, the size of the
register structure, and a pointer to the register structure pointer:

IIO_MREG *reg;
iio_eret( iio_module_reg(module, sizeof (IIO_MREG), &reg) );

The new structure can then be initialised using reg.

5.3.2 State Structure

The installation function must also allocate the module-specific state structure.
This structure, always of type II0_MSTATE, is also defined at the top of the module
code. It contains device state and configuration details that cannot be decoded
from the configuration file, or read back from the hardware itself. The state
structure is described further in Section 5.

The structure is allocated by calling iio module_state():

iio_eret( iio_module_state(module, sizeof (IIO_MSTATE)) );
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This structure is shared amongst all processes or tasks using 110, so that all will
agree about the state of shared hardware. As with the module hardware, the
installation function should not access or initialise the state structure: this is
done later by the initialisation function.

To enforce this, the state structure pointer is not returned to the caller (the
register structure pointer is); instead, it is passed to the initialisation function.
Some modules will not require a state structure, as the module state can be read
directly from the hardware registers as required. In this case, there is no need to
define TI0_MSTATE and iio_module_state() should not be called at all.

5.3.3 Decoding Configuration Parameters

In the 110 configuration file (Section [, the module driver configuration parame-
ters are specified using a UNIX shell command-line style, with options (indicated
by a leading - character) introducing each argument. For instance, the hypothet-
ical XyzzY-1234 module might appear in the configuration file like this:

module xyzzyl234 -address 0x4600 -range 23 -no-invert

The 110 core simply tokenises the line into a NULL-terminated string-pointer array,
which it passes when it calls the module installation function. argv[2] will point
to the string "xyzzy1234", argv[3] to "-address", argv[4] to "0x4600", and
so on. Pointer argv[8] (the one following "-no-invert") will be NULL, indicating
the end of the list. argv[0] contains a file-name/line-number reference of the
line in the configuration file, which is supplied by the 110 core to assist generating
an error message if the function returns an error status.

Argument Decoding Functions. The installation function should use the
iio_arg() function and its variants to decode the parameters. These functions
scan the argv [] list, looking for selected options. If found, they remove the option
and argument from the list (replacing them with empty strings) and return the
argument value (using the argument type to check its syntax). The process is
repeated for each possible option.

This approach is slightly different from traditional way of parameter list pars-
ing, where each parameter is compared in turn to a list of possible options. There
are several advantages in the 110 context:

e it reduces the amount of code in the module drivers

e a partially decoded argument list can be passed to the installation
function of a chip driver (Section p.1)) for further decoding

e it standardises the style of the configuration file.

The 110 core checks the argument list after the initialisation function has returned:
any parameters remaining (i.e., not cleared by the argument parsing functions)
must be illegal options, which are reported to the user.

All of the argument parsing functions accept the parameter list, option names,
argument types, and argument value pointers. For instance, our example module
might have options for the module base address and for output inversion:

iio_uint16_t base = 0x5000;

reg->invertflag = iio_bool_false;
ijo_eret( iio_arg(argv, "address", iio_arg_uintl6_t, &base) );
iio_eret( iio_arg(argv, "invert", iio_arg_bool, &reg->invertflag) );

Here, the base address is a 16-bit number. iio_arg() will search argv[] for
a "-address" option, and attempt to convert the following token into a 16-bit
number. If successful, the number will be written into base; otherwise, there is
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Table 5.1

probably a syntax error in the configuration file, so iio_arg() returns an error. If
the iio_eret () macro is used as shown, the installation function will also return
an error, and an appropriate message will be printed.

If there is no "-address" option in the parameter list, iio_arg() does not
return an error, but also does not alter the value of the base. Its value will
remain the pre-set 0x5000.

Boolean options (type iio_arg bool), such as "-invert" are unique in that
function iio_arg() and variants do not look for a following argument. Instead,
the result variable is set to a non-zero value (iio_bool_true) if the option appears
anywhere in the parameter list, or is cleared to zero (iio_bool_false) if its
negation "-no-invert" appears. If neither "-invert" or "-no-invert" is found,
the value is unchanged.

Default and Mandatory Arguments. If any option does not appear in the
argument list, its result variable is not changed at all. Tt is important that all
such variables are pre-set to sensible default values, as in the example above.
These values should reflect the factory configuration of a module.

Some module options will be mandatory, and have no sensible default. In
this case, the argument variable should be pre-set to a nonsense value, and the
value checked after the call to iio_arg(). For instance, a -slot option for
IndustryPack module drivers is always mandatory:

II0 slot = NULL;

iio_eret( iio_arg(argv, "slot", iio_arg_channel, &slot) );
if (! slot) {

iio_log("%s: IP slot not specified", argv[0]);

return iio_error;

Argument Types. The full set of argument types that iio_arg() and its
variants will search for is shown in Table p.1. The programmer must ensure that
the argument result pointer points to an object of the correct type. There is no
way the compiler can enforce this.

Most of the argument types are self-explanatory. For integer arguments,
iio_arg() accepts either decimal, octal and hexadecimal parameters in the con-
ventional form, and always properly checks their syntax. The floating-point forms
are similarly checked.

Type Description Result type
iio_arg bool boolean I10_BOOL
iio_arg int8 8-bit signed integer iio_int8_t
ijo_arg_int16 16-bit signed integer iio_int16_t
iio_arg_int32 32-bit signed integer iio_int32_t
iio_arg_int64 64-bit signed integer iio_int64_t

iio_arg uint8
iio_arg uinti16
iio_arg uint32
iio_arg_uint64
iio_arg_float
iio_arg_double
iio_arg_addr
iio_arg_string
iio_arg_channel
iio_arg file

Module Driver Argument Types for iio_arg() and Variants

8-bit unsigned integer
16-bit unsigned integer
32-bit unsigned integer
64-bit unsigned integer
floating point

double floating point
address

dynamic allocated string

ITIO channel descriptor
file-descriptor

iio_uint8_t
iio_uintl6_t
iio_uint32_t
iio_uint64_t
float
double

void *

char *

II10
II0_FILE
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As well as decoding simple types, iio_arg() accepts string, file and channel
arguments. String arguments are dynamically duplicated, and a pointer returned
into the result. As described in Section B, strings that contain white-space should
be enclosed in double-quotes ‘("..")".

File type arguments expect a fileename. iio_arg() opens the file in read-
write-create mode, and returns a file descriptor (type II0_FILE) of the open file,
or an error if the file could not be opened. The module driver should close the file
when it has finished with it. Few module drivers will need to open files, but if they
do, they should do it this way, as file-names are likely to be system-dependent
and so should be in the configuration file.

Similarly, 110 channels can be opened, and an 110 channel descriptor is re-
turned (iio_arg() simply calls iio_open()). This feature is frequently used,
because 110 channels that represent address spaces, as opposed to input-output
channels, are central to the 110 module mapping and register address resolution
system, described in the following section.

Argument Parsing Function Variants. There are also a few variants to
iio_arg(), which are convenient when there are many options, or when options
for individual channel numbers are needed.

Function iio_arg list() can be used to process a list of arguments in one
call, and is equivalent to a sequence of calls to iio_arg(). The function accepts
the parameter list pointer, then any number of triplets of option name, argument
type, and result pointer arguments, terminated by a NULL. For instance, the
example could have used:

iio_eret(
iio_arg_list(
argv,
"address", iio_arg_uintl6_t, &base,
"invert", iio_arg_bool, &reg->invertflag,
NULL

)

Where the same option needs to be individually specified for a number of
individual channels, such as the gains to be used on a set of ADC channels,
the function iio_arg index() can be used. This is the same as iio_arg(),
but accepts an additional index argument, and searches for options of the form
-gain.<index>, instead of just —gain. For example, the code

for (index = 0; index < NCHAN; ++index) {
iio_eret(
iio_arg_index(
argv, "gain", index, iio_arg_uint8, &reg->gain[index]
)
)5

will search for the arguments -gain.0, -gain.1, -gain.2 and so on, up to NCHAN.

These two variants are combined by function iio_arg_index_list (), which is
equivalent to iio_arg list () but includes the index argument, as in the following
example:

for (index = 0; index < NCHAN; ++index) {
iio_eret(
iio_arg_index(
argv, index,
"range", iio_arg_uint8, &reg->rangel[index],
"gain", iio_arg_uint8, &reg->gain[index],
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"invert", iio_arg_bool, &reg->invert[index],
0

);
}

This will look for -range.0, -gain.0 and -invert.0, then -range.1, -gain.1,
-invert.1, and so on.

5.3.4 Resolving and Mapping Addresses

After decoding its arguments and possibly storing them (or something derived
from them) in the register structure, the next thing the installation function must
do is map the full address space occupied by the module, and then resolve the
addresses of the device registers, that is, compute them and put them in the
register pointers in the register structure. In other words, it must

e make the module hardware registers ‘visible’ to the program (map-
ping), and
e find out the logical addresses of the registers (resolution).

Address mapping and resolution is a more complicated issue in the 110 system
than for normal 10 drivers, because the drivers must be portable, and because
110 must run in protected (i.e., virtual) address environments like UNIX user
processes. ‘Standard’ or ‘well known’ mappings between logical and physical
address spaces must never be written into module drivers, because such mappings
will almost certainly not the same all systems. Instead, the 110 address mapping
and resolution mechanism, described below, must be used.

The IIO Address Mapping and Resolution System. The need for ad-
dress mapping, and, more particularly, address resolution, can be understood by
considering the transformations applied to an address as it makes its way from
the cpu, through the computer system and its sometimes numerous busses, to
actually accessing a particular module register.

In Figure p.1], which represents a typical VMEbus processor board accessing a
register on a IndustryPack module, a program running on the CPU references an
address ag. Address ag is known as a logical address (or a virtual address) because
the address is relative to the program’s address space Ag. It is the address (or,
if preferred, pointer value) the program must use to actually access the register.
As it travels through the computer system’s hardware and busses, the address
is subject to transformation Tp; through the memory management unit (MMU),
and T1o through the bus interface unit, in becoming a VMEbus A16 address as.
From the VMEbus there is a further transformation Th3 to the register space of
the given 1P slot, Az, where ag is the register’s physical address.

These address transformations are usually simple arithmetic or linear func-
tions related to to the base addresses each of of the hardware modules. Ty (the
MMU) may be more complex, and is usually controlled by the operating system.

Logical Proc. Phys. VME Physical
Ao Ay A A3
CPU »  MMU >  VME > P » Register
o | Interface "] Carrier o &
T01 T12 T23

Qg ————» 4 ——————» Gy ————» a3

Figure 5.1 Example VMEbus processor, bus, IndustryPack carrier and module.
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As well, the number of these translations involved will vary from situation to
situation. Clearly, these transformations cannot—and should not—be encoded
into the module driver code, or it will not be portable.

Instead, 110 module drivers only encode the physical addresses of registers
with respect to the appropriate address space—in other words, as with respect
to Az. Thus, the address of a register on an IndustryPack is encoded as an address
in an IP register space, not as a VMEbus address or anything else. Drivers use
the 110 address mapping and resolution functions to determine at run-time what
logical address ag they should use in order to access the physical address as.

Address mapping, performed by the 110 core function iiomap(), is called
by drivers to ensure that the transformations Ty;, T12, 153 and so on actually
exist (especially Ty, which usually requires operating system calls to achieve).
Address resolution, performed by iio_resolve(), is the evaluation of the overall
inverse mapping for a given register (T53712701) ‘a3 to obtain the corresponding
logical address aqg.

Address Space Channels. While the 110 core deals with the address transla-
tions through the MMU (Tp1) through the operating system, the user effectively
defines the relationship between the other address spaces using the 110 configu-
ration file, by indicating which modules plug into which. This is done, implicitly
or explicitly, using address space channels.

Address space channels represent addressing devices, like busses, slots, and
addressable serial networks. For example, the channel vme.O represents a sys-
tem’s VMEbus, while the channel ip.5 represents the sixth IndustryPack slot in a
system. While address space channels represent addressing devices, rather than
ordinary 10 channels, they are named, numbered, opened, operated upon and
closed like any other channel. However, they have their own sub-set of opera-
tions, called address space operations, which are described shortly.

Every module is ‘on’, that is, plugged into, exactly one of these address space
channels. Often this channel is implicit, and not usually specified in the configu-
ration file, such as with vMEbus modules (most systems have only one VMEbus,
vme. 0, so this is a sensible default for vMEbus module drivers). Other modules
require this channel to be specified, such as those for IndustryPacks, because the
channel effectively identifies the physical slot the module is plugged into.

Modules that allow other modules to be accessed through them, such as bus
adaptors, 1P carriers and CPU modules, provide the address space channels the
other modules are on, in the same way as ordinary modules provide 10 channels.
For instance, a PC cPU module always provides an address space channel isa.O0,
because it can access other modules through its 1SA bus. A four-slot Industry-
Pack carrier module would provide four ip address space channels, since four 1P
modules can be accessed through it.

Thus, as it reads the configuration file, the 110 library builds up a hierarchy
of address spaces and modules that link them. This is the reason the order of
modules in the configuration file is important, as mentioned in Section B: modules
that are on a particular address space must come after the module that provides
that space.

Address Space Operations. Address space channels generally respond only
to a subset of 110 operation codes called address space operation codes. Table b2
lists the current address space operation codes and shows which address space
channel types implement them. (This information also appears in Table B-4 on

page [3).
Each code represents a sub-space of an address space channel, generally re-

lated to the width of the address word. For instance, the VvMEbus has three
basic non-overlapping address spaces, A16, A24 and A32, which are selected by
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the operations iio_space meml6, iio_space mem24, iio_spacemem32. Opera-
tion iio_space_io is a synonym for iio_space mem16, since A16 space is tradi-
tionally used for 10 modules on the VMEbus. Proposed revisions of the VMEbus
standard allow for an ‘identity PROM’ space, which would be accessed through
iio_space_id.

On IndustryPack address spaces, the codes iio_space_io, iio_space_id and
iio_space_mem select the register, ID-PROM and memory spaces of the IP re-
spectively. (The iio_space_int code is intended for resolving interrupt vector
numbers, and remains experimental at present). The ISA bus provides a single
24-bit address space, through either iio_space mem or iio_space mem24. 16-bit
address 1SA modules (those with the single edge connector) fit into the same
address space.

The 1SA port space addresses are represented by iio_space_port, but this
space is somewhat different the others. It is available only on 80x86 processors,
and it cannot be mapped into logical memory. Registers in this space are accessed
through function calls (Section B.5) rather than dereferencing register pointers.
However, the address translation issue described above still applies, and the 110
address mapping and resolution system is used in the same way.

Address space channels with their attendant address space operations may
be compared to UNIX device-special files such as /dev/mem or /dev/vmel6, but
they are used a different way. The UNIX special files are used to actually access
the devices they represent, through their attendant kernel device drivers. The 110
address space channels and operations are used by iiomap() and iio_resolve()
to compute logical addresses, so the driver can directly access the device later.

Mapping the Module. So, after decoding its configuration parameters, the
module driver installation function should first map its registers or memory. For
example:

if (!chan)
iio_eret( iio_open("vme.O0", O, &chan) );
iio_eret( iio_map(chan, iio_space_mem16, base, 0x200) );

The first argument to iio_map() is an open channel descriptor representing the
address space. Generally this descriptor is obtained through iio_arg(), as de-
scribed in Section b-3-3, and if not a default is opened, as shown. Once all the
mapping and resolution is done, the channel should be closed.

The second argument to iiomap() is the address space operation code, from
Table p-4. This must be an operation that the given channel will implement.
The example is for an A16 VvMEbus module. The third argument is the physical
base address of the board, expressed in that address space. The base address
is usually set by switches or jumpers on the module, and the value given in the

Address Space Operation Codes
iio_space_io Input/output Space
iio_space_id Identity Space
iio_space_int Interrupt Space
iio_space_mem Memory Space

iio_spacememi6 16-bit Memory Space
iio_spacemem24 24-bit Memory Space
iio_spacemem32 32-bit Memory Space
iio_space_port Non-mappable Port Space

ONMEENEEDHENsu
OO mMEROd
EOEONEEHQOQeEST

Table 5.2 Address Space Channel Operation Codes versus Channel Type. B indicates the address
space operation code is supported; [J indicates it is not; and H indicates it may be in
future.
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configuration file, so the base address will have been obtained into base using
iio_arg().

The final argument is the size of the mapping required, expressed in the
smallest addressable units of the space, usually bytes. Here, the size is 0x200
bytes, which means the module hardware will respond to A16 accesses from
address base through to base + 0x1ff. Note that hardware often responds to a
wider range than suggested by the register map, so check the hardware manual.

iiomap() tells the 110 to ensure a mapping exists from the program’s logical
memory space to the physical space used by the module. The function uses
the given address space channel and operation code to resolve the bottom and
top addresses (that is, base and base + 0x1ff) to processor physical memory
addresses. It then looks up these addresses in a physical-to-logical map, and
if a suitable mapping covering the whole range is not available, requests the
operating system create one. The mapping it creates may be somewhat larger
that requested.

Mapping is required even for the non-mappable port space iio_space_port.
This is because some operating systems, such as Linux, require ports to be
‘opened’ before they can be accessed from user processes. iio map() does this.

On operating systems like vxWorks, or on computer hardware that does not
feature a memory management unit, there is no physical-to-logical map for 110
to worry about. However, the module driver must still call iio_map(), as it may
later be used on an operating system or computer that does.

Some modules respond to more than one address sub-space. For instance,
VMEDbus frame-grabbers often have a number of control registers in A16 space
and the frame buffer itself in A24 or A32 space. Function iio_map() should be
called for each sub-space the module uses.

Some modules, in particular IndustryPacks, plug into carrier modules which
themselves have module drivers. In these cases, the mapping is done by the
carrier’s module driver, as this reduces the number of individual physical-to-
logical mappings (some systems limit this number). Thus, module drivers for
1P’s need not call iio_map(), although there is not harm done if they do.

Resolving Register Addresses. Once a mapping exists, the addresses of the
individual registers can be resolved, using iio_resolve():

iio_eret(
iio_resolve(
chan, iio_space_meml6,
iio_size_8, base + 0x10, &reg->csr

)

The first two arguments should be the same as the call to iio_map (), identifying
the address space/sub-space where the register is located, here vMEbusA16.

The next argument indicates the width of the register, chosen from Table B.3.
The specified width, 8-, 16-, 32- or 64-bits, must match the actual width of the
hardware register and the pointer in the register structure to be used to access
it. Do not confuse address width, which is usually part of the address space
operation code, with data width. They are often independent.

The following argument is the physical address of the register, which will
always be relative to the given address space/sub-space, and is usually a fixed
offset from the module hardware base address. The final argument is a pointer
to the register pointer, normally in the register structure, which is where the
register’s resolved logical address is put.

It is important that each individual register address be separately resolved.
This is because it cannot be assumed that the same byte spacing will be main-
tained over the physical to logical mapping, which must also take into account
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bus size and processor-endian issues. In other words, is is not acceptable to re-
solve just the base address, and index from there. Section B4 deals further with
register addressing issues.

Usually a number of registers in the same address space need to be resolved
en masse. Function iio_resolve_1list () is provided for this:

iio_eret(
iio_resolve_list(
chan, iio_space_meml6,
iio_size_8, base + 0x10, &reg->csr,
iio_size_16, base + 0x0, &reg->dr[0],
iio_size_16, base + 0x2, &reg->dr[1],
0

);

The first two arguments of iio_resolve_list () are the same as iio_resolve(),
but they can be followed by any number of size/physical-address/register pointer
triplets, terminated by a zero. In this example, an 8-bit control register and two
16-bit data registers are resolved.

5.3.5 Registering Channels

The last act of the installation function is to register the channels the module
provides, and configure them as appropriate. Registration done using the function
iio_chnode():

II0O_CHNODE *chnode;

iio_eret(
iio_chnode(
module,
iio_chtype_dac, 16, 4,
iio_xyzzyl1234_dac,
&chnode

)

This function accepts the module argument to the install function, then the type,
width (in bits) and number of channels of that type. In this case, the module
provides four 16-bit digital-to-analogue converters. Then follows a pointer to the
operate function (described in the next section) for these channels, and finally
a pointer to an IIO_CHNODE pointer (if not later required, this argument can
be NULL). The II0_CHNODE structure (a channel node) represents the range of
channels just registered, and can be used later to configure the properties of
these channels).

There must be a 1:1 correspondence between calls to iio_chnode () and the
operation functions: that is, the operation function passed to one call cannot be
passed to any other. This is because the channel numbering scheme, as far as
the module driver is concerned, is based on channel nodes, not channel types or

modules.
Code Register Data Width Pointer Type
iio_size 8  8-bit  byte register ijo_int8_t, iio_uint8_t
iio_size_16 16-bit word register iio_int16_t, iio_uint16_t

iio_size 32 32-bit long-word register = iio_int32_t, iio_uint32_t
iio_size 64 64-bit quad-word register iio_int64_t, iio_uint64_t

Table 5.3 Register Width Argument to iio_resolve()
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Channel Properties. Once a group of functions is registered, the II0_CHNODE
pointer can be used to configure the properties of individual channels (Sec-

tion B27).
At present, the only properties of interest are the channel scaling and offset

values used by 110 when the channel is accessed through the iio_operate_real()
function.

The linear scale and offset relate the real-world quantities present at the input
or outputs of the module to the integer values read or written by software. Scaling
is only really applicable to channels like analogue-to-digital or digital-to-analogue
converters, or possibly timers.

The factors must reflect the configuration of the module. For instance, if a
module features selectable gains or output ranges, the setting must be obtained
from the configuration parameters, and used to compute the scale and offset
factors.

The factors are set using iio_chnode_ linear(). For a 12-bit DAC with a
+10V range:

for (seqno = 0; seqno < 4; ++seqno) {
iio_eret(
iio_chnode_linear(
chnode, segno,
20.0/4096, 0.0, "v"

)
¥

After the II0O_CHNODE argument, the seqno argument identifies the channel, the
arguments are the linear scale factor (real units per integer unit), the offset (real
units), and the real units as a string. Note the use of the exact scale ratio
20.0/4096. Always choose the scale factors to refer to basic SI units, such as V,
m or kg, rather than multiples like kV or mm.

Channel limits can be set using iio_chnode_limits():

for (seqno = 0; seqno < 4; ++seqno) {
iio_eret(
iio_chnode_limits(
chnode, seqno,
0, -2040, 2040

)
¥

The first two arguments are the same as iio_chnode_linear (). The next argu-
ment is the channel initial value property, which is currently ignored. The other
two are the minimum and maximum integer channel values. The 110 core will
not supply a value outside these inclusive limits, unless the minimum is greater
than the maximum, which switches off limiting altogether (the default).

Note that while the channels are registered em masse, channel properties are
configured one by one. If iio_chnode_linear () is not called for a given channel,
the default scale and offset factors of 1.0 and 0.0 apply. The scale and offset
factors may subsequently be multiplied by a user scale and offset specified by a
channel directive in the configuration file.

5.4 Initialisation Function

If the installation function did not return error status, 110 may then call the
initialisation function. This function actually accesses and initialises the module
hardware, as well as the module state structure, if any.
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The initialisation function is called only once in the life of the system. This is
fairly easy to to arrange on shared-memory systems like vxWorks where the life
of the system is generally the life of the single application program. On LynxOS
systems, 110 provides an elaborate system to ensure the initialisation function is
called only once even if there are several 110-using processes running, and that the
state structure is properly preserved and shared amongst all of these processes.

Probing for Hardware. The iio_probe() function is used to see if there is
hardware actually at the register addresses resolved in the installation function:

iio_eret( iio_probe(reg->csr, iio_size_8, iio_ptype_read) );

This function returns error status if there is nothing at the probed address (i.e.,
a bus error or segmentation fault occurred). The most likely cause of this is a
wrong address in the configuration file, or the hardware is not plugged in.

iio_probe() accepts a resolved register address as the first argument, a
register width argument (Table F.J), and the probe type (iio_ptype_read or
iio_ptype_write). Generally, it is enough to read-probe only one register (but
choose one that will not cause the hardware to do something potentially danger-
ous!)

Note that certain computers (such as ISA bus systems) do not detect bus
errors, and on these systems iio_probe() should not be used. In particular, it
should never be used for register addresses that are in the non-mappable port
space (that is, were resolved and mapped using the iio_space_port address space
operation code.

Probing will not detect that the wrong module has been configured to the right
address, if the module happens to have a register at the probed address. However,
it will catch many module set-up errors. If the module is self-identifying, test
the identity of the module against what the driver expects. If it does not match,
the initialisation function should return an error status, using iio_error() (Sec-
tion B.19).

IndustryPacks are always self-identifying, and because they are common, mod-
ule probing and identity checking have been combined into the one function.
iio_ipinfo_ident () probes the ID-PROM which exists on all IndustryPacks, and
checks the manufacturer and product identity codes against those that the mod-
ule driver supports:

iio_eret( iio_ipinfo_ident(reg->slot, 0xf0, 0x16) );

The first argument is the address space channel which would have been used for
register address mapping and resolution in the installation function. Normally,
for an 1P, this is saved in the register structure for use by iio_ipinfo_ident ().
The second and third arguments are the manufacturer (0x£f0 for GreenSpring)
and product (0x16 for an IP-DAC) identity codes. These are unique to each IpP
and should be found in the module’s documentation. iio_ipinfo_ident () copes
with both the old-style and the new-style ID-PROM formats.

The State Structure. The state structure duplicates whatever module state
cannot be read when required from the module hardware itself. It will contain
everything the module driver needs to know about the module except any config-
uration information in the register structure. Typically, the state structure will
contain shadows of write-only registers, so that the read-back operations can be
supported:

struct II0O_MSTATE {
iio_uint16_t dr[4]; /* shadows of data registers */

};
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Register shadows should be declared to be the same width as the register, but of
course should be real variables, not pointers. They do not need to be declared
volatile.

The state structure is defined, like the register structure, at the top of the
C code for the module driver, and is also allocated in the installation function.
However, it must be initialised, like the module hardware, in the initialisation
function.

Hardware and State Initialisation. Finally, the hardware can be initialised
to correspond to the configuration stored in the register structure, and any out-
puts cleared to safe or zero values. In the case of the XyzzYy-1234, the inversion
flag indicates certain control register values:

*reg->csr = (reg->invertflag) 7 0x03 : 0x01;
for (i = 0; i < 4; ++1i)
*reg->dr[i] = state->dr[i] = 0x0;

As described, 110 only calls the initialisation function if it believes the hard-
ware is not initialised. On UNIX systems, this means the first run of an 110
program only. On subsequent runs, 110 assumes the hardware is configured and
running, and so the next thing that might happen in the module driver after the
installation function is a call to the operation function.

5.5 Operation Function

The operate function is called in response to user program calls to one of the
operate functions. While the processes involved in installing modules and opening
channels in 110 are fairly complicated, the operation functions are (hopefully)
quite short, simple and fast.

The operation function only has to deal with single channel range of a single
type at once. (There is generally one operation function for each type of channel
a module provides, and certainly only on operation function for each call of
iio_chnode() in the installation function). It must have the same prototype as
this example:

HIDDEN IIO_STATUS iio_xyzzy1234_dac(
ITIO_MSTATE *state, IIO_MREG *reg, IIO_OPNODE *opnode,
II0O_OP op, unsigned first, unsigned number

The function receives the state and register structure pointers, an II0_OPNODE
pointer, the 110 operation code, the local sequence number of the first channel
in the range and the number in the range. These are all the variables the oper-
ation function should need directly; other values used by 110 are encoded in the
II0_0PNODE structure. The operation function’s job is to actually carry out the
operation on the module hardware.

Channel Sequence Numbers. Normally, the operation function will contain
a for-loop to deal with each channel in the range, which will enclose a switch-
statement on the operation code:

unsigned seqno;
for (seqno = first; seqno < first + number; ++seqno) {

}
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Some hardware can be more efficiently accessed in ranges by different means. For
instance, there may be a similar overhead for accessing one channel or twenty,
so it is useful for the module driver to know how many channels are involved.
Modules with simultaneous capture inputs or output may also need to know this.
In other cases, the for-loop is merely a nuisance.

The channel sequence numbers start from zero for each channel node. Nor-
mally, all the channels of a given type on a given module are in the same channel
node, because they were registered by a single call of iio_chnode(), and are
handled by the one operation function. If the channels are not all registered to-
gether, there has to be a separate operation function for each group. If the same
function was used for both groups, there would be no way for it to tell which
group the channel belongs to.

Accessing User Data. The operation function calls one of several 110 core
functions to obtain the data the user passed to the operation, and return the
operation’s results to the user. The 110 core scales, offsets and limits the data
according to the properties registered with the channels, so that the driver need
only apply with the simplest data transformations, if any.

Usually the module driver operation function needs the user data converted
to an integer format, since that is the form most 10 hardware requires. The
iio_data get() function is used in this case:

int val;

val = iio_data_get(opnode, seqno);
*reg->dr [seqno] = (iio_uint16_t)((val & Oxfff) + 0x800);

The first argument is the II0_0PNODE pointer, and the second is the local sequence
number of the channel whose user datum is required. The iio_data_get () func-
tion locates the correct user datum, performs whatever scaling, offsetting, limiting
or logging is required, and returns the result. The driver must do the final trans-
formation of the datum before inserting it into the hardware, such as adding an
offset, as in the example above, which is an ‘offset-800’ style DAC.

Similarly, when returning a datum to the user, the iio_data_set() function
is used. For instance:

int val = *reg->dr[seqno] & Oxfff;
iio_data_set(opnode, seqno, val - 0x800);

The third argument to the function is the new signed integer datum.

The module driver may access the user data in two other forms. The get and
set functions iio_data_get real() and iio_data_set_real() are identical to
the functions iio_data get() and iio_data_set(), but return or accept double
data. These functions are used when the rounding-off that occurs in the latter
functions becomes a problem. It should be noted that the function still perform
the scaling, offsetting, limiting or logging as required: the only difference is that
rounding-off does not occur.

User data that represents pointers (address data) should be accessed us-
ing iio_data get_addr() and iio_data_set_addr(). These functions access
the user data without modification. They will only work if the user has used
iio_operate_addr() to do the operation. These are generally only used in ad-
dress space channel drivers (Section B.1).

Implementing the Operations. It is up to the module driver writer to make
sure the correct operation codes are implemented for the channel type, and
that the iio_data_get () and iio_data_set () functions are called appropriately.
These are listed in Table B4 on page [[3.

Typically, the operation code is used as the selector in a switch-statement,
inside the channel loop (although the reverse is perhaps slightly faster):
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for (seqno = first; seqno < first + number; ++seqno) {
switch (op) {
case iio_op_read:

case iio_op_write:

default:
return iio_error("Operation code not supported");

There should always be a default clause that returns this error should an illegal
operation code be given. The operation codes are not validated by the 110 core.

Modules in Port Space. The example so far has assumed the module has
been memory mapped, which is the most common way of accessing modules in
110. However, many ISA modules are port-mapped, and so the 80x86 processors
found in ISA systems cannot map them into logical memory. Instead, special inp
and outp instruction must be used to access registers.

Unfortunately this means module for port-mapped modules must use func-
tions to access registers, rather than dereferencing the register pointer directly.
These functions are declared:

extern void
iio_port_set8(volatile iio_uint8_t *addr, iio_uint8_t val),
iio_port_seti6(volatile iio_uintl6_t *addr, iio_uinti6_t val),
iio_port_set32(volatile iio_uint32_t *addr, iio_uint32_t val);

extern iio_uint8_t

iio_port_get8(volatile iio_uint8_t *addr);
extern iio_uintl6_t

iio_port_geti6(volatile iio_uintl16_t *addr);
extern iio_uint32_t

iio_port_get32(volatile iio_uint32_t #*addr);

The first three functions are for writing to registers. The first parameter is the
register address, and the second is the value to write. The register address must
have been obtained through the 110 address resolution and mapping mechanism
using the iio_space_port address space. The second three functions are for
reading registers.

Separate functions are provided for each data width, to ensure the correct
access instruction is used, and to allow the functions to be re-implemented as
macros or inline functions if necessary.

Write-Only Registers. Data written to write-only registers should be cached
in the state structure. For instance, if the hardware has a number of write-only
data registers accessed through a pointer array reg->dr[], then there would
typically be a matching array of equal size integers state->dr[] containing the
cached register values:

*reg->dr [seqno] = state->dr[seqno] = (iio_uint16_t)(val & Oxfff);

or if the module was port-mapped,

iio_port_set16(

reg->dr[seqno],

state->dr[seqno] = (iio_uint16_t)(val & Oxfff)
)5
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The cached values would normally be returned to the user in an iio_op_readback
operation.

The module driver need not worry about shared resource issues. Each module
has its own system-wide mutual-exclusion semaphore, which is taken by the 110
library before any of the module driver functions are called. Thus, assuming
these register shadows are initialised and maintained properly by the driver code,
they should remain consistent with the actual value in the hardware.

5.6 Integrating a Driver into 110

When new module hardware is to be used in a system, it is better to write
the driver into the 110 library than into the application. It is generally more
convenient to fit it into 110, and it means the driver is available to others who
may wish to use that hardware. The user can also benefit from any generic tools
that are based on 110.

This section outlines the procedure for patching in a new driver. In short, the
procedure is:

write the source code

put it in the iio/src/module subdirectory

alter the files iio/src/standard.c and iio/src/Makefile

in directory iio/src, type make

once the driver works, document it in iio/doc/manual/module.

It assumes a writable set of sources is available.

Source Code. Normally, the four required functions (identification, instal-
lation, initialisation, and operation), the definition of the two data structures
(II0O_MREG and IIO_MSTATE) and all the code and declarations required for the
module hardware are written into a single C file. This makes inclusion of the
driver into the 110 library straightforward. There is no need for a separate header
file, since there should be nothing that will need to include it. (Chip drivers, as
explained in Section B.1|, are an exception, and do have header files.)

The driver module must include the file internal.h, which contains declara-
tions of the internal 110 functions and data structures needed by the driver. A
copy of internal.h appears in Appendix [F.2.

There is no ‘driver skeleton’. It is often best to start with an existing driver for
a similar kind of module, edit out the unwanted code, and edit in the code for the
new hardware. It is usually a good idea to implement the optional iio_op_show
operation, or alternate debugging infrastructure first, to prove that all the register
accesses work: initialisation can be done next, and the remainder of the operations
last.

You should ensure that the driver implements the correct set of operation
codes for each of the channel types it provides. Table B.4 on page [3 is the master
reference, while Section .10 describes what the operation codes are supposed to
do for common channel types. As well, make sure that only the initialisation and
operation functions access hardware; that no pointer or process-specific data is
in the state structure; that the driver has no global or static variables (except
read-only look-up tables); and that it allocates no memory.

The examples given in this section show how to write a driver for a reasonably
straightforward 10 module, but less straightforward modules will be encountered.
These may entail the use of chip drivers, may require address space channels to
be implemented, or even new channel types or operations codes to be defined.
Section B covers these issues and more.
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Module Driver Directory. The model ident code (in the previous section’s
running example, xyzzy1234), should be used as the source filename. Module
driver source files should be placed in the sub-directory iio/src/module. Since
internal.h is in iio/src (refer to Figure [C. on page [24), it is included in the
module driver source using:

#include "../internal.h"

There is no need to include iio.h, as it is already included by internal.h.

Driver List and Makefile. The standard 110 driver list is in standard.c in
iio/src. This file consists only of an external declaration of each module driver’s
identification function, and an array of pointers to these functions. A pointer to
this array, iio_standard, is generally passed to iio_init(). Equivalent refer-
ences for the identification function of the new driver, iio_xxyzzy1234 (), should
be inserted.

The Makefile must also be altered. There is a list of drivers defined near the
top of the file (variable MODULENAMES). Simply add the model ident of the driver
to this list in its alphabetical position.

Making and Testing. The 110 Makefile takes care of architecture and oper-
ating system dependencies, segregating object modules and libraries. Usually it
is necessary only to type make in the main source directory iio/src.

The Makefile always builds the 110 library and the interactive test program
iio (Appendix B), which is useful for testing the new driver. First check to see
if the module appears on the minfo list. Then try a safe channel operation, like
a channel read.

All module drivers are compiled for the given architecture/operating system
combination (platform), even on platforms that don’t usually permit direct user
access to 10 modules, such as SunOS and Linux. Appendix [J described this
further. With care, much of a module driver can be tested on such platforms,
simply by temporarily removing the register accesses in the initialisation and
operation functions, and replacing them with printfs. This is sometimes conve-
nient if software development on the target platform (with the module hardware)
is inconvenient or unavailable.

Documentation. FEach module driver should have a documentation page pre-
pared using KTEX and incorporated into Appendix [A of this manual. Use one of
the existing pages as a guide. Macros are used to present a consistent format. If
the new module involved the addition of a new channel type or operation code,
then more complicated additions to this document are required.
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Section 6

More on Modules and Module
Drivers

The previous section attempted to give a step-by-step description of writing mod-
ule drivers, without pursuing too many side-issues. This section, by contrast,
deals with a range of issues related to 110 module drivers, but not necessarily
related to each other.

6.1 Chip Drivers

Many 10 modules are built from basic integrated circuits, such as as latches or
analogue-to-digital converter chips. For this run-of-the-mill hardware, the module
drivers only have to deal with a number of quite simple interfaces. Such modules
are generally sufficiently different from each other to justify different drivers for
each.

The situation is less clear where the module is built around one of the more
complicated peripheral chips, such as the MC68230 parallel interface/timer, the
Am9513 timer/counter, the LM628 servo controller, or one of a host of others.
Arguably these chips are modules in themselves, in that they provide 10 channels
to the computer, and more than one of the same kind may appear in a system.
However, they are also only really components and they must be part of a module:
they need extra things like address decoders, buffers, and so on to work in a
practical system.

These chips frequently do not exhibit a simple interface, and may have many
registers, or use a serial register file accessed through a single register address.
Accessing, configuring and operating them may require quite a lot of code. This
code can, of course, be written into the module driver, but this means that if
the chip is encountered in a different module the code must be duplicated, or
even re-written. Eventually this may lead to inconsistent behaviour—operations
performed on channels provided through the chip will have different results de-
pending on which module they happen to be on.

The purpose of chip drivers is to allow the code that supports particular
peripheral chips to be isolated from the module drivers, creating a suite of ‘sub-
drivers’. Modules that contain these chips can then call chip driver functions to
install, initialise and operate the chip, rather then doing it themselves. In this
way, chip operation is consistent, and improvements to the chip driver benefits
all client modules.

6.1.1 When to Write a Chip Driver

The programmer should consider writing a chip driver when:

e a module has a chip which requires more than several lines of code to
initialise or operate it, especially if the module has an array of these
chips

e the chip provides some or all of the channels of the module in its own
right

e the operation of a chip took a while to understand, and so is worth
encapsulating in a separate piece of code
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e a module driver is getting large and complicated, and needs to be
modularised. Doing so along the lines of the component chips usually
makes sense.

On the other hand, the programmer might decide not to implement a chip driver,
if, for instance:

e the chip is essentially a module-specific ASIC or gate-array, and there
is little chance that the chip will be encountered on any other module

e the chip is not used to provide 10 channels in its own right, but is part
of the module’s infrastructure. For instance, a common counter /timer
chip might be used to generate specific timing signals used only within
a module.

6.1.2 Chip Driver Interface

There is no chip driver interface standard: drivers may be free-form. But they
must still fit in with the general 110 module driver approach, because they have
to be used by module drivers. This imposes a general form on them, with the
differences being in the details. Thus, a chip driver will typically have register and
state structures, and installation, initialisation, and operation functions. These
functions can be close in form to the module driver ones, and accept similar
arguments, or they can be different.

It is essential, of course, that the chip drivers do not violate any of the re-
quirements of module drivers: they must be completely reentrant; they must
only access hardware through pointers in their register structures; they must
only store legitimate chip state in their state structures; they must not meddle
with any other hardware; and so on.

They should also conform with the general principles of 110 module drivers:
they should be as generic as possible; they should support as many features of
the hardware as practical; they should be as fast as possible, especially in those
parts invoked by operation functions; and so on.

Two chip drivers used within the current set of 110 module drivers exemplify
the possible differences chip driver interface design.

A Chip Driver Example. The GreenSpring 1P-WATCHDOG module contains
a DS1620 thermometer chip. Essentially, this chip is an analogue-to-digital con-
verter with a few extra features. It can be read to obtain the current temperature,
and temperature thresholds can be written into it so it can operate as a ther-
mostat. On the face of it, a chip driver would hardly be justified, except that
all communications with the chip are conducted through a peculiar two-wire bit-
serial interface, and the chip must be fed certain bit sequences so that it may
work properly.

The DS1620 chip driver thus only vaguely resembles an 110 module driver.
There are separate functions to initialise the chip, and to start temperature con-
versions, read the results, read or write the thresholds, and so on. These in turn
depend on primitive functions that send and receive words through the two-wire
interface to the chip. However, the chip driver cannot assume the chip is actually
built into an IP-WATCHDOG module, and so it cannot know how to toggle the
interface wires into the chip.

The problem in this case is solved by the calling module driver passing a
call-back function pointer to the chip driver functions. The chip driver calls this
function to toggle the two-wire chip interface wires. In other words, the logical
operation of the chip is dealt with by the chip driver, but the module-specific
part of the interface is still dealt with by the calling module driver.
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A Different Example. At the other end of the scale, the chip driver for the
LM628 servo-controller chip very strongly resembles an 110 module driver.

There is a register and a state structure, which serve exactly the same purposes
as they would in a module driver. There is an installation function, which accepts
module parameters, fills out its register structure, and registers channels with the
110 core, just like a standard installation function. On the other hand, it does not
allocate the register and state structures, as this is done by the calling module
on its behalf. While it parses the module parameter list, it only decodes the
parameters that pertain directly to itself: parameters that apply to the whole
module are decoded by the module driver beforehand, and the decoded values,
where relevant, are passed to the installation function.

There is an initialisation function and an operation function, again very sim-
ilar to the module driver counterparts. The operation function is passed the
standard 110 operation codes, II0_0PNODE, channel sequence numbers, and so on.

Like the DS1620, however, the chip interface is fairly complicated, this time
a byte-serial arrangement. Thus, this chip driver also has two layers, with com-
munication primitives at the bottom. Unlike the DS1620, however, the chip
presents conventional addressable registers, so there is no need for the commu-
nications primitives to use a call-back arrangement as described in the previous
example.

6.1.3 Chip Driver Code

Chip driver code resides in the iio/src/chip directory. Unlike module drivers,
chip drivers do have header files. The header files should define the register and
state structures, where required, as well as prototyping the chip driver functions.

If the chip is, for instance, a FZ3344, the header file would be called £z3344.h
and the chip driver proper would be £z3344.c. The register structure would be
called II0_FZ3344 MREG and the state structure II0_FZ3344 MSTATE. Functions
named iio_fz3344 whatever () and so on.

Module drivers that used the chip driver would thus include the chip driver
header file, after internal.h, like this:

#include "../internal.h"
#include "../chip/fz3344.h"

The register and state structures for the module incorporate one instance of the
chip register and state structures for each chip on the module. For instance, if a
module used four of these FZ3344 chips, the structures might look like:

struct IIO_MREG {
/* four FZ3344 chips */
struct II0_FZ3344_MREG regl[4];

/* a module register */
iio_uint16_t *csr;

};

struct IIO_MSTATE {
struct II0_FZ3344_MSTATE state[4];
};

Note that non chip-specific registers or state is simply included in the register
and state structures as normal, such as with csr.

When the chip driver functions are called, the module driver passes pointers
to the particular chip’s register and state structures. Chip drivers should not
allocate their own register and state structures.
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6.1.4 Integrating Chip Drivers into IT1O

Chip drivers are normally integrated into 110 at the same time as the module
drivers that use them. Integration is much simpler than for a module driver.
All that is required is that the name of the chip driver module be added to the
variable CHIPNAMES in iio/src/Makefile.

6.2 Generic Driver Code

Generic driver code refers to routines that are used by a number of drivers,
usually of the same general class, but which aren’t generic enough to be regarded
as part of the 110 library core. Two such driver classes have emerged so far:
IndustryPacks and ADAM serial-addressable units.

IndustryPacks feature an ID-PROM which encodes the identity of the mod-
ule, along with other information which may be useful to the driver, such as
factory calibration constants. There is a group of functions which decodes this
information which are called by module drivers for 1Ps: these are described in
Section 4.

Similarly, there is a group of functions for manipulating range codes and hex-
adecimal strings related to the ADAM serial-addressable units. This is discussed
in Section BTIM.

These class-specific generic modules are in the iio/src/module directory,
along with the module drivers they support. However, their associated declara-
tions are in internal.h.

6.3 Proxy Drivers

In a realistic system, some of the 10 hardware may not be under the control of
110. The reasons for this may include:

e the hardware is of a type that falls outside the general ambit of 110
e the hardware required the use of a driver only available as a binary
library, and so cannot be integrated.

In these cases a compromise solution may be available through the use of a prozy
driver. Proxy drivers represent the module to 110, but do little if anything to the
hardware, which is handled outside of the 110 system. The most useful thing 110
can offer in these cases is module installation through the 110 configuration file,
and address resolution.

A proxy driver is listed in the configuration file like any other. Instead of
installing and initialising the hardware, however, it will call some other function
or execute some other routine to actually install or initialise the hardware, or
to start some external software system, such as installing a kernel module. The
parameters for this call (and the name of the call itself) should be derived from
the module parameters in the configuration file.

The call may also pass the virtual or processor-physical addresses of module
registers, obtained through the 110 address resolution mechanism (Section p.3.4).
This is particularly useful for IndustryPacks where register addresses depend
on the slot they are in. In the case of 1Ps and other self-identifying modules,
the proxy driver initialisation function can also check the module’s identity. The
proxy driver will generally not introduce any channels, so it will have no operation
function.

The module driver for the 1P-SERIAL (page [[00) is of this type. In this case,
the serial ports it provides are outside the ambit of 110 and are better dealt
with by the operating system. The installation function decodes the module
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arguments, and resolves to processor-physical addresses the four registers of the
module. The initialisation function checks the 1P’s identity, then executes an
external program (whose name is a module parameter) to make the operating
system use the module for normal serial ports. The external program, probably
a script, receives the register addresses as arguments.

This arrangement is obviously operating system specific, but at least the
system-specific code is not written into the 110 proxy module driver. This driver
can be compiled and used on different systems: however each system will have a
different script, or it may not even have a means of installing serial port dynam-
ically.

6.4 Endianism and Module Registers

The ugly term endianism refers to the ordering of the bytes of integers stored in
memory. So-called ‘big-endian’ processors store the big end (that is, the highest
order bytes) in a word first, or at lower memory addresses. This is sometimes
referred to as Motorola ordering. ‘Little-endian’ processors store the bytes in the
reverse order, with the little-end first, or at lower memory addresses. This is
sometimes known as Intel ordering.

Many portable device drivers contain ugly solutions to the problem of en-
dianism, usually involving ¢ macros which re-arrange bytes in a word as they
are read or written. Alternatively, register bit-patterns are defined in big- and
little-endian forms, which are selected by pre-processor symbols. This is in fact
unnecessary, and none of the current 110 module drivers contain macros of this
sort, or indeed any references to the issue at all, yet they work correctly on both
big- and little-endian processors.

Endianism is only really an issue where the same data is accessed as sequences
of different sized elements. For instance, a 32-bit register can usually be accessed
as a single 32-bit long word, as two 16-bit words, or as four 8-bit bytes at adjacent
addresses. The solution to the problem is simply to not access the register as
separate bytes or words. Make all accesses to a given register the same size (and
the same size as the register), and almost all of the endianism ‘problem’ vanishes.

This approach is enforced to a degree by the 110 module driver register struc-
ture (Section p.3.5). Each register has its own pointer, and the pointer has a
particular type, chosen to match the size of the register. An 8-bit (byte) reg-
ister would have a iio_uint8_t pointer, a 16-bit (word) register would have a
iio_uint16_t pointer, or a 32-bit (long word) register would have a iio_uint32_t
pointer.

Each of the register addresses (and there may be a large number of them) must
be resolved separately, using iio_resolve() or a variant. Any endian effects in
address resolution are dealt with by this function, or by the address space module
drivers that it invokes. This is the reason the size of the register is needed when
its address is resolved.

Before resolution, however, the driver must know the local physical addresses
of each of the registers. The hardware manual will have these, but sometimes
they are misleading because different register addresses are given for different
processors. This is not so much because of endian effects, but because of differ-
ent conventions about whether single-byte registers should be connected to the
upper or lower halves of a 16-bit data bus. This is a slightly different issue from
endianism, but they are frequently blurred together.

Usually a little investigation (and sometimes even experiment) is required to
tell which convention the module manufacturer really uses, and so which values
to use as local physical addresses in 110 module drivers.
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6.5 ISA Bus Errors

The 1SA bus lacks a bus cycle acknowledge signal, and so there is no feedback
to the processor as to whether a read or write was completed or not. This is
quite different to the VMEbus, where accessing an address where no hardware
responds causes a bus error. The bus probing function iio_probe() accesses
module addresses and uses the bus errors to determine whether there is hardware
present or not.

This function does not work in 1SA systems (it always succeeds), which argues
for it to be omitted from ISA module drivers. This should not be done, however,
as a workable probing technique may one day be found and incorporated into
iio_probe(). In the interim, it has to be accepted that 110 is less able to check
the correctness of module addresses given in the configuration file.

6.6 Module Drivers for IndustryPacks

Module drivers for IndustryPacks differ only slightly from the drivers for other
kinds of modules. The the first two differences were mentioned in Sections b3
and B4.

Module Mapping. There is no need to map the module by calling iiomap(),
since the 1P carrier module drive will have already done so. This is a prag-
matic convention made because it may reduce the number of virtual-to-physical
mappings required for the system: many operating systems limit the number of
mappings a program may create.

A similar convention will probably apply to other 10 carrier/mezzanine prod-
ucts, should they come to be supported.

There is no harm done if an 1P module driver does map itself with iio_map(),
as 110 will ignore the duplicate mapping request. The driver must still resolve
the addresses of its individual registers, using iio_resolve().

Module Probing. Instead of using iio_probe() to test if the module (or a
module) is installed at the given address, use iio_ipinfo_ident () (Section p.4).
This probes for the 1P’s ID-PROM, and if found, checks the manufacturer and
product identity codes against those the driver expects (a driver can, of course,
support a number of similar 1Ps at once).

Register Physical Addresses. Section (.4 mentioned the general confusion
about processor endianism. Evidence of this is the GreenSpring 1P manuals,
which give different register addresses depending on what bus the carrier module
plugs into.

In 110 this does not matter, as the address resolution mechanism, and more
specifically the module driver for the carrier module, should deal with the ad-
dress translations through the module. In general, you should use the addresses
given for VMEbus carriers, no matter what kind of 1P carrier bus you are us-
ing. You should of course ignore references to the the carrier base address and
slot offset: these are all dealt with automatically. The numbers that should go
into iio_resolve() are simply the address offsets from the base of the register
address space.

Module Information. The ID-PROM can contain information other than just
the manufacturer and module code. Often factory calibration data for individual
IPs is stored in the ID-PROM, which is useful to the driver. This information can
be accessed by resolving individual elements in the ID-PROM (just like registers,
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except using iio_space_id address space code). It is messy to access because
the size of the inter-byte gaps in the ID-PROM vary with the carrier bus type.

A simpler way is to use the the iio_ipinfo_read() function:
IIO_STATUS iio_ipinfo_read(IIO slot, IIO_IPINFO *ipinfo);

This probes the 1P at the given channel, and returns the contents of the ID-PROM
into a user-supplied II0_IPINFO structure. II0_IPINFO is defined in internal.h
as:

struct II0O_IPINFO {

iio_uint32_t mid; /* manufacturer code */
iio_uint32_t pid; /* product code */
iio_uint32_t rev; /* module revision number */
iio_uint32_t did; /* driver ID code */
iio_uint32_t flg; /* flags word */

/* the original data from the IDPROM */
iio_uint16_t prom[0x20];
};

The structure field prom contains the original data from the ID-PROM, in an easily
addressable format. Old-style 8-bit ID-PROMs will only use the bottom byte in
each word, with a zero top byte. The locations of module-specific data in this
array should be found in the module manual.

Some of the standard data from prom[] is extracted into the other fields. mid
is the manufacturer code and pid is the product code: these are the two quantities
the driver should use to check the identity of an 1p. (If iio_ipinfo_read() is
called and these two checked, there is no need to also use iio_ipinfo_ident()).
rev is the module revision number, which might be useful if 1P design changes
affect drivers. did is the driver identity code and flg is a flags word: the purpose
of these is unclear.

There are some other fields in IIO_IPINFO that are not shown, and which may
be removed later. Only use the fields shown above.

6.7 Module Drivers for Address Spaces

Address space channels were introduced in Section b-3.4, in the context of address
mapping and resolution. Address space channels represent addressing hardware,
such as a VMEbus or an IP slot. These channels are provided by modules just
like ordinary channels, although the channel operations the module driver must
implement are different: the address space operation codes are shown in Table B.3
on page gJ.

The module driver in these cases is structured exactly like other module
drivers, and the same four basic functions should be provided. Such modules
can of course provide other ordinary 10 channels as well, if the module hard-
ware has them, but this is unusual. In general, address space module drivers are
simpler than their counterparts.

Address space modules only have to deal with address resolution, not address
mapping (although they are invoked as part of the mapping process as well).
They do not need to deal with the virtual-to-physical map, as this is managed by
the 110 core, in the form of iiomap() and iio_resolve(). What they do have
to do is deal with that part of address resolution that thus done be they module
hardware they represent.
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6.7.1 Invoking Address Space Operations

Operations on address space channels can be invoked using iio_operate_addr ()
(Section f-4:d). The channel descriptor should refer to an open address space
device. The operation code should be one of the address space operation codes
of Table p.9 arithmetically ORed with the register width code (type II0_SIZE,
Table B.3 on page fI7). This is different from other 110 operation codes, which
are used by themselves, and comes about because operations can have only one
argument, whereas two are required for this purpose. The register width is es-
sentially a qualifier for the operation code, which specified the address sub-space.

Note that iio_operate_addr () accepts a pointer to the address to be resolved,
not the address itself. This is because the result of the operation is overwritten
on the input data (this is less of a problem than it might seem).

The input address is expressed in the space of the address space channel and
the address sub-space given by the operation code. The output is an address
resolved to a processor physical address. A processor physical address is the
address that would be output from the memory management unit (MMU). Is is
the physical address that is as close to the processor as possible: a1 in Figure p.1]
on page B8. Such addresses are sometimes known as local addresses, because they
are addresses on the CPU module’s local or internal bus.

Now, each address space module driver can only know how to resolve an
address as far as the address space it is plugged into. To resolve the address
to a processor-physical address, it must itself invoke iio_operate_addr () on the
channel it connects to. Thus, a user resolving an address will transparently invoke
a chain of recursive module driver calls, all the way back to the CPU module. Each
module will perform its little part of the resolution process, usually adding an
offset related to its configured base address.

The final part of address resolution, from processor-physical to logical, is
handled by the function iio_resolve(), which is the way all address resolu-
tions should be invoked, except by address space module drivers. Function
iio_resolve() calls iio_operate_addr () using the supplied address space chan-
nel, operation code, register width and physical address. The resulting processor-
physical address is then looked up in its table of physical-to-logical maps, to
obtain the corresponding logical address that it returns to its caller.

Function iio map() also uses iio_operate_addr() to invoke address space
operations, but instead uses the resulting processor-physical address as the ar-
gument for an operating system call to establish a logical-to-physical map, if one
is not in the list. The new mapping is added to the list, so mappings are not
duplicated, and so iio_resolve() does not need to query the operating system.

6.7.2 Installation Function

The installation function for an address space module driver is of the same form
as one for an ordinary module. It must process the module parameters from
the configuration file, allocate the register and state structures, and register the
channels it provides to 110 using iio_chnode(). These will of course be address
space channels.

There will always be a register structure, because the channel descriptor rep-
resenting the address space the module is plugged into is needed by the operation
function, and the correct place to store it is the register structure. Usually other
module parameters (like the base address) are also needed and go in the register
structure.

The installation function should not use iio_map() to map the address spaces
they provide, except for IndustryPack modules and similar products, where the
address spaces are quite small.
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6.7.3 Initialisation Function

The initialisation function is frequently empty, unless the module has control
registers that can be probed or self-identifying features of the module that can
be checked. The addresses in the address spaces should not be probed, because
it is quite legal to have an address space module plugged in but with nothing
plugged into it. If an address space module is configured to the wrong address
(either on the module or in the configuration file) it should become apparent
when modules plugged into it are initialised.

6.7.4 Operation Function

As described, the address space operations must add the address space module
base address, or whatever other address transformation the module hardware per-
forms, to the argument address, and then invoke the same operation on the mod-
ule it is plugged into. The argument address should be obtained from the caller
using iio_data_get_addr (), and the result returned using iio_data_set_addr ()
(the other data access functions will mangle the address data by applying limits
or channel scale factors).

The core of the operation function will resemble this example, which is for a
vMEDbus IndustryPack carrier:

for (slot = first; slot < first + number; ++slot) {

iio_uint32_t offs = (iio_uint32_t)iio_data_get_addr (opnode, slot);
II0_SIZE size = (IIO_SIZE) (op & IIO_SIZE_MASK);
void *result;

switch (op & IIO_SPACE_MASK) {

case iio_space_io:
if (offs > 0x7f)
return iio_error("IPI0 address out of range");
result = (void *) (reg->al6addr + 0x100 * slot + 0x00 + offs);
iio_eret(
iio_operate_addr(reg->bus, iio_space_meml6|size, &result)
)s
iio_eret( iio_data_set_addr(opnode, slot, result) );
break;

case iio_space_id:
if (offs > 0x7f)
return iio_error("IPID address out of range");
result = (void *)(reg->al6addr + 0x100 * slot + 0x80 + offs);
ijo_eret(
iio_operate_addr(reg->bus, iio_space_meml6|size, &result)
)5
iio_eret( iio_data_set_addr(opnode, slot, result) );
break;

case iio_space_mem:

default:
return iio_error("Space code not supported by channel");

}

return iio_status_ok;

Recall that the address space operation codes are qualified by (OR’ed with) the
register width code. After using iio_data_get_addr() to obtain the address
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argument, the size is extracted using the macro II0_SIZE MASK, since it will be
needed below. Similarly, the operation code switch-statement selector needs to
exclude the size code.

Each of the arms of the switch should check that the argument address is
within the allowable size of the address space. Then the address is partially
resolved, by adding the module’s base address direct from the configuration file
(in this example, stored by the installation function in reg->al6addr) and a
further offset depending on the slot number (which is the same as the local
channel sequence number) and the particular address space. The result is then
resolved on the vMEbus A16 space (note how the size code is combined with the
operation code), and the result from that (overwritten into result) is returned
to the caller using iio_data_set_addr().

6.8 Module Drivers for CPU Modules

Module drivers for ¢cPU modules usually provide just one address space channel
for the bus interface they provide: vme.0 in the case of VMEbus module, isa.0
(or perhaps one day pci.0) in the case of PCI ISA systems, and so on.

CPU modules do not usually plug into other address space devices. Module
drivers for CPU modules are thus even simpler than other address space module
drivers, since they do not need to further resolve the address on the channel they
plug into. (They could, for the sake of symmetry, resolve the address using the
null.O channel, but this would not really achieve anything).

On VMEbus processors, there is usually a bus interface chip that maps parts
of the three main VMEbus address spaces onto the processor physical space. The
address space operations implemented by the operation function in this case
must follow the operation of this is chip. Usually such chips are initialised by the
operating system, which would subsequently expect it to be left alone. The 110
module driver must thus only read this chip, not write to it, to avoid conflict with
the operating systems. (The current drivers in fact only implement the built-in
processor-to-vMEbus mappings, and do not even read the chip).

The same goes for any similar chips in the CPU module. It should be noted that
110, as with most device driver arrangements, will be undermined by operating
systems that change address maps one the fly: this includes the logical-to-physical
maps implemented by the MMU, at least the ones established by 110.

On 18A systems, there is generally no address translation between the 1SA bus
and the local bus—they are logically the same thing. The module driver for 1SA
systems, isapc, is thus very simple indeed. The same applies to the PC-104 bus,
which is logically equivalent to the ISA bus.

6.9 Interrupts

110 does not currently support interrupts. This is a considerable restriction,
because it means that modules that depend on rapid service by the processor after
external events cannot be used. It also means that channels that are inherently
time-based, such as timers, or inherently asynchronous, like interrupters, cannot
really be implemented.

There are several reasons for the restriction. Firstly, the best way of specifying
the mapping between the hardware interrupt, interrupt level, vector number and
so on is not clear, although something not unlike the address mapping resolution
and resolution mechanism is envisaged.

Secondly, how this would translate into real, portable module driver code is
also not clear. On vxWorks, for instance, functions can be directly connected to
interrupts, so little is required. On UNIX the interrupt would have to be handled
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by a kernel module, and translated into a signal to be delivered to an 110 process.
If there are several processes using 110, which one should it choose? The first
110 process to run in these systems is the one that does the module hardware
initialisation, so it is the obvious choice, but what if it this initial process exits?

Thus the handling of interrupts within 110 raises some thorny issues which
will require some further consideration.

6.10 Adam Module Channels

The ADAM serial-addressable modules are quite different from the bus-addressable
modules normally dealt with by 110 module drivers. ADAM units connect to an
RS-485 serial bus, and the computer reads and writes to the channels on the
units be exchanging short ASCIT messages with the units. Despite the differences,
the ADAM units integrated quite neatly into the 110 system. Other commercial
serial-addressable systems should fit in in a similar way.

6.10.1 Adam Module Interfaces

The Rs-485 twisted-pair serial bus can be driven by the computer directly (al-
though few have Rs-485 serial devices built in), or through an ADAM interface
unit, such as the ADAM 4520 (Appendix [A-3), which interfaces the bus to a stan-
dard Rs-232¢ serial port. Each RS-485 network can connect to a string of 256
ADAM units, each of which must be programmed to respond to a unique address
between 0 to 255. The computer sends request messages with this address to the
network, and the selected unit sends its result back.

Each serial network has an 110 module driver, which provides 256 adam chan-
nels, one for each possible address. This is a bit like the ip channels provided by 1P
carrier modules. The adam channels have a single operation, iio_adam message,
which exchanges a message with the unit they represent.

The iio_adam message operation involves prepending the network address
and appending a checksum, and writing the result to the serial network. The
interface drivers do not access the serial device directly, but do so through the
operating system, using the 110 serial calls to open, read, write and configure the
port (see Section [(.6.8). They then read the response message from the unit, test
the checksum, and return the message to the caller.

6.10.2 Adam Module Drivers

Each ADAM unit connected to the network, except for the repeater units, is also
a module in the 110 sense, and each provides a number of real 10 channels to
the channel pool. For instance, the ADAM 4017 provides eight adc16 channels,
which are indistinguishable from adc16 channels provided by a bus-addressable
module, except they take slightly longer to access.

The modules are installed through the configuration file in the normal manner,
and must follow the installation of the module driver for the serial interface. The
address configuration of the ADAM unit is implicit in the adam address channel,
which is a mandatory module parameter.

Message Format. The message formats are defined in the ADAM documenta-
tion. They vary somewhat across from unit to unit, but all consist of a leader
character, a two-digit hexadecimal network address, command codes and/or data,
and an optional two-digit hexadecimal checksum. The data can be in a number
of Ascil formats, but hexadecimal is preferred.

Function iio_operate_addr() is used by the module driver to invoke the
operation, because the user data is the address of a pointer to a message buffer.
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The module provides the buffer, and writes in the body of the message, in the
correct positions. The interface module driver adds the address and checksum
parts of the message, and delivers it as described. The reply message is received
and overwritten onto the same buffer, which the caller must decode.

Installation Function. The installation function for an ADAM module is much
the same as those for other modules. The address channel is stored in the register
structure, because it must be used later to communicate with the unit. Often a
single module driver will support several similar units, and so the unit sub-type
must also be stored in the register file. ADAM units appear to use a common input
range code sequence across the whole product range, which is shown in Table Al
on page BY. An array in the generic ADAM module driver code contains scale factor
and unit information, which is used for pre-setting the channel properties.

Initialisation Function. ADAM units are self-initialising. They are also self-
identifying, and the initialisation function should check the unit’s identity against
that in the configuration file. This is done by sending a $AAM message to the unit,
which should return its model number, which can be compared against what it
should be.

This is consistent with the general 110 approach of using the configuration
file as the primary source of configuration information, confirming it using the
self-identifying features of modules, where these exist.

Operation Function. The operation function simply assembles the appropri-
ate message for the operation code, and decodes the result. There are several
helper functions in the generic ADAM module code used to simplify the hexadec-
imal conversions required.

6.11 Adding New Channels and Operations

The current set of channel types and operation codes follows on from the set of
modules currently supported by 110, and is by no means closed. New modules
will eventually need new channel types, and operation codes to go with them,
and these can be added quite easily.

On the other hand, endless proliferation must be avoided, to prevent ‘same
but different’ channel types or operation codes appearing. The 110 channel types
are based around the kinds of 10 hardware that is available, not the things it can
be connected to. For instance, there is no point adding a new channel type temp
for temperature sensors, since the sensor would almost certainly connect to the
computer through an analogue-to-digital converter, so the existing adc type is
sufficient.

If a new channel type is considered, a generic ‘model’ for the channel type
should be developed, describing what the channel should do for each operation,
extant or new. This should be generalised as much as possible, not based on the
particular hardware module that has is being interfaced, so that other hardware
offering the new channel type will also fit into the scheme.

6.11.1 Adding New Channel Types

The channel types are defined by the enumerative II0_CHTYPE, which is defined in
internal.h. The new channel can be added anywhere, but the dummy element
IIO_NCHTYPES (the number of channel types) should be last.

Follow the same naming scheme: if the name of the new channel is zog then
the new entry is iio_chtype_zog. The name of the new channel must be added
to iio_chtype_string[], in the matching position of this string array. The name
is used for operation logging and channel list displays.
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6.11.2 Adding New Operation Codes

Adding new operation codes is similar to adding channel types. The codes are
defined in the II0_0P enumerative in iio.h.

The matching operation name list is iio_opinfo[] in opinfo.c. This is
a structure array, with fields for the operation name, a symbol for the data
direction, and the argument type (inward, outward or bi-directional). These
codes should be self-explanatory.

After adding either new channel types or operation codes, the 110 library must
be re-compiled. If the library has been re-compiled, most 110 applications will
also need to be re-compiled.

6.12 Errors

110 uses a simple error-return code system, similar to the conventions of many
other libraries and operating systems. There are three return statuses, already
described in Table .3 on page .3, indicating either successful completion, an
error, or a fatal error.

Function Calls. Within the library, the return status of all function calls are
checked. If a non-zero status is detected, the calling function immediately returns
this status to its caller, and so on, collapsing the call stack and eventually return-
ing the response to the application program, which should also check and act on
the status. The only difference between errors and fatal errors is that fatal errors
print messages during the stack collapse, indicating the code filenames and line
numbers. This is not quite as good as the information a debugger might furnish,
but most of the time the source of the error can be traced.

This useful feature is provided by the iio_eret() macro. This encloses all
function calls, and tests and act upon the return status, and at the same time
avoids cluttering the code. It is defined, in internal.h, as:

#define iio_eret(S) \
switch ((8)) { \
case iio_status_ok: \
break; \
case iio_status_error: \
return iio_status_error; \
case iio_status_fatal: \

iio_log( \
"II0: called from: file %s, line %d\n", \
__FILE__, __LINE__); \

return iio_status_fatal; \

Note that the macro has no side-effects (apart from a potential function return).
Function iio_log() is a printf ()-like function that logs messages to the system
logging stream, or stderr, as appropriate. There is a variant of the macro,
iio_fret(), which ignores errors, but still returns in the case of fatal errors.
This macro is used in cases where an error can be handled by the caller, and
should not cause a stack collapse. (The C pre-processor replaces the special
macros __FILE__ and __LINE__ with the filename and line number of the code file
being compiled where the macro is expanded).

The only situations where these macros are not used, and the error handling
code written out, is where resources such as held mutexes must be released first.
Failure to do this may lead to a system lock-up.
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Originating Errors. Where errors or fatal errors occur, either of the macros
iio_error() or iio_fatal () should be used, in conjunction with a return state-
ment. These macros are defined as:

#define iio_error(S) iio_return_error((S), __FILE__, __LINE__)
#define iio_fatal(S) iio_return_fatal((S) FILE LINE__)

3 - _— -

The macros accept a static string, which should indicate the actual error. They
are used like this:

if (addr > Oxffff)
return iio_error("Address out of range");

This approach has been found to be simpler than using an ‘error number’, since
there is no need to maintain a separate array of number-to-message-strings. The
arrangement integrates into the UNIX error number scheme, however. If the error
string is NULL, the UNIX error number errno is used to select the system error
string, instead of the user one. This method should be employed when checking
the status of operating system calls:

if (! (file = fopen("fred", "r")))
return iio_error (NULL);

The error string (or a pointer to it), concatenated with the file and line number
strings, is stored by the functions iio_return_error() and iio_return fatal().
These functions always return error and fatal error status respectively. The mes-
sage is, where practical, stored as per-thread data.
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Inside the 11O Library

This section is a guide to the internal workings of the 110 core library, intended
for those who need to alter, add to or port it. It is not essential reading for
someone wanting to add a new module driver: Sections [ and f cover that.

Instead, the aim is to provide sufficient context for a programmer to effectively
read the sources, and as such is a commentary to the 110 sources. Descriptions of
most of the important data structures and functions are given. If the sources are
not handy, the 110 header files are a reasonable substitute. They can be found in
Appendix [H.

7.1 General Practices

The overriding general practice in the 110 library is to pre-allocate, pre-compute,
and pre-index. This follows normal real-time design practice, where resources are
obtained ahead of time, so that the delay incurred does not affect critical real-
time activities. It performs the maximum amount of work in system initialisation
and in opening channels, so that the minimum need be done by the operation
functions.

110 also uses a generally object-oriented approach, in so far as this is practical
using C. The data structures are to the fore: each structure has an associated
set of functions (methods) that do things with or to it. On the other hand, data
encapsulation is not carried through to the extent it might be if a real object-
oriented language was being used. Functions ‘belonging’ to one type routinely
access structure members of other types, at least for simple purposes. This avoids
a plethora of data access functions which, in C at least, are very clumsy.

Another programming idiom heavily used in 110 is the registration and call-
back style, where function pointers are passed as function parameters, stored,
and are subsequently called back. This technique is used, for instance, in the
module driver interface (Section ff), to reduce the number of public symbols that
the driver must provide: the rest of the entry points are registered at run-time.

7.1.1 Processes and Systems

The biggest difference between the real-time operating systems 110 runs on is
their approach to addressing contexts. The smaller real-time kernels, such as
vxWorks or RTEMS, have a single, system-wide addressing context. All threads
of control, known as tasks, share the same addressing space, so all global, static
and dynamic variables are implicitly shared (only automatic variables are not).
These systems are referred to as shared-memory systems.

UNIX-style systems, on the other hand, provide one addressing context per
thread of control, which is known as a process. These systems are sometimes
known as protected memory systems. Two processes running the same program
do not share variables, unless explicit steps are taken to do so (using a shared
memory block). Hardware registers must also be explicitly mapped into the pro-
cess address space. Many modern UNIX systems, such as Solaris and LynxOS,
extend the process model to permit multiple threads of control within each pro-
cess.

110 must run in all of these situations. On shared-memory systems, there
is only one copy of each data structure, and hardware access is generally easy,

The 110 Library Release 11 Page 65



SECTION 7. INSIDE THE IIO LIBRARY

so there are few problems on these platforms. All that is required is standard
mutual exclusion locks on non read-only shared structures.

On protected memory systems, each 110-using process builds its own set of
data structures. Because these are derived entirely from information in the con-
figuration file, they will be identical. A few data structures, most importantly
the module driver state structures, are placed in a shared memory block. Steps
are taken to ensure that all 110 processes cooperating in this way use the same
version of the configuration file and 110 library code.

It could be argued that all 110 variables could be shared in this way, but this
is not practical. While the data in shared memory blocks is the same for all
processes, the address of the block in each process is not necessarily the same.
The ‘block’ may also be a number of discontiguous blocks. Thus, pointers cannot
be shared, which eliminates many useful data structure types, such as linked lists.

7.1.2 Dynamic Allocation

The 110 library is generally dynamic in its approach. All important data struc-
tures are allocated off the process or system heap, or from a shared memory
block. That said, it is not a continuous user of malloc() and free(), because
it constructs all its data structures during initialisation, which are thereafter left
unaltered. String data is almost always duplicated into heap memory, and linked
to the relevant data structure.

110 generally does not de-allocate its data structures. On protected memory
systems, this does not matter: when the 110-using process exits, the system
reclaims the memory. On shared-memory systems, such as vxWorks or RTEMS,
the lifetime of the application is generally the lifetime of the whole system, so it
does not matter either.

7.1.3 Data Structure Conventions

Almost all 110 data structures form part of homogeneous singly-linked lists. The
first element in these structures is always the next pointer, which is NULL for
the last element in the list. The lists are always ordered, by using a common
search-and-insert function iio_sll_insert() to expand the list. This function
accepts a pointer to the list head pointer, a pointer to the new element, and a
criteria function, which must return a value similar to strecmp().

Most data structures have a magic number, generally the second element.
This is of an enumerative type IT0_MAGIC, whose values are formed from four
ASCII bytes, with unique values for each data structure type. Functions that
allocate data structures set this value. Functions that accept pointers to these
structures usually test the magic number, and return a fatal error if it is wrong.
The values are formed from ASCII characters so that the data structure type can
be identified in a memory dump, a feature that has happily not been required to
date.

7.1.4 Coding

The 110 library is coded in C. Symbol-space pollution is avoided by prepending
iio_ to all external and static symbols (functions, variables, function-like macros
and enumerative values), which are all in lower case and use underscores between
words. Similarly, II0_is prepended to all types, tags and preprocessor constants,
which are in capitals.

In general, symbols follow a left-to-right precedence rule. The second word
is usually the name of the source module and/or the data structure to which
the symbol belongs or is associated with, the third is the operation, and follow-
ing words are usually qualifiers. Thus, iio_init() will be found in init.c in
iio/src. There are a few exceptions, however, in the interests of keeping the
length of commonly-used functions reasonable.
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7.1.5 Portability

Every effort has been made to make the 110 library and its module and chip
drivers portable across computers, compilers and operating systems. The library
has been proven on big-and little endian processors, on UNIX systems and on
small real-time kernels.

Portability across operating systems is achieved by routing all calls to oper-
ating system and C library functions through interface functions. There is one
set of such functions for each operating system, limiting the extent of system
specificity to a reasonably small module. Frequent use of preprocessor directives
is avoided. Section [@ discusses this in detail.

Portability across processor types is achieved by fairly strict ANSI C usage.
Processor endianism, in the few cases where it matters, is dealt with by the ad-
dress resolution mechanism (Sections p.3.4 and p.4)). There may be some implicit
assumptions that integers are not less than 32 bits wide.

110 has not been seriously tested on compilers other than the GNU ¢ compiler,
gcc. Few gce-specific features are used, they are not critical, and are enclosed
in gcc-exclusive preprocessor directives. In any case, on many systems nowadays
gcc is the approved, or sometimes only, ANSI C compiler.

7.2 Operational Phases

There are two distinct operational phases of the 110 library, and thus 110-using
applications: initialisation, and everything else.

Initialisation is performed by the function iio_init (), and is by far the most
complicated thing done be the 110 library. The process is driven completely by
the 110 configuration file, and not at all by the application program. In general
terms, it involves:

collating module driver information structures

obtaining a system-wide exclusion lock to cover the installation phase
creating or attaching to shared memory structures

opening and parsing the configuration file

calling installation functions of the modules

collating lists of available channels

calling initialisation functions of the modules

releasing the exclusion lock.

Once initialisation is complete, control returns to the application program.
Activity in the 110 library is then driven by the program, which will open channels
by calling iio_open(), and use them with iio_operate() or a variant.

Opening channels can of course be interspersed with operations on already
open channels. However, an application will typically open all the channels it
requires during its initialisation phase, and operate on them during its running
phase. Thus, 110 arguably has three phases of operation, with the second two,
channel opening and channel operations, rather less distinct.

The following sections will work through these two or three phases in more
detail, with particular reference to the data structures that are constructed. Fig-
ure [-1] attempts to show all these data structures and their overall relationships.

7.3 Data Structures and the Initialisation Phase

The initialisation phase is commenced by the user calling iio_init (). This only
calls iio_osinit (), which must perform operating system specific initialisation,
and then call iio_init_iio(), which does the majority of library initialisation.
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The details of operating system specific initialisation are dealt with in Sec-
tion [[X8: these vary somewhat, but encompass establishing a system-wide exclu-
sion lock, attaching or creating the shared memory block, and determining if this
is an subsequent or initial 110 process (i.e., on protected memory systems, if there
is another 110-using process in the system or not).

7.3.1 State block, II0_STATE

Function iio_init_iio() first creates one state block, iio_state, one of the few
global variables. ‘State block’ is something of a misnomer, because it has noth-
ing to do with the module state structures (Section p.3.4). This block contains
the head pointers for all the major data structure linked lists, iio_state->map
(the logical/physical map), iio_state->minfo (the module information list),
iio_state->module (the installed module list), iio_state->chnode (the chan-
nel neode list), and iio_state->open (the open channel list). It also contains
two process-wide mutexes iio_state->mutex and iio_state->omutex, which are
used to protect the linked lists (iio_state->omutex is for the open channel list
iio_state->open, and iio_state->mutex is for the rest).

Function iio_state_init () creates and initialises the state block. It returns
a fatal error if called more than once per process.

7.3.2 Module Information list, II0_MINFO

The module information list is a linked list of II0_MINFO structures, one for each
model of module the library has a driver for, and headed by iio_state->minfo.
This list is built by iiominfo_call().

This function accepts the pointer to the driver array passed to iio_init (),
frequently the array iio_standard (Sections .9 and F.§). This NULL-terminated
array contains pointers to the identification functions of each each module driver
(Section p.7). iiominfo_call() calls these functions; in turn they call back
iiominfo(), which inserts new IIO_MINFO structures into the module infor-
mation list using the information they pass. Drivers which support a number
of models call iio.minfo() more than once, and so have more than one one
II0_MINFO block. Once the module information list is built, the driver array is
no longer required.

The IIO_MINFO structures contain the model ident code, the manufacturer
and module number, the RCS revision number of the module driver, and pointers
to the installation and initialisation functions of the module driver. The module
information list can be viewed from the 110 interactive shell (Appendix B)) using
the minfo command.

7.3.3 Configuration File Parsing

The configuration file is then opened (if it was not previously) and parsed using
iiotfile() or a variant. ‘tfile’ stands for ‘token file’. The parser accepts an
open file pointer (type II0_FILE), a filename (which is opens and parses), or a
string (which it parses directly).

Each line of the file (excluding comments introduced by ‘#’, but including
continuation lines introduced by ‘\’) is split into white-space tokens. Quoted
strings ‘"..."’, are a single token, although the quotes are removed. Pointers to
the zero-terminated token strings are assembled into an argument array argv[].
The first token in the line is pointed to by argv[1]. argv[0] points to a special
token containing the filename of the file being parsed, and the current line number,
which can be used for generating error messages.

Once each line is tokenised in this manner, the parser calls back an ‘execution
function’ provided by the caller, which actually interprets the tokenised argument
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array. This decouples the parser from the rest of the library, so it could be used
to read other files of similar syntax.

Usually the execution functions, or the functions they call, use the iio_arg()
function and its variants, described in Section b-3-3. These functions blank out
arguments that they have interpreted, so that the argument array can be par-
tially interpreted in different parts of the library. The parser’s buffer space is
overwritten for each new line, so arguments that need to be preserved should be
duplicated.

iio_init () invokes iio_tfile() with iio_config exec() as the execution
function. This function tests the first token, and calls iio.module() in the case
of a module directive (Section B.J), iio_channel() in the case of channel (Sec-
tion B-4), or iio_alias() in the case of alias (Section B.J).

7.3.4 Installed Module list, II0 MODULE

Function iio_module() adds a new module to the installed module list, which
is a linked list of TIO_MODULE structures headed by iio_state->module. It is
invoked in response to a configuration file module directive, and is passed the
argv[] array built by the parser.

The model ident of the module to be installed should be in the second argu-
ment (argv[2]). The module information list iio_state->minfo is searched for
a module of this name, and if found, a new II0_MODULE structure is allocated.
The existing installed module list is searched to find out how many modules of
this model are already installed, so that the module sequence number can be
assigned. All this is done by iio_module_create().

The II0_MODULE structure contains a pointer to the module information struc-
ture, pointers to the register and state structures of the driver, the module se-
quence number, and the system-wide module mutex, which is later used to protect
the module hardware and state structures from simultaneous access by different
tasks or processes.

The new module structure is not actually inserted into the installed mod-
ule list until the module installation and initialisation has been successfully
completed. The search and insert function iio_sll_insert() is used, with
iiomodule cmp() as the criteria function. This orders the list in alphabeti-
cal then sequence number order. The installed module list can be viewed from
the 110 interactive shell (Appendix [B) using the module command.

Module Installation and Initialisation. The installation function of the
module driver is called, using the pointer in the module information structure.
A pointer to the new module structure is passed, along with the argument array.
The installation function, as described in detail in Section p.J, decodes the module
parameter arguments, and proceeds to call back functions in the 110 core.

One of the things it does is to allocate the register and state structures for
the module, using functions iio_module reg() and iiomodule_state(). The
register structure is allocated from per-process memory, while the state structure
comes from system-wide shared memory. Pointers to both of these are stored in
the module structure.

The installation function also calls back functions to map and resolve ad-
dresses, open channels, and register the channels the module provides. The data
structures these create are discussed shortly.

If the installation function returns successfully, iio_module () then calls the
initialisation function, but only if this process is an initial 110 process, or this
is a shared-memory system. This status is determined in iio_osinit() and
passed through iio_init_iio(), eventually to be stored as a flag in iio_state.
The initialisation function actually accesses the module hardware, resets it as
necessary, and fills out and synchronises the module state structure, if any.
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At the end of iio module(), iio_arg remnants() is called, accepting the ar-
gument array. The array should be filled with blanks (pointers to the empty string
iio_arg blank, or "") because all the arguments should have been interpreted.
Anything still there is probably a misspelt option, and iio_arg remnants()
prints an error message.

Module Logging and Aliases. The two standard module directive options,
-log and -alias (Section B.J), are actually decoded by iio_module() before
the module installation function is called. The former sets a boolean flag in the
module structure. The latter causes a module alias to be inserted into the alias
list, using iio_alias_insert().

7.3.5 Memory Map list, II0 MAP

The 110 address mapping and resolution system has been described in detail, at
least from the point of view of its users, module drivers (Section p.3.4). Section .7
described it from the point of view of the address space module drivers that
implement an important part of it. Here, the core library functions iio_map()
and iio_resolve() are described.

The previous discussions suggested that mapping, that is, making module
hardware registers visible to the program, comes before resolution, which is find-
ing out what address to use to access a mapped register. In fact, the functions are
interdependent, as iio_map() uses address resolution to work out what addresses
to map.

Mapping. iiomap() accepts the physical base address and size of the segment
encompassing the module registers, along with an open 110 channel descriptor
and address space operation code identifying the physical space. It adds the size
of the segment to the base to obtain the top and bottom addresses, and calls
iio_operate_addr() to resolves these separately through the chain of address
space drivers described in Section B.4. This results in two processor-physical
addresses, resolved as far as the memory management unit (or A; in Figure p.]]
on page BY). The difference in the two addresses gives the size of the partially-
resolved segment, which may be different to the physical size.

It then calls iio_mapnew(), which accepts the partially-resolved base and
size, and first calls iio_map_ptov() to see if there is already a mapping covering
the given range and of the same type (memory or port). iio_map_ptov() does
so by searching the mapping list, a linked list of II0_MAP structures headed by
the pointer iio_state->map. If a map exists, nothing more needs to be done and
the function returns.

If there is no mapping covering the full range, a new one is requested from
the operating system. If the address space operation code indicates the mapping
is to be into memory (determined by function iio map_type()), iiomap new()
uses iio_shmap_alloc(). This takes the requested processor-physical address
and size, and returns the actual physical address and size, and the corresponding
logical (virtual) address. The actual physical base and size may be different
because MMUs map memory in pages of a certain size. The returned information
is stored in a new II0_MAP structure, which is inserted in the mapping list.

If the address space operation code indicates a non-mappable address space,
iiomap new() calls the operating system function iio_port_alloc(). This
makes the port addresses visible to the process, if the operating system actually
requires it (although this is not ‘mapping’ in the strict sense, it is an analguous
operation). The mapped addresses can be later accessed by module drivers the
iio_port_set() and iio_port_get() functions (Section F.§). A new IIO_MAP
structure is also inserted in the mapping list.

The memory mapping list can be viewed from the 110 interactive shell (Ap-
pendix B)) using the map command.
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Resolution. iio_resolve() accepts a register physical address and in the same
way as iio_map(), partially resolves it to a processor physical address, and then
calls iio_map_ptov() to turn this into a logical address. iio_map_ptov() searches
the mapping list, and finds a previously created mapping that covers the physical
address required (the size of the register is counted as well). The offset of the
physical address from the base physical address of the mapping will be the same
as the offset of the logical address from the base logical address, so the fully
resolved logical address can be determined by simple arithmetic.

Note that iio_resolve() does not invoke an operating system request: all it
uses is the results of previous mapping requests. This technique is used because
operating systems often do not provide an equivalent to iio_map_ptov(), only a
logical-to-physical map.

These functions still operate in the same way on shared-memory systems,
where there is frequently no MMU, or where the operating system effectively
disables it. The map request function iio_shmap_alloc() simply returns its
input arguments, mirroring the 1:1 map the MMU implements in these cases.

7.3.6 Channel Node list, II0_CHNODE

The other important function called by the module driver installation function is
iio_chnode (). This function registers the channel ranges that module provides.
Each call of iio_chnode () inserts a new II0_CHNODE structure into the list headed
by iio_state->chnode. Each ‘channel node’ represents a contiguous range of
channels of the same type and width, from the same module and with the same
operation function. This is the information that is passed to the iio_chnode ()
function by the module driver.

The list is in global generic channel name order, but contains sufficient infor-
mation to allow a channel name expressed in any of the four forms to be located.
This is in the seqno[] structure member, which contains the sequence number
of the first channel in the channel node in each of the four numbering sequences.
(The array is indexed using the II0_NFORM enumerative). These sequences are
compiled by iio_chnode new(), which searches the current members of the chan-
nel node list. These numbers are used when a channel is opened.

The channel node list can be viewed from the 110 interactive shell (Ap-
pendix [B) using the chnode command.

Bitwise Digital Channels. iio_chnode() singles out digital channels of types
do, di, dio, oco and ocio for additional treatment. These are inserted into the
channel node list by iio_chnode new() in the same way as other types.

As mentioned in Section P:3-3, the channel name decoding mechanism is re-
used to resolve the bit-channels onto their underlying real digital channels. For
function iio_chnode(), this means extra channel nodes are inserted, and two
extra fields of II0O_CHNODE come into play. For each digital channel, a bitwise
digital channel node is also inserted, using iio_chnode new().

This node has as many 1-bit channels as the original channel has bits. The
channel type is selected to match the original channel. Thus, for a di16 digital
channel, a node of sixteen bi channels is inserted. (It is not permitted for a
module driver to directly insert channels of these types).

The additional fields rchnode and rsegno of these additional channel nodes
point to the underlying ‘real’ channel node and the local sequence number of the
underlying real digital channel. Thus, when the bitwise channel is opened, the
underlying channel, module and operation function can be easily located.

Page 72 Release 11 CMST-P-97-04



7.4. DATA STRUCTURES AND THE OPEN FUNCTION

7.3.7 Channel Info arrays, II0_CHINFO

Each channel node (including those for bitwise-digital channels) also contains a
pointer to a channel information array, with one element of type II0_CHINFO for
each simple channel in the channel node. This structure contains the channel
properties mentioned in Section 2-7.

The properties of individual channels can be set using functions such as
iio_chnode_linear(), iio_chnode_limits(), and so on. The channel prop-
erties are initialised by iio_chnode new() to sensible defaults. Module drivers
subsequently alter these to comply with module hardware configuration.

Users can further alter them using the channel directive in the configuration
file. This is handled by iio_channel(), which calls iio_chnode_linear() and
S0 on as required.

7.3.8 Alias list, II0_ALIAS

The alias list is a list of TI0O_ALIAS structures, headed by iio_state->alias.
The structures contain name-value string pairs and an alias type enumerative
ITO_ATYPE.

The alias directive configuration file invokes iio_alias (), which accepts the
argument token array. This calls iio_alias_insert() which actually creates a
new IT0_ALIAS structure, and inserts it in the list using iio_s1l1l_insert() as
normal.

7.4 Data Structures and the Open Function

Following the completion of configuration file parsing, the system-wide exclusion
lock, however implemented, is released. Function iio_init() returns to the
application program, which can proceed to open and use channels.

Function iio_open() opens a channel. ‘Opening’ in the 110 sense involved
constructing a set of data structures which link to information that will be needed
when the channel (or channel range) is operated upon, so that operations can be
fast. Opening a channel does not involve accessing the module driver: module
drivers do not (and should not) know what channels then user has open.

7.4.1 Open Channel Structure, II0_0PEN

This structure, and at least one II0_OPNODE structure (described below), is allo-
cated when the application program calls iio_open(). The channel descriptor,
type II0, is a pointer to this structure. All the II0_OPEN structures link into the
open channel list, which is headed by iio_state->open, and is ordered by the
channel name used to open the channel (which may be an alias). Since the open
channel list is not read-only after the end of the initialisation phase, it has its
own process-wide mutex, iio_state->omutex.

The open channel structure contains the channel mutex, which is used to
protect operations if the open channel is a channel range. The number element
gives the number of channels in the range. If the open channel is just a simple
channel, number is 1 and the mutex is not used. The structure also contains a
duplicate of the name by which the channel was opened: this is used when logging
channel operations.
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Name expansion. Before constructing the II0_OPNODE list, described next,
iio_open() expands the channel name. This is done by calling iio_namex(),
which returns the component parts of the channel name in an IT0_NAMEX struc-
ture. This structure is not dynamically allocated, and exists simply to tidy up
the interface to iio_namex().

Firstly, iio_namex () looks up the given channel name in the alias list, looking
for a matching global name alias using iio_alias_find (). The result, or if none,
the original name, is then copied to a buffer for destructive parsing.

If the string contains a ‘:’ character, it is in a local channel name form, so it is
split in two. The alias list is then searched for a module alias matching the first
half, and the result, if any, is substituted. This should be in the form of a module
ident (model ident plus module sequence number). The installed module list is
then searched for this combination, and if found the II0_MODULE pointer is started
in the TI0_NAMEX structure. Similarly, the alias list is searched for the second half
of the name, and the result, if any, substituted. Then, iio namex_chan() is called
to break this local channel name into the channel type, width (if specified) and
local sequence number.

If the name string did not contain a ‘:’ character, it must be a global channel
name, and it is broken up using iio_namex_chan(). In this cases, the module
the channel comes from is not known until later.

Note that iio_namex () does not test for the existence of the channel; it merely
determines the name’s form and splits it into its constituent parts, which are
returned in the IT0_NAMEX structure.

7.4.2 Operation Node Structure, II0 OPNODE

The IIO_OPNODE structure contains the information that relates the channel or
channels the user has opened to the channels provided by the modules, through
the II0_CHNODE structures described previously. The operation node list is headed
by the opnode member of II0_OPEN.

There is exactly one II0_0PNODE structure created for each TI0_CHNODE struc-
ture that covers, in full or in part, the channel range of the open channel. Simple
channels will require one operation node; channel ranges require one or more.
The II0_0PNODE structure contains a pointer to its II0_CHNODE, and a number of
sequence number indices: first is the local sequence number of the first channel
of this operation node in the corresponding channel node; number is the num-
ber of channels in the operation node, and cannot be larger than the channel
node’s number. index is the index into the user’s data array (the array passed
to iio_operate()) of the first channel in corresponding to this operation node.

Operation Node Assignment. Once iio_open() has successfully split the
name into its constituent parts using iio_namex(), it searches the channel node
list to find the node or nodes which match the desired channel. The first match
is against channel type, and then channel width, or module, or both, depending
on the form of channel name originally given to iio_open().

Matching channel nodes are then tested to see if their sequence numbers
intersect those desired. The start sequence number used in this comparison comes
from the channel node seqno[] array, which was computed when the channels
were registered. The end sequence number is simply that number plus the number
of channels in the channel node.

These start and end numbers are compared with the desired start and end
sequence numbers. There are thus four comparisons with four binary results:
these results are combined into four bits of an integer to form the code which.
which indicates the relative disposition of the two sub-ranges. There may be no
intersection at all or several kinds of intersection.
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which is sorted out in a switch-statement, which creates operation nodes
with different first, number and index parameters for the different kinds of
intersection with the current channel node. These are appended to a list that
eventually attaches to the II0_OPEN structure.

The intersection kinds also indicate whether any operation nodes have been
created (flag started), and when all the required operation nodes for the given
range have been created (flag finished). When started and finished are both
true, the searching of channel nodes can cease.

Channel Logging. At the end of iio_open(), the log flags in all the operation
nodes of the newly opened channel are assigned. The flag is in IT0_OPNODE
because this structure is the only one passed to the module driver data access
functions (Section B.H) which actually do the logging. The flag’s value is the
logical OR of the logging flags from iio_open(), any of the modules, or any of
the individual simple channels involved in the new channel.

Finally, if the new open channel has more than one operation node, a process-
wide channel mutex is created (if there is only one node, the module mutex suf-
fices). The II0_OPEN structure is inserted into the open channel list (protected by
the iio_state->omutex mutex), and is then returned to the application program
(where is type is the equivalent II0).

7.5 The Operate Function

The operation function, iio_operate() and its variants, do not create or sig-
nificantly alter any data structures. Operations essentially involve taking the
channel and module mutexes, then walking through the operation node list, call-
ing the module driver operation function once for each operation node. It is also
responsible for taking the channel and module mutexes, so that operations are
thread-safe.

Bitwise-digital channels are much the same, only the manipulation of the user
data is somewhat different.

Operation Function. The six forms of the operation function

iio_operate() (integer user data)
iio_operate_real() (real user data)
iio_operate_addr() (address user data)
iio_operate_in() (in-only integer user data)
iio_operate_inreal() (in-only real user data) and
iio_operate_inaddr() (in-only address user data)

are simply front-ends for the main operation function, iio_operate_call().

iio_operate_call() first logs a message, if logging is on, takes the channel
mutex, if any, and then checks if there is an rchnode element in the first operation
node’s channel node. If so, it calls iio_operate bitfield (), described later, to
do the operation, as this must be a bitwise-digital channel.

Operation Node Scratch-pad. Otherwise, it loops through the operation
node list. Before calling the module driver operation function, however, it sets
up a few scratch-pad variables in the operation node structure, udata, base, and
op.

This scratch-pad is a bit ugly, but is the simplest way of transmitting this
data through the module driver and into the data access functions, which is where
it is actually needed. The ‘right” way would be to pass them as parameters to
the module driver, along with the II0_OPNODE, and expect the driver to pass
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them on to the data access functions. Using part of the operation node for these
avoids this clutter. It is thread-safe, because this data is protected by the module
mutex.

Note that the parameters for the module driver call are all, except for the
operation code op, derived from the operation node anyway. Arguably these
functions could have as few as two arguments, opnode and op. This would mean,
however, that the drivers could not treat II0_OPNODE as opaque, but would have
to pull the fields they required out from it. It probably would not deliver much
speed improvement,.

Data Access Functions. The six data access functions

iio_data_get() (get datum as integer)
iio_data_get_real() (get datum as real)
iio_data_get_addr() (get datum as address)
iio_data_set() (set datum from integer)
iio_data set_real() (set datum from real) and
iio_data_set_addr() (set datum from address)

are called back by the module driver operation function to access the user’s data.
iio_operate() and its variants do not do anything to this data, except pass the
pointer to it through. All the data transformations (array indexing, the scale and
offset, limiting, and logging) are performed by the data access functions, on the
demand of the operation function.

The type qualifiers (_real, _addr and the implicit _int) of the data access
functions indicate the form the driver wants (or has) the datum in. This contrasts
with the similar qualifiers of iio_operate (), which indicate the form the user has
(or wants) the data in. This latter type is indicated by the II0_UDATA enumerative
type, which is given to iio_operate_call() which puts it into the udata scratch-
pad member of II0_OPNODE.

Thus, the data access functions know the user data type, so they can correctly
index the user data array to get or set the datum, and they can apply the correct
data conversion. Address data, of course, cannot be meaningfully converted, and
so the data access functions return an error if this is attempted.

Bitwise-Digital Channels. Function iio_operate_bitfield() is used for
bitwise-digital channels. It is similar to iio_operate_call()—in that it works
through the list of operation nodes—but unlike iio_operate_call(), it does
transform the user data, and it does interpret the operation code. It effects
the desired operation by performing a sequence of read and write operations on
the underlying ordinary digital channels to which the bitwise channel or channel
range corresponds. Bitwise-digital operations are essentially a layer on top of
real digital channel operations: this makes module driver simpler, as they do not
need to have any bit-twiddling code in them.

For a bitwise channel operation, the user data is a single unsigned integer,
rather than an array (it is really a bit-array, of course). So, for write operations,
iio_operate_bitfield() gets the user data once, by calling iio_data_get(),
just like a module driver operation function would do. At the end of a read
operation, it sets it using iio_data_set(). This means the bit-field datum may
be subject to the normal scale and offset factors, if the application program called
iio_operate_real() to invoke the operation.

Each operation node represents part of the datum bit-field that must be read
from or written to part of a real digital channel. This is so because the channel
nodes from which the operation nodes were generated are this way. For each
operation node, different mask and roll factors are computed from the sequence
number usually used to index the user data array.
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For read operations, the underlying digital channel is read, by calling the
module driver operation function in the real channel node. The scratch-pad data
in the operation node was set so the the data access function that the driver will
call will deposit the data unmodified into a local variable cdata. The data is
masked and rolled into the return value.

For write operations, things are a little more complicated, because the new
data must be written into some of the underlying channel bits, without disturbing
adjacent bits. Thus, the channel has to be read first, again into cdata, the new
data masked and rolled in, and the result written back.

7.6 Operating System Interactions

Unfortunately, operating systems do not provide a common interface to applica-
tion programs, notwithstanding standards such as POSIX. In any case, there are
differences in operating style and philosophy that fall well outside the ambit of
such standards. In order to minimise the impact of such differences 110 uses an
absolute minimum of operating system and C library facilities, and funnels all
such calls through an operating system specific module.

This approach eliminates the #ifdef directives that frequently make low-level
interface code almost unreadable. There are no operating-system header files
included the by 110 library code or its header files (except, of course, the operating
system specific modules themselves, and for stdarg.h). The approach is arguably
unnecessarily strict, and it is not necessary for 110-using applications to do this,
but it has been very helpful in revealing operating system portability issues.

The operating system specific modules are found in the iio/src/os sub-
directory. There is one for each operating system 110 provides support for:
lynxos.c, vxworks.c, solaris.c, and so on. The Makefile selects the cor-
rect module using the operating-system name from the platform script (Ap-
pendix [C33).

These modules are expected to provide all the operating system functions,
which are prototyped in internal.h (Appendix [F-2), and described in the fol-
lowing sub-sections. However, many of these functions are merely wrappers for
fairly generic operating system or C library functions. In these cases, where the
same code goes for all or most operating systems, the functions are in separate C
files, which are #included into the main operating system specific module where
required.

Some operating systems do not easily provide all the facilities 110 requires.
This mostly the case with the shared memory/hardware mapping functions on
standard UNIX system, such as SunOS, Solaris and Linux: to uses these features
the user would require access permissions not normally given to ordinary users.
Thus, these functions simply do nothing, which results in a protection violation
later. Given this, it would seem there is little point in providing operating system
specific modules for these systems at all. However, it is worthwhile, because much
testing can be done one there system even without hardware accesses, and in any
case 10 modules that do not have memory mapped hardware registers, such as
serial-addressable modules, can still be used on these systems.

7.6.1 Initialisation

As described in Section [[23, iio_osinit () is supposed to carry out any operating
system specific initialisation, and then call iio_init_iio() within system-wide
exclusion lock, informing it if this is an initial 110-using process or not.

LynxOS. On LynxOS, the exclusion lock is obtained by opening the 110 con-
figuration file (using the 110 file access functions described in Section [.6.1) and
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then using flock() to lock it. Within this system-wide lock, the modification
time of the file is obtained.

Then, the shared-memory block is established, first by attempting to remove
it. If this fails with a ‘device busy’ error, then the block exists and there is
another 110-using program running (attempting to remove a busy block causes
no harm). If the block is successfully removed, or there was not one in the first
place, then is the only (initial) 110 process. The flag iio_first indicates this
status: the flag is only valid during the life of the exclusion lock.

In either case, the first structure in the shared block is the sentinel, type
II0_SENTINEL. This is allocated using iio_shmem_alloc(). This structure con-
tains the modification time of the 110 configuration file and the build date of the
110 library. The latter comes from iio_timestamp, which is re-computed by the
110 Makefile every time any part of the library is built (Appendix [C§). For
an initial 110 process, the time-stamps and a magic number are written into the
sentinel; for subsequent processes they are tested, and any discrepancy causes an
error return. After calling iio_init_iio(), the exclusion lock on the configura-
tion file is dropped.

Other Systems. On shared-memory systems, such as vxWorks, there is no
sentinel block and there is no need for any other operating system specific ini-
tialisation. On these systems, the configuration ‘file’ may be a string in memory,
as sometimes files are not available. Other UNIX systems also do not have much
beyond the requisite call of iio_init_iio(), for the user privilege reasons given
above. In these cases, where process-shared structures are not provided, there
is no point in a shared configuration or locked file either, so the file ./iio.conf
(that is, in the process’s working directory) is used instead.

7.6.2 Cleanup

Function iio_done (), which is supposed to be called when the user has finished
with 110, invokes iio_osdone() to perform operating system specific cleanup.
Symmetrically, this should invoke iio_done_iio () which dismantles the process’s
110 data structures.

LynxOS. On LynxOS, the configuration file is once again opened and used
as an exclusion lock. However, the file is not parsed, and nothing depends on
whether this is the initial process or not. After calling iio_done_iio() the shared
structures are dismantled with iio_shmap_done() and iio_shmem_done(). These
eventually detach the process from the shared memory blocks, but do not delete
them (other processes may be using them). When the last process detaches, the
LynxOS kernel will delete the shared blocks.

7.6.3 Mappings

Mappings of areas of processor-physical memory into process memory (where
there is a distinction) are provided by iio_shmap_alloc(), which is called by
iiomap() (Section [:3.5). They are discarded using iio_shmap_free(), and
iio_shmap_done() discards all such mappings.

LynxOS. On LynxOS, shared mappings and shared memory (discussed below)
are essentially the same thing. The native mapping calls are used (smem_create ()
and so on) rather than the POSIX ones, as the latter do not seem to work on earlier
versions of LynxOS.

Function iio_shmap_alloc() rounds down the processor-physical base ad-
dress, and rounds up the size of the segment, to the nearest multiple of the page
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size (obtained previously by getpagesize()). A name for the mapping is gen-
erated, using a string and a serial number, so that each mapping has a unique
name, but so that each 110 process will come up with the same sequence of names.
smem_create () is used to create the mapping. If the mapping does not exist, it
is created it and attached it to this process: if it does already exist, it is simply
attached.

Port space does not need to be mapped on LynxOS, so iio_port_alloc()
simply checks that the process is owned by the super-user. The six port access
functions

iio_port_set8() (8-bit port write)
iio_port_set16() (16-bit port write)
iio_port_set32() (32-bit port write)
iio_port_get8() (8-bit port read)
iio_port_get16() (16-bit port read) and
iio_port_get32() (32-bit port read)

are simply wrappers around the inline functions _outb, _outw, _outl, _inb, _inw
and _inl.

Shared Memory Systems. On shared-memory systems, such as vxWorks, all
memory is implicitly shared between tasks, and no special actions are required to
‘map’ particular areas to make them visible. Thus, the shared mapping functions
are all no-ops.

If vxWorks is used with the vxvMI (virtual memory) option, this isn’t com-
pletely true: some very high addresses in processor-physical memory aren’t map-
ped, so that there is some virtual space left to make mappings of A32 VMEDbus
areas (or equivalent) into. At present 110 does not issue the vxvMI calls if pre-
sented with such an address. In practice this has never presented difficulties,
because industrial 10 modules are generally wired for the addresses that are al-
ways mapped.

Unix Systems. On these systems the shared mapping and port functions are
Nno-ops.

7.6.4 Shared and Process Memory

Function iio_shmem alloc () allocates system-wide shared memory blocks, which
are used for module driver state structures, and other shared objects. Such
memory is not mapped to specified processor-physical addresses, like the shared
mappings described above. Function iiomem_alloc(), by contrast, allocates
process-wide memory, at least on systems where there is a distinction. In other
words, it is a wrapper for malloc().

Both of these have corresponding discard functions, iio_shmem free() and
iiomem free(). Shared memory has an additional iio_shmem done(), which
detaches all segments.

LynxOS. Shared memory requests of various sizes are allocated from shared
memory blocks obtained from the system using the LynxOS call smem get ().
Each block is a multiple of iio_pagesize in size, and is given a name and serial
number in the same way as the shared mappings. When each block is fully
allocated, a new one is obtained. The base addresses of each block are recorded
in an array (which is currently fixed in size) so that the blocks can be deallocated
later.

The whole shared state scheme of 110 on LynxOS depends on all processes ex-
ecuting the same configuration file with the same library code, and so exactly the
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same sequence of shared memory (and shared map) segments will be requested.
This is guaranteed by the sentinel structure check.

Note that freeing an allocation from a shared memory block is not actually
supported. 110 never actually needs to do this, so it is not an issue.

Other Systems. On shared-memory systems, there is no distinction between
the two kinds of memory, so both allocation functions simply call malloc(). On
UNIX systems, only process memory is provided, so again, both allocators call
malloc().

7.6.5 Mutual Exclusion Semaphores

110 defines mutual exclusion semaphore objects (also known as a mutexes or
monitors) II0_MUTEX and II0_SHMUTEX. As with memory, there are two forms
of mutexes, system-wide and process-wide, where there is a distinction. The
110 mutex types are simply pointers to the operating system’s mutex objects.
Priority inversion-safe mutexes should be used if available.

Shared or non-shared mutexes are obtained with iio_shmutex_alloc() or
iiomutex_alloc(); taken using iio_shmutex_grab() or iio_mutex_grab(); re-
leased using iio_shmutex drop() or iiomutex_drop(); and discarded using
iio_shmutex_free() or iiomutex_free().

LynxOS. POSIX thread mutexes are used for non-shared mutexes. In principal
the same mutexes, allocated from a shared-memory block, should work as system-
wide mutexes. However, on LynxOS 2.5 at least, this does not work, as the
necessary mutex attribute code is not implemented.

For the time being, POSIX unnamed semaphores, allocated from a shared mem-
ory block using iio_shmem alloc(), are substituted. Hopefully, future versions
of LynxOS will properly implement shared mutexes.

vxWorks. The II0_MUTEX and II0_SHMUTEX types are simply cast to and from
the vxWorks semaphore type SEM_ID, which is also a pointer, and the vxWorks
semaphore primitives used. There is of course no distinction between system-wide
and process-wide mutexes.

Other Systems. Where no mutex types exists, such as on UNIX systems, the
mutex functions are all no-ops.

7.6.6 Register Probes

Function iio_probe() is used by module driver initialisation functions (Sec-
tion B4) to test if a register (or something) is at the address that has been
resolved for it.

vxWorks. The vxWorks function for probing addresses, vxMemProbe () is used
directly by iio_probe().

Other Systems. On UNIx-like systems, including LynxOS, a signal handler for
bus errors and segmentation faults is established, and a read or write of the given
address and width attempted. If the signal handler is invoked, a static flag is
set, and iio_probe() returns an error. This is thread-safe on LynxOS, because
iio_probe() is only used during module initialisation, which is inside the initial
exclusion lock. There appears to be no way of probing for the existence of a
register at an address in port space.
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7.6.7 File Interface

Functions iio_file_open(), iio_file_getc(), and iio_file_close() are sim-
ple wrappers for the standard file access calls. Arguably, these functions are
standard enough to use directly in 110 library code, but unfortunately the header
files are not. These functions are only used to access the configuration file.

7.6.8 Serial Device Interface

The 110 serial device interface functions are somewhat more than simple wrappers,
because operating systems are notoriously inconsistent about serial device setup,
and even the standard procedures for doing so are fairly complicated and worth
encapsulating anyway.

Serial devices can be opened in raw mode using iio_tty_raw(), or in line
mode using the function iio_tty_line(). The serial port settings, such as baud
rate, bits per character, and so on are specified using a arguments to these opening
functions, rather than later using an ioctl()-like wrapper.

Messages are written using iio_tty_send() and read using iio_tty_recv().
A read timeout would be a useful addition to iio_tty_recv(). The serial func-
tions are used by the serial-addressable module drivers, such as those for the
ADAM units.

vxWorks. Unfortunately vxWorks does not feature all the serial port settings
expected by iio_tty raw() and iio_tty line(). An error is returned if such
settings are requested.

7.6.9 Miscellaneous Functions

The remaining functions in the operating system specific modules are generally
simple wrappers around C library functions. Their purposes are self-explanatory
and their declarations are found in internal.h (Appendix [F-2).
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Section 8

Conclusion

The 110 library, while internally fairly complicated, presents a fairly simple and
straightforward front to both the application program writer, through its ¢ in-
terface, and to the system integrator, through its single configuration file.

The library and application programs using it have been proven on real-time
operating systems as diverse as LynxOS, which has a UNIiX-like design, and vx-
Works, which is a shared-memory kernel system. It has operated on hardware
ranging from industrial vMEbus systems to laptop PCs.

8.1 Assessment

Any fair assessment of this project must do so in the light of the original proposal
document, which is included verbatim in Appendix [H.

Essentially all the project’s objectives were met. The application program
interface is more or less as proposed, and the configuration file contains essentially
the same elements. Some of the less central elements suggested by the proposal,
such as remote network access, have not been provided, because they are better
implemented by an application that uses the 110 library.

The only important omission is support for hardware interrupts. While such
an addition is relatively straightforward for shared-memory systems, such as vx-
Works, where the operating system takes a minor role in interrupt handling, it is
not easy for systems such as LynxOS. Section (.9 discussion some of the reasons
why: they are strongly related to the decision, taken fairly early on, to imple-
ment 110 as a user-level library, rather than a kernel module. A solution to this
problem is required before 110 can claim to be capable of supporting all industrial
10 hardware.

Nevertheless, the library has become an important tool in the Mining Au-
tomation projects conducted by the Division in Brisbane. It has already been
deployed in the Dragline Automation system, where all industrial 10 is routed
through it. At the Preston site, where it was developed, no use has been made
of it, as robotic and ‘mechatronic’ work there has essentially ceased.

The proposal document was vague on the duration of the project. However,
early working versions of the library were delivered and tested by Brisbane staff
within about four months of the proposal being accepted. Basic documentation
was also provided at the time. Improvements and extensions were made up until
February 1997 in a reasonably timely manner, and it is believed no other work
was delayed through the lack of a promised 110 feature or bug. At about that
time, development work ceased because the author was directed to other areas,
and as a result the final documentation has been considerably delayed.

As a body of code, the library is written in a consistent and fairly clear style, is
thoroughly commented, and is reasonably well documented. It should not prove
a burden for anyone charged with its maintenance and extension. The procedure
for expanding the library of module drivers is very detailed, and with luck this
expansion will occur, making the library a more useful tool.

8.2 Critique

Given the assessment above, any serious critique of the 110 library as it presently
stands must also criticise the proposal as well. This is fair enough, since the
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library and the proposal were written by the same person (as was, of course, the
assessment, and the critique that follows).

The difficulty with interrupt handling, and the design decisions that may have
contributed to it, have already been mentioned. Other more fundamental design
issues deserve some critical attention, in the light of the experience with the
current implementation.

The Form of the Interface. The interface presented by the library to the
application programmer is essentially an object-oriented one. Channels, which
are initially extant but latent, can be opened, essentially constructing an access
object. These objects have a set of methods (channel operation codes) which
depend on the type of channel.

Unfortunately, ¢ is not an object-oriented language, so any attempt to im-
plement an object-oriented interface with it tends to lead to the writing of a lot
of ‘mechanism’ code—code that does things like object instantiation and virtual
methods—and code that an object-oriented compiler would emit automatically.
Additionally, the tools available in C to implement these things, such as void
pointer casts and variable argument lists, trade off poorly against type safety,
and thus program reliability.

In 110 these issues revolve around the operation function iio_operate().
Originally, there was to be only one such function, accepting a channel descrip-
tor, operation code, and a single data pointer, providing a fairly neat interface.
Expansion of the library would be handled by the addition of more operation
codes. This was proposed because of a desire to avoid a proliferation of operation
functions, as this would complicate the module driver interface. Additionally, it
was initially thought the library would have to be a kernel module on LynxOS
systems, which also argued for a narrow interface.

However, in order to win back a degree of type safety, different operation
functions were provided for different user data types. Thus one became six (Sec-
tion [4). This was not really much of a win for type safety anyway, simply
because there is no way to guarantee that the size of a destination array for
channel range operation is big enough—and there is no way for the program to
determine what size it should be anyway.

Furthermore, the servo controller channel model (Section E:10.5) places fur-
ther strain on the operation function, because some operations logically required
triplets of user data (such as position, velocity and acceleration) to be read or
written at once. Because only one datum per channel could be passed per opera-
tion, three calls have to be made and the data buffered by the module driver, and
a further operation code to promulgate the data into action had to be added.

So, it may well have been worthwhile to consider and model the 110 program-
matic interface more before its implementation began. It is probable that a larger
suite of operation functions, essentially replacing the operation codes, would not
cause the trouble at driver level that was feared, and would improve safety at the
application program level.

Type of Channel Data. A related issue is the type of channel data. The
application can read and write the channel in either an integer form, very close
to the hardware format, or a floating point form, scaled to match the real units
of the sensor or actuator the channel connects to. It is not clear what the former
form is for: precision and efficiency are the reasons given, but most floating point
formats have more mantissa bits than the average channel, and floating arithmetic
is still very fast (although it remains a serious issue on micro-controllers, which
usually lack floating point co-processors).

The dual formats, with the additional exceptions for the address data type,
considerably complicate the operation function data access functions, as well as
decreasing type safety, or at least increasing the possibilities for error, at the
application program level.
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Type of Channel. The distinction between the different types of channel—
adc, dac, enc, and so on—is maintained throughout the library. It must be
asked if this really necessary. In the end, channels are either inputs (sensors)
or outputs (actuators); should an application care whether a position datum is
obtained through an encoder, a digital input channel, or and ADC?

Duplicate Channel Access. Any channel can be accessed by four different
names (Sections £.3.9), plus any number of aliases defined in the configuration
file. It must also be asked whether this is really necessary. Should a program be
able to access the same object by more than one name?

Assuming the answer is no, the scope of all the automatically numbered chan-
nel names could be limited to the configuration file, where non-overlapping ranges
of channels could be given channel names, not unlike the current aliases. These
names would become the only names by which a channel or channel range could
be opened in the application program. Such a change would considerably sim-
plify the channel opening code, at the expense of a slight complication of the
configuration file syntax and interpreter code.

Library Size. By UNIX or even vxWorks standards the 110 library, with about
70k of code, is not large. While it constructs a fairly complicated set of data
structures, it is also not profligate in its use of dynamic data memory. However,
on both counts it is a bit large for microcontroller systems, which typically have
128 or 64k of memory, or even less.

Part of the problem is the fact that 110 maintains a lot of data derived from
the configuration file and the module identification functions that is not actually
required. The initialisation and file parsing code is also not used after startup.
If the library is to be truly useful in this domain, then these issues need to be
addressed.

8.3 Future Development

Initially, future developments of the current version of the library should concen-
trate on rectifying some of the criticisms raised above, addressing the interrupt
matter, and expanding the range of hardware supported by module drivers.

Many of the criticisms relate partly to the well-known deficiencies in the C
language. While it is likely that a slightly better interface was possible using
C, it once again raises the issues of programming language. It is time for the
Division, or at least those in it who are attempting to engineer commercial quality
systems, to abandon this aging language, take advantage of nearly a generation of
development in software engineering practice and embrace a stronger language?

The author’s view is that it is, and there are a number of choices for a new
language (and C++ is not among them). If such a break is made, then there will
be an immediate need for generic foundation libraries, including something like
110, implemented in the new language. The future development of this library
should be seen in that light.
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Appendix A
Standard Module Drivers

The following pages describe the module drivers in the standard list. Each mod-
ule, or family of related modules, has its own page in a standard format. The
pages are organised in the alphanumeric order of the model ident codes. The
sections are as follows:

Module Description

A short description of the module, which specifically details its 10 capabilities,
its interface bus, significant components, relationship to other modules, and so
on.

Configuration Options

The list of module parameters that may be given to a module directive using the
module in the configuration file (Section fJ). Parameters are option/argument
pairs, or binary option flags. Mandatory options must be specified, and have no

default argument values. The argument default value of non-mandatory options
is shown.

Driver Status
The version of the module driver code that the documentation refers to. The

actual version of the driver can be obtained using the minfo command in the 110
interactive shell, Appendix B.

Module Usage

Any caveats, restrictions, qualifications or advice regarding practical operation
of the module.

Author

The author or origin of the driver code.
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A.1 ADAM 4011, 4012 and 4013 Analogue to Digital
Units
Module ident code adam4011, adam4012, adam4013

Module Description

The ADAM 4012 provides one 16-bit analogue to digital convertors (channel type
adc16). The ApDAM 4011 provides one millivolt-level voltage input or one ther-
mocouple input, calibrated for a variety of thermocouple types. Both the 4011
and 4012 provide one 1-bit digital input channel (type dil) and one 2-bit dig-
ital output channel (type do2). The ADAM 4013 provides a single Resistance-
Temperature Device (RTD) input only, calibrated for a variety of RTD types.

Configuration Options

-address <channel> Mandatory. The channel representing the ADAM network
and network address of the unit. These channels are provided by ADAM
network interface units, such as the adam4520 (page P1)).

-range <range> Default 0x08. Set the input range of the analogue channel on
the unit. The codes are listed in Table [A-1] on page BY. Note that the 4011,
4012 and 4013 accept different range codes. The code should be written in
hexadecimal with the leading 0x.

Driver Status

This document relates to revision 1.3 of the driver. The event counter and alarm
funtions are not yet supported, and should be disabled when the unit is config-
ured. Support for the ADAM 4011 and 4013 is not tested.
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Table A.1

Oo00o0o0oo0ooO0O0O0O0O00OEEEEEE N 00000 EEENENN TTOYWEPE

Oo00o0oo0ooooOoOoOooOooOo0ooOooOoOO0O R O0000O0O0O groywepe

OO0OOEEEEEEEEEERCO0D0DOO0OCOOOOO0OO0OO0OOOOO0O0nOn etoywepes

OOo00o0oO0oOoOoO0oOo0OoOoOooOoO0o0oo0oO0OEE 000000 Liopwepe

OO00O0O0OO0OO0OO0O0O0000UE EEEEE (0000 0CSEEEHENEHNEBNSTOYuEpPE

Code Sensor Range

0x00 Voltage + 15mV

0x01  Voltage + 50mV

0x02 Voltage 4+ 100mV
0x03  Voltage + 500 mV
0x04  Voltage +1V

0x05 Voltage + 25V

0x06  Current f + 20mA
0x08 Voltage + 10V

0x09 Voltage +5V

0x0A  Voltage +1V

0x0B  Voltage + 500 mV
0x0C  Voltage + 150 mV
0x0D  Current { + 20mA
0xOE  Thermocouple Type J 0 to 670°C
0xOF  Thermocouple Type K 0 to 1000°C
0x10  Thermocouple Type T —100 to 400°C
0x11  Thermocouple Type E 0 to 1000°C
0x12  Thermocouple Type R 500 to 1750°C
0x13 Thermocouple Type S 500 to 1750°C
0x14  Thermocouple Type B 500 to 1800°C
0x20 RTD Platinum 385 —100 to 100°C
0x21 RTD Platinum 385 0 to 100°C
0x22 RTD Platinum 385 0 to 200°C
0x23 RTD Platinum 385 0 to 600°C
0x24 RTD Platinum 392 —100 to 100°C
0x25 RTD Platinum 392 0 to 100°C
0x26  RTD Platinum 392 0 to 200°C
0x27 RTD Platinum 392 0 to 600°C
0x28 RTD Nickel —80 to 100°C
0x29  RTD Nickel 392 0 to 100°C
0x30 Current Loop 0 to 20mA
0x31  Current Loop 4 to 20mA
0x32 Voltage 0tol0V

ADAM 4000-series Input Range Codes. B indicates the unit supports the range code.

O indicates it does not. (The difference between the two current ranges marked 7 is

unclear).
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A.2 ADAM 4017 and 4018 Analogue to Digital Units
Module ident code adam4017, adam4018

Module Description

The ADAM 4017 provides eight 16-bit analogue to digital convertors (channel
type adc16). The ADAM 4018 provides eight millivolt-level voltage inputs or
eight thermocouple inputs, calibrated for a variety of thermocouple types.

Configuration Options

-address <channel> Mandatory. The channel representing the ADAM network
and network address of the unit. These channels are provided by ADAM
network interface units, such as the adam4520 (page P1)).

-range <range> Default 0x08. Set the input range of the analogue channel on
the unit. The codes are listed in Table A on page BY. Note that the 4017
and 4018 accept different range codes, and that the range affects all input
channels on the unit. The code should be written in hexadecimal with the
leading Ox.

Driver Status

This document relates to revision 1.4 of the driver. The driver is complete.
Support for the ADAM 4018 is not tested.
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A.3 ADAM Module Network
Module ident code adam4520

Module Description

The ADAM 4520 unit interfaces a standard RS232C serial device with an ADAM
4000 RS285 twisted-pair network. This module provides 256 ADAM 4000-series
unit address channels (channel type adam). For instance, channel adam.23 refers
to the address of an ADAM unit with address 23 decimal (note that the ADAM
literature frequently uses hexadecimal representation).

Configuration Options

-tty <file> Mandatory. The filename of the serial port to which the network
of ADAM 4000-series units are connected (such as /dev/ttya).

-baud <baud> Default 9600. The baud rate of the ADAM network. The jumpers
inside the ADAM 4520 unit must reflect this rate, and all ADAM units on the
network must be configured for this rate. The serial port will be configured
to this speed.

-checksum/-no-checksum Default -no-checksum. Compute the hexadecimal
checksum digits and append to messages sent to ADAM units; test the check-
sum of messages returned from the units. All units on the network must
be configured for checksum operation.

-50hz/-no-50hz Default -no-50hz. For analogue ADAM units specify a 50 Hz
integration time, rather than the default 60 Hz (recommended).

Module Usage

The line specifying this module should appear in the configuration file before
those for the ADAM units connected on the network.

The ADAM module drivers never change the configuration of the ADAM units.
The module options specified in the configuration file must match the configura-
tion of the units, and where possible this is checked. To configure the units, use
the ADAM unit configuration software.

Driver Status

This document relates to revision 1.4 of the driver.

The serial driver at present does not implement a read timeout, so attempting
to install an ADAM unit (other than the 4520) that is not connected, switched
off, or configured with different data communications settings will hang the 110
process indefinitly.
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A.4 CSIRO and GreenSpring IP Carriers
Module ident code atc10, atc30, atc40

Module Description

The GreenSpring ATC-40 and GreenSpring ATC-30 are ISA bus IP carriers which
provide four and three 1P slots respectively (channel type ip). The CSIRO/MST
ATC-10 is a PC/104 bus carrier which provides one IP slot.

Configuration Options

—address <address> Default 0xfc0000. The 24-bit I1ISA module base address.

-bus <channel> Default isa.0. The channel representing the 1SA bus. This
only needs to be specified where there are multiple 1SA busses, which is
unlikely.

-irq <irq-number> Default 0. The ISA bus interrupt request line the board is
jumpered to use, one of 3, 4, 5,6, 7, 9, 10, 11, 12, 13 or 15, or 0 to indicate
none. This option currently has no effect.

Driver Status

This is a bare-bones implementation. Memory 1Ps are mapped only to their
default 2k segments, and vectored interrupts are not supported at all. This
document relates to revision 1.5 of the driver.
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A.5 BVM IP-ADC Analogue to Digital Convertor
Module ident code bvmipadc

Module Description

The BVM 1P-ADC (different to the GreenSpring IP-ADC) provides sixteen isolated,
differential 12-bit ADCs. A built-in timer covering the channel select settling
period simplifies the driver considerably. Input is 0-5V or 0-20 mA if the 250 Q
current loop sense resistors are added.

Configuration Options

-slot <channel> Mandatory. Specifies the slot in which the 1P is installed.

-gain <gain> Default 1.0. Specifies the gain of the pre-amplifier stage. This
should be computed from the value of resistor R1 according to

49400
G=——+1
RL
In the factory configuration R1 is open, so the default (and minimum) gain
is unity.

-cloop/-no-cloop Default -no-cloop. Indicates the 250 €2 current-loop resis-
tors are installed, and the channel range is 0-20mA. This option applies
to all channels at once.

-poll/-no-poll Default -no-poll. Indicates the module driver should poll-
wait for ADC conversions, rather than use the conversion timer, which can
produce long bus cycles.

Driver Status

The ADC correction factors stored in the ID-PROM are not as yet used, otherwise
this driver is complete. This document relates to revision 1.10 of the driver.
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A.6 Diamond MM-32-AT Multi-IO PC/104 board
Module ident code dmm32at

Module Description

The Diamond DMM-32-AT is a PC/104 module providing highly configurable 16-
bit analogue-to-digital, 12-bit digital-to-analogue and 8-bit digital 10 facilities.
This driver supports most configurations.

Configuration Options

-bus <channel> Default isa.0. The bus in which the module is installed (110
regards PC/104 and 1SA busses as equivalent).

-address <address> Default 0x300. Module address in port space, set by J7.
Must be one of 0x100, 0x140, 0x180, 0x200, 0x280, 0x300, 0x340 or 0x380.

-adcconfig <config> Default 0. Analogue-to-digital input configuration code,
which selects the number and type (single-ended or differential) of the ADC
channels. This must correspond to the setting of jumpers set J1-6. See the
Diamond DMM-32-AT instruction manual, page 9. In the table below, an
installed jumper is indicated by M, and a removed jumper by [J. Note that
for practical reasons configuration 2 is not supported.

<config> Channels 123456 Configuration and Header

0 32 EEOO00  0-31 SE A
1 16 UONEEE 0-15 DI B
3 24 Hm/® 0-7 sg, 815 D1, 16-23 s D

-adcrange <range> Default 0.  Analogue-to-digital input reference and gain
code, presently for all channels. Note that codes 4 to 7 are not allowed, and
that some ranges are duplicates. See the manual, page 22.

<range> Input Range <range> Input Range
0 +5.0V 1 +25V
2 +1.25V 3 +0.625V
8 +10.0V 9 +5.0V
10 +2.5V 11 +1.25V
12 0-10.0V 13 0-5.0V
14 025V 15 0-1.25V

-adcscan <scan> Default 2. Analogue-to-digital input settling time code. The
hardware waits at least this time after channel and gain changes. A <scan>
of 0 corresponds to 20 us, 1 to 15 us, 2 to 10 us, and 3 to 5 us. The manual
recommends against changing this value.

-dacrange <range> Default 0. Digital-to-analogue output reference and gain
code, for all channels. See manual, page 10. <range> must match the
setting of J8 as shown below.

<range> | 5PBR Output Range and Note
0 OmCOmd +£5V
1 Omoom 0-5.0V
2 mOOm +100V
3 ECOO0OE  0-10.0V
4 OOmm] +MV specify M using -dacmax
5 OomOm 0-MV specify M using -dacmax
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-dacmax <max> Mandatory. Must be specified if an argument of 4 or 5 has been
given to -dacrange. <max> is the maximum voltage the digital-to-analogue
convertor has been adjusted to (the quantity M in the previous option). It
must be between 0 and 10.0 V. It is adjusted using a separate DMM-32-AT
calibration program.

—-dioconfig <config> Default 0. Controls the configuration of the DMM-32-
AT’s 8254 digital input-output chip emulation. All Mode 0 configurations
which do not split the chip’s Port C are supported. Modes 1 (latched) and 2
(bi-directional bus) are not supported. The table below shows how 110 di8
and do8 channels are mapped onto the the three 8-bit ports (A, B and C).

<config> Port A Port B Port C

0 di.o di.1 di.2
1 di.o di.1 do.0
2 di.o do.0 di.1
3 di.o do.0 do.1
4 do.0 di.o di.1
5 do.0 di.o do.1
6 do.0 do.1 di.o
7 do.O do.1 do.2

-auxdi/-no-auxdi Default ~auxdi. Enables the use of the four auxiliary digital
input bits, which are otherwise connected to the 8255 timer/counter chip.
The inputs can be read through a di4 channel.

-auxdo/-no-auxdo Default -auxdo.  Enables the use of the three auxiliary
digital output bits, which are otherwise connected to the 8255 timer/counter
chip. The outputs are controlled by a do3 channel.

Driver Status

The 8254 timer/counter chip is not currently supported. Preamplifier gains other
than 1 appear not to work on modules with revision numbers 2L. This document
relates to revision 1.3 of the driver.
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A.7 GreenSpring IP-DAC Digital to Analogue Unit
Module ident code ipdac

Module Description

The GreenSpring 1P-DAC Digital to Analogue Convertor 1P provides size indepen-
dent 12-bit DAC channels with individual jumper-selectable output ranges.

Configuration Options

-slot <channel> Mandatory. Specifies the slot in which the 1P is installed.

-range <code> Default 0. Specifies the default output voltage range the mod-
ule is jumpered to use, when not overridden by a -range.<chan> for a
particular channel.

-range.<chan> <code> Default 0. Specifies the output voltage range the mod-
ule is jumpered to use for local channel number <chan>.

The following table gives the option arguments for both -range.<chan>
and -range:

<code> Range

0 0to+5V

1 0to +10V

2 —2.5to +2.5V
3 —5to+5V

4 —10 to +10V

Driver Status

The current output and dual-DAC capabilities of the IP-DAC are not supported.
The driver does not use the ID-PROM factory calibration information. This doc-
ument relates to revision 1.11 of the driver.
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A.8 GreenSpring IP-Digital 24
Module ident code ipdigital24
Module Description
The GreenSpring IP-DIGITAL 24 provides 24 digital 10 lines, organised as three

banks of 8-bit registers. The output drivers are open-collector and are per-
manantly linked to the input channels, making them ocio8 type channels.

Configuration Options

-slot <channel> Mandatory. Specifies the slot in which the 1P is installed.

Driver Status

This driver is complete. This document relates to revision 1.12 of the driver.
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A.9 GreenSpring IP-Dual PI/T
Module ident code ipdualpit

Module Description

The GreenSpring IP-DIGITAL 48 and IP-DUAL PI/T provide two MC68230 PI/T
chips. The only practical difference between the two is which PI/T pins are
brought out to the 50-way connector; for the Digital 48 the Port C/dual function
pins are available (and are intended for use as digital inputs or outputs), but
for the 1P-DUAL P1/T the digital 10 handshaking lines are provided. The soft-
ware implication is that some of the chip modes are made unavailable in certain
combinations, as the mode is not useful if certain pins cannot be connected.

At the moment, configuration of the PI1/T chips is fixed to provide only one
32-bit digital input port, type di32. This ignores most all the capability of the
Motorola MCc68230, which is a complicated multi-modal affair. Because we have
to use the handshaking pins, we cannot use port C of either chip.

Configuration Options

-slot <channel> Mandatory. Specifies the slot in which the 1P is installed.

-ipdigital48/-no-ipdigitald8 Default -no-ipdigitald8. Indicates this 1P
is really an IP-DIGITAL 48 jumpered to operate as a IP-DUAL PI1/T. There
are sixteen soldered jumpers located under the PI/T chips.

Module Usage

To function with this driver, the IP-DUAL PI/T requires external wiring. The
handshake output pin H2 of p1/T X (pin 20 on the 50-way connector) must be
connected to handshake input H3 of P1/Ts X and Y (pins 22 and 47). Avoid using
long ribbon cables for this wiring, as the high capacitance has been observed to
cause malfunctions.

The data bits are arranged as follows:

Data Bits Port Pins
D00 to DO7  p1/T X port A 1to8
D08 to D15 p1/T X port B 9 to 16
D16 to D23  p1/T Y port A 26 to 33
D24 to D31 P1/TY port B 34 to 41

Driver Status

I must recommend against using this 1P for just about anything. It is difficult to
understand and use, has poor output drive capability, and in any case you don’t
really get 48 digital input/outputs in most of its modes.

This document relates to revision 1.5 of the driver.
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A.10 GreenSpring IP-Quadrature Quadrature Decoder
Module ident code ipquadrature

Module Description

The GreenSpring IP-QUADRATURE is an IndustryPack compatible module pro-
viding four independent 24-bit quadrature decoder channels. Channels may also
be used as general purpose up/count counters. Inputs are configured as either
single-ended (TTL/CMOS) or differential (RS-422) by removing the appropriate
120 Qresistive terminator on the 1P.

Configuration Options

-slot <channel> Mandatory. Specifies the slot in which the 1P is installed.

-prescaler <factor> Mandatory. Specifies the quadrature prescalar gain.
Valid <factor>s are 1, 2, or 4 times quadrature count.

Driver Status
The hardware counter range of the IP-QUADRATURE has been extended in soft-
ware from 24 to 32 bits by decoding the carry, borrow, and sign status bits.

The 1P-QUADRATURE has a wide variety of programmable input polarity and
counter mode operations which are not currently implemented as command line
options.

This document relates to revision 1.3 of the driver.

Author

Jonathon Ralston, CSIRO Division of Exploration and Mining
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A.11 GreenSpring IP-Serial
Module ident code ipserial

Module Description

The GreenSpring IP-SERIAL provides a Zilog SCC chip, which provides two stan-
dard asynchronous serial channels.

Serial devices are not directly supported by 110. Instead, this proxy driver
calls an operating system-specific program specified using the —-init option. This
program should initialise the scCc hardware and insert the necessary entries into
the operating system kernel data structures or driver tables, so that the hardware
appears to the user as an ordinary serial device. Other programs, or 110 drivers
that require serial devices (such as the adam4520 units), can then access and
configure them using the normal operating system mechanisms.

In this way, the 110 configuration file, module identity checking, and address
resolution mechanisms can be used, without duplicating the serial device support
that exists within most operating systems.

Configuration Options

-slot <channel> Mandatory. Specifies the slot in which the 1P is installed.

-init <program> Mandatory. Specifies the operating system-specific initiali-
sation program to be called when the module is initialised. See below for
details.

-argument . <chan> <args> Default "". Additional arguments to be passed to
the operating system-specific initialisation program. <arg> is not inter-
preted in any way. Channel 0 refers to sSCC channel A, and channel 1 refers
to scc channel B. In the case of UNIX-like operating systems, these options
might be used to specifiy the names of the character-special files the serial
devices should be installed as.

Module Usage

The operating system-specific initialisation program should be an executable pro-
gram or script in the case of UNIX-like operating systems, or a C function in the
case of shared-memory multi-tasking systems. The name of this program or
function should be given as <program>.

The program or function <program> is executed once for each SCC channel.
The arguments are the physical addresses of the control and data registers respec-
tively (as hexadecimal numbers), then any additional arguments specified using
—argument . <chan>.

The program may be executed more than once in the lifetime of a system, so
it should first check if the serial device has already been installed. The program
should print a message to a logging stream and return a non-zero status if it
cannot install the device. Unfortunately, there is no easy way to return the
message to the 110 program that called it.

To view the arguments being passed to <program>, specify it to be /bin/echo;
to discard the arguments, specify /bin/true.

Driver Status

This driver is complete. This document relates to revision 1.5 of the driver.
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A.12 GreenSpring IP-Servo
Module ident code ipservo

Module Description

The GreenSpring IP-SERVO provides twin LM628 closed-loop position or velocity
servo chips, each with 32-bit incremental encoder inputs and 12-bit +5V range
DAC outputs. These generally connect to the velocity drive of a servo amplifier
and motor. The digital PID servo loop operates at 256 us or 3906 Hz. The driver
implements two servo controller channels, type sc, as described in Section E.10.5.

Configuration Options

-slot <channel> Mandatory. Specifies the slot in which the 1P is installed.

-lines.<chan> <lines> Default 1. Specifies the number of encoder lines (or
counts) per user unit (for example, 4000 lines/m) for channel <chan>. This
is equivalent to subsequently specifying the user unit scale factor for the
channel using the channel configuration file directive, except the factor is
also used when other servo parameters (such as loop gains) are specified.
In the following options the user unit is U.

-unit.<chan> <unit> Default (none). Specifies the user unit name of U. This
is equivalent to subsequently specifying the user unit name for the channel
using in the channel configuration file directive.

-pgain. <chan> <pgain> Default 0. Specify the proportion gain of the LM628
digital servo loop. The units are V/U (volts per user unit error). In design-
ing the control system and determining the proportional gain, the gain of
the stages following the voltage output from the 1P-SERVO must be taken
into account.

-dgain.<chan> <dgain> Default 0. Specify the derivative gain of the LM628
digital servo loop. The units are V/U/s (or Vs/U), volts per user unit per
second error.

-igain.<chan> <igain> Default 0.  Specify the integral gain of the LM628
digital servo loop. The units are V/Us, volts per user unit seconds.

-imax.<chan> <imax> Default . Specifies the maximum value of the integral
feedback component in Us. The default limit is the largest the LM628 chip
will accept (equivalent to 32767 chip units).

-dperiod.<chan> <period> Default 256e-6. Specifies the period of the deriva-
tive feedback computaion. 256 us is the minimum (same rate as the main
feedback loop). The maximum is 65.536 ms.

-bipolar.<chan>/-no-bipolar.<chan> Default -no-bipolar.<chan>. Indi-
cates the IP-SERVO is jumpered for bipolar operation (+5V) or unipolar
(0-5V).

-4mhz/-no-4mhz Default -no-4mhz. Indicates the IP-SERVO operates at 4 MHz
instead of 8 MHz (only very old 1P-SERVO should need this option).

Module Usage

While every effort has been made to re-package the characteristics of the LM628
chip, including real-unit scaling of the several loop parameters, many foibles
remain. Familiarity with the chip manuals and application notes is therefore an
advantage.
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Driver Status

This document relates to revision 1.7 of the 1IP-SERVO driver, and revision 1.8 of
the LM628 chip driver.
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A.13 GreenSpring IP-Watchdog
Module ident code ipwatchdog

Module Description

The GreenSpring IP-WATCHDOG provides and 8-bit digital 10 port (channel type
ocio8), a programmable periodic or watchdog timer/interrupter, external control
of VMEDbus SYSRESET, power supply range monitors (+5V, +12V, —12V and a
selectable £24 V or £48 V, channel type di8), and a programmable temperature
monitor/thermostat (channel type adc9).

Configuration Options

-slot <slot> Mandatory. Specifies the slot in which the 1P is installed.

-temphi <th> Default (previous). Specifies in degrees celsius the upper tem-
perature limit. If the teperature exceeds this value the temperature alarm
output bit 5 of the di8 channel will be asserted. The default value is the
previous setting (it is stored in non-volatile memory).

—-templo <th> Default (previous). Specifies in degrees celsius the lower tem-
perature limit. If the teperature falls below this value the temperature
alarm output bit 5 of the di8 channel will be asserted. The default value
is the previous setting (it is stored in non-volatile memory).

Module Usage
The interpretation of the digital in port (di8.0) is as follows:

Bit Channel Meaning

0 bi.0 +5V power supply out of accepable range

1 bi.1 412V power supply out of accepable range

2 bi.2 —12V power supply out of accepable range

4 bi.4 424V or 48V supply out of accepable range
5 bi.5 temperature out of specified range

The 110 bitfield channels can be used to conveniently read these bits. The local
channel names are given above.

Driver Status

Currently, only the digital 10 and the monitors are implemented in this driver.
Interrupts are not supported. This document relates to revision 1.7 of the driver.
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A.14 Generic ISA PC
Module ident code isapc

Module Description

This module must be installed first on generic 1SA (‘Industry Standard Architec-
ture’) machines (i.e., PCs). It installs a single 1SA bus channel isa.0 which is
used by other 1SA bus modules for address resolution.

Configuration Options

-mbytes <size> Default 0. Indicates the PC is fitted with <size> megabytes of
memory. This causes all 110 memory address resolution operations on the
isa.0 channel with physical addresses below <size> to fail. It is intended
to catch the installation of 1SA modules at addresses that would clash with
memory.

Module Usage

The 1SA bus provides two address sub-spaces, a 24-bit memory space and a 16-bit
port space. The port space is not memory mapped, and so drivers for modules
with registers in this space must use the iio_space_port address space oper-
ation code for address resolution and mapping, and the iio_port_get() and
iio_port_set () functions to access them.

The 24-bit 1SA bus memory space is shared with on-board RAM, so usually
only accesses to the segment above the top of system RAM will cause ISA bus
memory cycles. If more that 16 Mb of RAM is installed, the 1SA bus is essentially
unavailable. On some systems, however, it may be possible to exploit a ‘hole’ in
between the top of video adaptor memory and the bottom of the BIOS ROM, at
addresses such as 0x0d0000, to install small ISA memory mapped modules.

The memory cache should be disabled for those addresses used to access ISA
modules. The cache is believed to have caused difficulties in some cases. The
BIOS set-up menus can usually be used to exclude selected address ranges from
being cached.

There are two forms the 1SA bus modules and slots. The original PC form
has an 8-bit data bus and a 16-bit address range. These are sometimes referred
to as ‘8-bit 1SA’, although ISA terminology is not always consistent. The second
PC/AT form has a 16-bit data bus and a 24-bit address space, with an extra
edge connector to carry the additional signals. These are known as ‘16-bit ISA’
modules. The 24-bit address space is a superset of the 16-bit space.

There is a third form, called EISA or Extended 1SA. These have 32-bit data
and address busses, and use peculiar double-row edge connectors, for backward
compatibility with normal ISA modules. EISA cards are rare, and the term is often
thought to refer to 16-bit 1ISA. EISA has been supplanted by the PCI bus.

Driver Status

This document relates to revision 1.6 of the driver.
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A.15 Motorola MVME160 series MPU boards
Module ident code mvme162, mvmel621x, mvmel67

Module Description

This module driver should appear first in the configuration file for systems based
on Motorola MVME-160 series Mc68040 MPU boards (MVME-162 and MVME-
167). It provides one channel vme.0 for use by other vMEbus boards for address
resolution.

Configuration Options

There are no module-specific options.

Driver Status

This driver only performs address resolutions using the two fixed maps (A16/D16
and A24/D16) of the vMEchip2 AsiC. The other four mappings are usually set up
by the operating system. Eventually, all mappings should be used for resolutions.
The driver does not yet provide the two or four 1P channels (type ip) on the
MVME-162LX and MVME-162 respectively.

This document relates to revision 1.9 of the driver.
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A.16 Motorola MVME1600 series MPU boards
Module ident code mvme1603, mvmel604

Module Description
This module driver should be installed first on MVME-1600 series of PowerPC

MPU boards (MVME-1603 and MVME-1604). It provides one channel vme.0 for
use by other vMEDbus boards for address resolution.

Configuration Options

There are no module-specific options.

Driver Status

This driver only performs address resolutions using the two fixed maps (A16/D16
and A24/D16) of the vMEchip2 and the vME2PCI Asics. The other four mappings
are usually set up by the operating system.

This document relates to revision 1.11 of the driver.
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A.17 Null Module
Module ident code null

Module Description

The null module is used internally by the 110 library. It installes a single channel
null.0. Operations on this channel always succeed. Read operations on this
channel always return zero, and address resolution operations always return the
original address.

Configuration Options

There are no module options. The module is automatically installed, and should
not appear in configuration files.

Driver Status

It is possible that a re-design of the address resolution mechanism will make this
driver unnecessary.
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A.18 Generic PC Game Port
Module ident code pcgp

Module Description

The generic PC game port module provides four potentiometer and four switch
inputs. Only the switch inputs are supported by this driver. Game ports are
often integrated into ISA motherboards or sound-cards.

Configuration Options

-bus <channel> Default isa.0. Specifies the bus in which the module is in-
stalled.

This module always has address 0x201. At most one may be installed.

Driver Status

The principal value of the game port that it provides a convenient +5V DC supply
outlet. The driver is a simple example of one for an ISA port-mapped module.

The potentiometer inputs cannot be read except with the aid of a software
timing loop, which is not practical in multi-tasking systems. This document
relates to revision 1.3 of the driver.
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A.19 Generic PC Printer Port
Module ident code pcpp

Module Description

The pC printer port module supports generic and IEEE-1284 compatible parallel
interfaces in several modes.

Configuration Options

-address <address> Default 0x378. Must be one of 0x378 (for hardware
configured to be MS-DOS LPT1:), 0x278 (LPT2:), 0x3bc (LPT3: or PRN:).

-irq <irg> Default 7. Interrupt setting. Currently ignored.
-bus <channel> Default isa.0. The bus in which the module is installed.

-mode <mode> Default spp. Printer port mode. Must be one of spp, sppi,
epp or eppa, described below. <mode> determines what 10 resources are
available.

Module Usage

Printer port hardware varies widely, particularly that which pre-dates the IEEE-
1284 standard. For instance, some ‘standard’ hardware uses open-collector drivers
instead of totem-pole drivers. Some hardware features a bi-directional data port,
while other hardware does not.

The 1EEE-1284 standard more clearly defined the parallel port design, and
formalised a number of modes of operation. This driver supports the IEEE-1284
Compatibility (sPP), Byte, and EPP modes, which appear most useful for 110-style
applications, and ignores the Nibble and ECP modes.

spp Standard Parallel Port mode. This assumes the Compatibility mode de-
fined by IEEE-1284 and models pre-IEEE-1284 hardware, with the caveats
mentioned above. Most old parallel ports should work with this mode.

The data lines provide a do8 channel, and the four printer control lines a
further oco4 channel. The five status lines provide a di5 channel. The
assignment of channel bits to connector pins is shown in Table A2

sppi Standard Parallel Port input mode. In this mode the data lines are used
as a di8 channel. This is possible only if the parallel port hardware has
a bidirectional capability which works in the standard manner. The oco4
and di5 channels remain.

It would be possible, but not practical, to have used the data lines as a
reversible rdio channel, but there is no hardware indicator of the direction
of data flow which external hardware could use. For this sort of application
the epp mode should be used.

epp Enhanced Parallel Port mode. This bidirectional mode provides two rdio8
channels (‘address’ and ‘data’) which share the data lines. The status and
control lines are used for hardware data transfer strobes, which are defined
in the Intel/Xircom/Zenith/IEEE EPP standard.

A full description of EPP operation is beyond the ambit of this document,
but briefly, data direction is controlled by the WRITE output, and data is
latched on the rising edge of the ADDRSTROBE or DATASTROBE output as ap-
propriate. The ‘address’ port is 110 channel rdio8.0, and ‘data’ rdio8.1.
The strobe output much be acknowledged by the rising edge of the WAIT
input to complete the cycle.

Note that there are two versions of the EPP standard, 1.7 and 1.9. The
difference lies in the value of WAIT needed at the start of each cycle.
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eppa Enhanced Parallel Port addressable mode. FEzperimental. This uses the
EPP’s addressing capability to provide up to 128 di8 and 128 do8 channels,
assuming the EPP address port is used as a latch/buffer selector. This mode
requires external hardware conforming to a specific (although fairly simple)
design.

Warning. The parallel port hardware was not intended for industrial use, and,
in spp and sppi modes at least, should not be connected to any potentially
hazardous actuator. This is because the outputs change state once, and some-
times more, during PC reset, BIOS initialisation, operating system booting, and
11O startup.

A more robust approach would use epp mode, as the hardware is unlikely to
initiate a spurious EPP data cycle on startup.

Configurable Hardware. Modern parallel ports allow the hardware to be con-
figured (often using the BIOS menus) to emulate various parallel port standards.
For maximum flexibility an ‘ECP+EPP’ setting is preferred. ECP mode usually
permits Compatibility and Byte modes (used by the 110 spp and sppi modes)
and well as ECP, and the ECP mode is used by the 110 epp and eppa modes.

Driver Status

This document relates to revision 1.3 of the driver.

Channel (spp/i) Bit Signal (spP) Pin Signal (EPP) Channel (epp) Bit

oco4 3 SEL 17 ADDRSTROBE
oco4 2 INIT 16 RESET
ocod 1 AFD 14 DATASTROBE
oco4 0 STROBE 1 WRITE
do8 or di8 7 DATA7 9 DATA7 rdio8.0-1 7
do8 or di8 6 DATA6 8 DATA6 rdio8.0-1 6
do8 or di8 5 DATAS5 7 DATA5 rdio8.0-1 5
do8 or di8 4 DATA4 6 DATA4 rdio8.0-1 4
do8 or di8 3 DATA3 5 DATA3 rdio8.0-1 3
do8 or di8 2 DATA2 4 DATA2 rdio8.0-1 2
do8 or di8 1 DATA1 3 DATA1 rdio8.0-1 1
do8 or di8 0 DATAO 2 DATAO rdio8.0-1 0
dib 4 BUSY 11 WAIT
dib 3 ACK 10 INTERRUPT
dibs 2 PE 12
dib 1 SELIN 13
dibs 0 ERR 15

GROUND 18-25 GROUND

Table A.2 Parallel Port D-25 connector pin assignments in 110 spp and sppi modes (left) and epp
mode (right).
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A.20 Phantom Module
Module ident code phantom

Module Description

The phantom module driver inserts arbitary channel nodes into the channel node
list, creating in effect ‘phantom’ channels. These channels may be opened and
operated upon like any other channel; the generic operation codes iio_op_read,
iio_op_readback, iio_op_write, and iio_op_clear are implemented. Opera-
tions do nothing, except that the data from iio_op_write operations is stored,
and is returned one a subsequent iio_op_read or iio_op_readback.

Configuration Options

-type <type> Default do32. The type and width of the phantom channels. For
instance, adc16 refers to a 16-bit ADC channel. Any legal channel type or
width may be specified.

-number <number> Default 1. The number of channels of the given <type> to
insert.

Module Usage

There are two main uses for this module:

e where hardware in a system has failed or has been removed, the
phantom module can be used to put the equivalent number of chan-
nels back in to the system, so that existing programs can continue to
run.

e where a new program, or the 110 library itself, is being tested, and it
may be unsafe to connect real hardware. In this case, channel logging
is generally enabled, using the -log switch in the configuration file.

Driver Status

The appropriateness of module operations is not checked, so it is possible, for
example, to write to input devices without error.
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A.21 Tews TIP-850-11 ADC/DAC
Module ident code tews850

Module Description

The Tews DatenTechnik T1P-850-11 is an Industry Pack compatible module pro-
viding eight differential or sixteen single-ended 12-bit ADCs (software selectable),
as well as four independent 12-bit DACs. The TiP-850-11 provides input voltage
ranges of £1.25, +£2.5, +5 and £10V, and output range of +£10V. Minimum
single channel throughput is 100 kHz.

Configuration Options

-slot <channel> Mandatory. Specifies the slot in which the 1P is installed.

-gain <gain> Default 1.0. Specifies the gain of the pre-amplifier stage. Valid
options for the Tip-850-11 are 1, 2, 4, or 8, corresponding to £10, %5,
£2.5, or £1.25V respectively.

Driver Status

The ADC correction factors stored in the ID-PROM are not used. The gain factor
currently applies to all channels, although is is possible to have different gain set-
tings for each individual channel. The T1P-850-11 supports interrupt generation
on analogue-to-digital conversion (e.g., cf. the GreenSpring IP-PRECISION-ADC,
but the TIP-850-11 auto-settle option does not delay bus cycles (e.g., as in the
bvm IP-ADC). As a consequence, a conversion-complete flag is polled to ascertain
conversion status.

This document relates to revision 1.5 of the driver.

Author

Jonathon Ralston, ¢SIRO Division of Exploration and Mining
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A.22 GreenSpring VIPC610 VME IP Carrier
Module ident code vipc610

Module Description

The GreenSpring viPC-610 and VIPC-616 are 1P carriers providing four 1P slot
addressed from the vMEbus. The VviPC-616 is an updated model with more
features.

Configuration Options

-address <address> Default 0x6000. Specifies the address in VMEbus short
(A16) space where the module is located.

-bus <channel> Default vme.0. Specify the channel representing the vMEbus
in which the module is plugged. This option is only useful in multi-vMEbus
systems, which are rare.

-memory/-no-memory Default -no-memory. Indicates that 1P memory is map-
ped to the vMEDbus A24 space.

Driver Status

The features of the viPCc-616 which are not identical to the viPc-610 are not
supported. Interrupts are not supported in either case.

This document relates to revision 1.12 of the driver.
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A.23 VMIC Digital I0 Modules VMIVME-2532A and
VMIVME-2534
Module ident code vmivme2532a, vmevme2534

Module Description

The VMIC VMIVME-2532A and VMIVME-2534 provide two 16-bit high-voltage
digital 10 channels (type ocio16) on the vMEbus. The only difference between
them is the connector arrangement (front panel on the VMIVME-2532A and via
VMEbus P2 on the VMIVME-2534).

Configuration Options

-address <address> Default 0xf£f60. Specifies the address in VMEbus short
(A16) space where the board is located.

-bus <channel> Default vme.0. Specify the channel representing the VMEbus
in which the module is plugged. This option is only useful in multi-vMEbus
systems, which are rare.

Driver Status

This document relates to revision 1.14 of the driver.
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A.24 VMIC VMIVME-4100 VME Digital to Analogue
Module
Module ident code vmivme4100

Module Description

The vMIC VMIVME-4100 provides 16 12-bit DAC channels on the VMEbus (chan-
nel type dac12).

Configuration Options

-address <address> Default 0x0. Specifies the address in vMEbus short (A16)
space where the module is located. The factory default is silly.

-bus <channel> Default vme.0. Specify the channel representing the VMEbus
in which the module is plugged. This option is only useful in multi-vMEbus
systems, which are rare.

Module Usage

The board should be set up for update under program control (jumpers JC1 to
JC4 are in), rather than immediate mode (the factory default). This permits the
driver to load a range of channels into the DAC preload registers, then promulgate
them all at once, for simultaneous update.

If the jumpers are out, the individual output will probably update immedi-
ately, and the attempted promulgate will do nothing. Similarly, if the jumpers
are in, and the external update jumper (JC5) is in as well, the promulgate will do
nothing and promulgation will be caused by a low-pulse inserted into the external
trigger input.

Therefore, there are no driver options for these two setups.

Driver Status

This driver has not yet been tested. This document relates to revision 1.7 of the
driver.
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Using the I1O Interactive
Interface

While the 110 library is intended for linking with specific-purpose application
programs, a general purpose interactive shell program iio is also provided. This
can be used to check configuration files, manually operate channels, and print
lists of available modules and channels. The program uses the GNU ‘readline’
command-line history and editing library, where this is available.

The program is started by typing iio at the UNIX command line. It responds
with a preamble and prompt

% iio
This is an initial II0 process
Library timestamp 970205123355
iio>

As described in Section [(-6.4, 110-using UNIX processes use a common shared-
memory block for module state, where this is possible. The initial 110 process
establishes the block, and subsequent processes attach to it. Only programs
linked with 110 libraries with identical time-stamps can attach.

The help command produces the following information:

iio> help

Commands :
alias print alias list
chnode print channel node list
map print virtual/physical map
minfo print module info list
module print installed module list
operate operate on a channel
execute execute UNIX command
help print this message
quit quit program

Commands can be abbreviated

Each of the commands, except help and quit, will now be described, assum-
ing the the following iio.conf file:

# config file for dline

module mvmel603 # -log
module vipc610 -address 0x6000 # -log
module vipc610 -address 0x6800 # -log
module bvmipadc -slot vipc610.0:ip.0 # -log
module ipdac -slot vipc610.0:ip.1 # -log
module ipdigital24 -slot vipc610.0:ip.2 # -log
module ipdigital48 -slot vipc610.0:ip.3 # -log
module ipwatchdog -slot vipc610.1:ip.1 # -log
module ipservo -slot vipc610.1:ip.2 # -log

alias hoist_volt bvmipadc.0:adc.0O
alias hoist_amp bvmipadc.0O:adc.1
alias hoist_reg bvmipadc.0O:adc.2
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B.1 The alias Command

This lists the aliases specified in the configuration file. Aliases are described fully
in Section B=3.

iio> alias

type name value
global hoist_amp = bvmipadc.0O:adc.1
global hoist_reg = bvmipadc.0:adc.2

global hoist_volt = bvmipadc.0:adc.0

B.2 The chnode Command

This lists the names and number of channels associated with each of the modules
defined in the configuration file (the channel nodes):

iio> chnode

num name (gg) name (gs) name (1g) name (1s)
16 adc.0-15 adc12.0-15 bvmipadc.0:adc.0-15 bvmipadc.0:adc12.0-15
6 dac.0-5 dac12.0-5 ipdac.0:dac.0-5 ipdac.0:dac12.0-5
3 dio.0-2 dio8.0-2 ipdigital24.0:dio.0-2 ipdigital24.0:dio8.0-2
4 ip.0-3 ip0.0-3 vipc610.0:ip.0-3 vipc610.0:ip0.0-3
1 null.0-0 null0.0-0 null.0:null.0-0 null.0:null0.0-0
1 vme.0-0 vme0.0-0 mvmel67.0:vme.0-0 mvme167.0:vme0.0-0

Each channel node comprises a group of channels of exactly the same type.
The number of channels is given in the first column. The four forms of the channel
names are given in the remaining columns: global generic, global specific, local
generic, and local specific. Channel names are described in Section EZ.3-2.

B.3 The map Command

The prints out the physical-to-logical mappings the 110 library is using:

iio> map
paddr vaddr size size
0xf£££6000 0x80000000 0x00001000 4096

paddr refers to processor physical address of start of mapped segment: vaddr
is the logical address of start of mapped segment. The size of the segment is
given in hexadecimal and decimal. These mappings are created by the calls to
iiomap() performed by module drivers during their installation, as described in
Section B34.

B.4 The minfo Command

This provides information on all the supported modules (the module info blocks):

iio> minfo
ident install init mul model rev
atc30 0x00008768 0x0000872a yes GreenSpring ATC30 IP Carrier
atc40 0x00008768 0x0000872a yes GreenSpring ATC40 IP Carrier
bvmipadc 0x000057c2 0x000056ba yes BVM IP-ADC
ipdac 0x00005eb8 0x00005d54 yes GreenSpring IP-DAC
ipdigital24 0x00006620 0x0000657c yes GreenSpring IP-Digital 24
ipservo 0x0000ab8e 0x0000aa44 yes GreenSpring IP-Servo
ipwatchdog 0x000093ca 0x000092ec yes GreenSpring IP-Watchdog
isapc 0x00008ec2 0x00008e88 no ISA PC 1.1

e
~N o O e

[
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mvmel603 0x00006dbe 0x00006d8c no Motorola MVME1603 MPU
mvmel604 0x00006dbe 0x00006d8c no Motorola MVME1604 MPU
mvmel62 0x00006a12 0x000069e0 no Motorola MVME162 MPU
mvmel621x 0x00006al2 0x000069e0 no Motorola MVME162LX MPU
mvmel67 0x00006a12 0x000069e0 no Motorola MVME167 MPU
null 0x0000d97e 0x0000d970 no <null>
phantom 0x0000db9c 0x0000db00 yes <phantom>
vipc610 0x000072fa 0x000072d2 yes GreenSpring VIPC610 IP Carrier
vmivme2532a 0x000078d2 0x000077d0 yes VMIC VMIVME-2532A Digital IO
vmivme2534 0x000078d2 0x000077d0 yes VMIC VMIVME-2534 Digital IO
vmivme4100 0x00009a3c 0x00009924 yes VMIC VMIVME-4100 16-chan DAC

N e = e S
WO OWowowwOouou o NN

As described in Section b.2, each module driver identifies itself to 110 using its
identification function. The information from this process is stored in the module
information (minfo) list.

The first column, ident, is the unique model identifier, described in Sec-
tion B2271. The following two columns are the addresses of the module driver
installation and initialisation functions described in Sections B3 and B4. The
mul column indicates of the module can be installed more than once. The re-
maining columns give a fuller description of the module and the RCS revision
number of the module driver.

B.5 The module Command

This prints the module list, the modules that are actually installed:

iio> module
ident seq state reg log model
bvmipadc.0  0x00017a60 0x00017610 no  BVM IP-ADC
ipdac.0  0x00017cc8 0x000172a98 no  GreenSpring IP-DAC
ipdigital24.0  0x00000000 0x00017d08 mno  GreenSpring IP-Digital 24
mvmel67.0  0x00000000 0x00000000 no  Motorola MVME167 MPU
null.0  0x00000000 0x00000000 no  <null>
vipc610.0  0x00000000 0x00017478 no  GreenSpring VIPC610 IP Carrier

While parsing the configuration file, 110 builds this list of installed modules.
The first column is the module ident, including the module sequence number
(Section R.2.1)). The following two are the addresses of the register and state
structures of the module driver, described in Sections p.3.1 and p-3-3. The log
column indicates if logging of module operations is enabled. The module column
is a duplicates of that in the minfo list.

B.6 The operate and oinfo Commands

The command takes the form
operate <channel> <operation> | <data> ...]

and actually performs the given operation on the channel or channel range. Al-
ways check it is safe to perform the operation. In other words, make sure
that equipment connected to the 10 system will not cause a hazard when oper-
ated. Take particular care with output channels, such as servo systems or power
relay controls.

The command oinfo gives information on the range of available operations:
iio> oinfo

name type
00 nop
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01 show

02 read out data

03 readback out data

04 write in data

05 clear

06 space-io in out addr
07 space-id in out addr
08 space-int in out addr
09 space-mem in out addr
10 space-meml6 in out addr
11 space-mem24 in out addr
12 space-mem32 in out addr
13 sc-start

14 sc-stop

15 sc-free

16 sc-read-current out data

17 sc-read-target out data

18 sc-read-index out data

19 sc-write-current in data

20 sc-write-target in data

21 sc-write-target-dt in data

22 sc-write-target-ddt in data

For write-type operations with the operate command, there must be as
many <data> numbers as channels, so if the operation is on, say, adc.0-3 than
there should be four numbers.

The type of user data is determined from the syntax of the data. If there
is a period . in any of the data, the iio program calls iio_operate real()
to perform the operation, and the channel scale and offset factors for real data
apply. Otherwise, for decimal, octal or hexadecimal integer data, iio_operate()
is used.

Here are some examples of the use of operate:

iio> op do.0 write 1
do.0: write[1]:
adam4012.0:d02.0: ii[0]: 00000001 <- 1

iio> op adc.25 read
adc.25: read[1]:
adam4012.0:adc16.0: ir[0]: 000006de -> 1.758 V

iio> op adc.25 write 2.3
adc.25: write[1]:
operate: adc.25: Operation code not supported by channel

iio> op do.0 readback
do.0: readback[1]:
adam4012.0:do2.0: ir[0]: 00000001 -> 1

iio> op dio.0-3 read

dio.0-3: read[4]:
ipwatchdog.0:dio8.0: ir[0]: 000000ff -> 255
ipdigital24.0:dio8.0: ir[1]: 000000ff -> 255
ipdigital24.0:dio8.1: ir[2]: 000000ff -> 255
ipdigital24.0:dio8.2: ir[3]: 000000ff -> 255

Here, the value 1 is written to a digital output, the ADC number 25 is read
(showing 1.758 V), then the ADC is written to (in error, as 110 knows an ADC is
an input device), and then the digital output channel is read back. Finally, a
range of four dio channels is read.

The confirmatory output from the operate command is the same as that
produced when logging is enabled on a channel or module. The first line indicates
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the channel, the operation, and the size of the user data array. The channel name
is the one by which it was opened, so it may actually be an alias name.

The subsequent lines indicate the actual simple channels being operated on.
A two-letter acronym indicates the data conversions occurring (for example, ir
means integer to real) and the number in square brackets is the index into the
user data array. The (usually) hexadecimal data is the integer data supplied by
the core 110 library to the module driver (it is not necessarily the actual data
going into the hardware device). Finally the user data, generally in real format
with units, is show.

B.7 The execute Command
execute <command> [ <arg> ...]

The execute command runs a UNIX command, for example, 1s:
iio> execute 1s

i486-1ynxos m68040-1lynxos  ppc-lynxos sparc-sunos
iio platform sparc-solaris

B.8 The script Command

This reads and executes a file of commands <script> into the iio as if they had
been typed.

script <script>
This is handy for frequently-used sequences of commands, but again, always

check the script will be safe to execute. (Use exec vi <script> to edit the
script without exiting the iio program).
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Appendix C

Installing and Maintaining the
IIO Library

C.1 110 CVS Archive

The sources to the complete 110 system, including documentation, are maintained
in the cvs (Concurrent Version System) repository at CMST Preston. You can
obtain the current version of 110 by typing

% cvs checkout iio

which will create a copy of the 110 distribution tree in the current directory. This
copy is not ‘locked’ in any way, and may be modified, moved or deleted without
damage to the master in the Cvs repository. Alterations to any of the controlled
files in the tree can be merged into the master if required.

C.2 Distribution Usage

The 110 distribution may be used in several ways. Firstly, a distribution might be
installed permanently in a public or project-group directory as a central resource.
Application programs would compile and link against the 110 header files and
library in this tree. The tree can be shared amongst different computers, because
object files and libraries are segregated according to machine architecture and
operating system, as described in later sections.

Alternatively, a copy of the distribution can be obtained and included along-
side the sources of a particular application program. This has the advantage
of insulating the application from unexpected changes to the library. However,
because the shared-memory time-stamp check on system such as LynxOS, such
applications probably will not coexist with others built using a different copy of
110.

For working on 110 itself, such as writing a new module driver, it is definitely
a good idea to obtain a fresh copy of the distribution and work from there. The
changes or new files can be submitted for inclusion in the master sources. Once
the work is complete, the distribution can be deleted.

C.3 Platform Script

The platform script, platform, prints a string that succinctly identifies a com-
puter system by its CPU architecture and its operating system. Examples of its
output are sparc-solaris and i486-lynxos. These strings are similar to the
target strings used to specify system types to GNU configure.

platform invokes the standard program uname on UNIX systems, and tidies
its output into a consistent format. The 110 Makefile uses the identifier to
segregate object code, so that the 110 library can be compiled for a number of
different computer systems at once in the one source tree.

The platform script is also used for run-time executable selection. If a
link, for example, xyzzy, is made to the script and executed on a Sparc sys-
tem, the script will in turn execute sparc-solaris/xyzzy. Multi-architecture
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bin directories can be implemented by placing the real binaries for each ar-
chitecture/operating system combination in sub-directories bin/sparc-solaris,
bin/i486-1inux, and so on. The platform script is placed in the bin directory,
and a symbolic links to it are installed for each real program in each sub-directory.
Users then need only to place the bin directory in their executable search path:
invoking the name of a program causes the platform script to execute the cor-
rect executable program. (Architecture-independent programs, such shell and
Tel scripts, still go in the bin directory).

C.4 Distribution Tree

C.4.1 Sub-Directories

The distribution tree, as it comes from the repository, contains only two sub-
directories, iio/src and iio/doc. The building process, carried out mostly by
iio/src/Makefile (Section [C.1), creates further subdirectories iio/bin, iio/h,
and iio/1lib, as well as directories for object files under iio/src/object. The
tree is illustrated in Figure [Cl.

All these have the traditional meanings. Directory iio/bin should be placed
in the command search environment variable PATH. It has subdirectories for
each platform type, as described above. iio/h contains public header files, and
iio/1ib compiled object archives. This directory has no sub-directories for plat-
form type; instead, the archive files themselves bear the platform type.

C.4.2 Sources

The sources of the 110 core library, interactive shell, scripts, and test programs are
in iio/src. There are two subdirectories: iio/src/module, which contains all
the module drivers and generic module support code, and iio/src/chip, which
contains the chip drivers and their header files.

C.4.3 Documentation

The 110 library is documented using BTEX. Sources for the manual (the document
you are reading now) are in iio/doc/manual. The original 110 proposal document
isin iio/doc/proposal. The documentation can be built by typing make in this

directory.
ito
b1n . doc h 11b src
<cpu>.—<os> manual proposal chip module obj:e ct os
module <cpu'->i—‘.<os>
ch1p mod:ule .;)-s

Figure C.1 110 Distribution Tree and Sub-directories. Solid lines indicate the directories that
are part of the original 110 distribution, while dotted lines indicate those created by
iio/src/Makefile.
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C.5 The ITIO Makefile

Building the 110 library is controlled by iio/src/Makefile. This file uses the
platform script (Section [C-3) and the facilities of GNU make to build 110 for a
variety of self- and cross-hosted targets without the need for configure and
automatically generated Makefile hierarchies.

Installers should not need to modify iio/src/Makefile at all to build 110
from the cvs distribution tree. They should simply change to iio/src and
typing make (or gmake, if this is the name GNU make was installed under):

% cd iio/src
% make

The Makefile compiles first the 110 library, and installs it in, for instance,
iio/lib/1ibiio-i486-1linux.a, on a Linux system. It then builds the 110 in-
teractive interface program iio (Appendix B)) in iio/bin/i486-1inux/iio, and
installs a link iio/bin/iio to the platform script, iio/bin/platform, as de-
scribed in Section C=3.

110 can be compiled for cross-hosted targets, such as vxWorks, by typing

% cd iio/src
% make 68040-vxworks

although this assumes the presence of the vxWorks cross-development environ-
ment.

Each time 110 is made, a new library time-stamp is created and compiled into
the library. This is essential to ensure that memory segments shared between
110-using processes are match correctly. Unfortunately, it means that is 110 is
re-made, then all 110 -using applications must also be re-made.

C.6 An ITIO Application Makefile

Application Makefiles should also use the platform script, as it makes them
more portable. The following is a simplistic example:

PLATFORM := $(shell platform)
II0 = /usr/aa/iio

INCLUDES = -I$(II0)/h

DEFINES =

LIBS = -L$(II0)/1ib -liio-$(PLATFORM)
CFLAGS = -ansi -Wall -g

CC = gcc

default: application

%: %.c
$(CC) $(CFLAGS) $(INCLUDES) $(DEFINES) -o $@ $< $(LIBS)
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Appendix D

Changes

Release 11 of the 110 library incorporated the changes summarised below. Related
changes in this document are highlighted by change-bars, as illustrated.

The types uint8_t, uint16_t ..., defined in types.h, have been changed
to iio_uint8_t, iio_uint16_t ...to avoid clashes with operating system
header files.

The number of digital channel types was expanded to discriminate between
totem-pole and open-collector style output drivers and eliminate inconsis-
tency in the use of do and dio channels. Channel types oco and ocio
have been introduced. Module drivers for the GreenSpring IP-DIGITAL 24
and IP-WATCHDOG, and the VMIC VMIVME-2532A and VMIVME-2534 were
modified to change their dio channels to ocio. The reversible digital in/out
channel type rdio was also introduced. See Section EI10.2.

A system for handling modules with registers in non-mappable port ad-
dress spaces was added, primarily for 1SA 80x86 systems. Register addresses
are resolved and mapped using the existing mechanism (except using the
iio_space_port address space operation code), but the registers themselves
must be accessed using function calls rather than the usual pointer deref-
erences (Section b.5). Support is limited to 80x86 LynxOS systems.

The module driver for the GreenSpring ATC-40 was extended to support
the CSIRO/MST ATC-10 PC/104 bus carrier, which provides one IP slot.

A module driver for the generic PC game port has been added.
A module driver for the generic PC printer port has been added.

A module driver for the Diamond DMM-32-AT PC/104 multi-10 module has
been added.

The 110 Library

Release 11
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Appendix E
IIO Proposal Document

A Uniform Interface to Industrial IO Hardware

R. J. Kirkham
May 1996

1 Introduction

Many projects within the Industrial Automation Programme in recent years have
highlighted the need for a uniform approach to controlling industrial input/output
(10) hardware from application programs. Industrial 10 hardware refers to devices
such as analogue-to-digital converters (ADCs), digital-to-analogue converters, bit-
wise digital 10 such as lamp or solenoid drivers, incremental encoder counters,
timers, interrupters, and so on.

This ‘industrial’ 10 differs from the more traditional computer 10 hardware,
such as terminals, video displays, or disk drives in several ways. Firstly, tradi-
tional 10 devices are accessed by an application program in a ‘logical’ fashion
through the computer’s operating system. The application neither cares about
or directly accesses the underlying hardware of the device, but uses high-level
operations such as open(), read(), and write().

Industrial 10, however, is almost never supported within a standard operating
system, and industrial 10 hardware, with the exception of laboratory-style 10 for
MS-DOS systems, frequently comes without any supporting software. This means
application programmers must write a ‘device driver’ for the hardware, often from
scratch. These device drivers tend to implement only the capability or style of
software interface required for the application, because they are viewed as being
part of that application. This limits their portability and usefulness to others.

A second difference between traditional and industrial 10 is the way in which
it is used. Devices such as terminals and disks, and their associated software,
tend to handle large amounts of data, so throughput is emphasised over delay.
Buffering is commonly used, as the real-time response from application program
through to device is generally not important.

On the other hand, industrial 10 tends to deal in much smaller data rates,
and delay must be minimised. This is because the application is frequently real-
time in nature, and so the timing of the 10 is controlled by, or influences, the
application program itself.

Ideally, a unified industrial 10 interface would provide a separation between
logical, generic industrial 10 devices, and the actual hardware, while retaining the
assured real-time performance of a bespoke application program resident device
driver.

2 Proposed 10 Model

2.1 A Flavour of the Interface

From the application programmer’s point of view, all industrial 10 channels would
appear organised in named arrays according to generic type. Thus, there might
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be an array of bit-wise digital input channels, digital output channels, and ADC
channels. Each channel within each type would be sequentially numbered, and
be given names such as do.0, di.34 or adc.3.

An application program would then ‘open’ a channel channel it needed to use
using a function call like:

io chan;
chan = io_open("di.34");

where chan is a ‘handle’ for the open file, essentially like a file descriptor in
UNIX. It would then use the handle for subsequent operations on the channel:

int result;
io_operate(chan, II0_READ, &result);

When finished with the channel, it would close it:
io_close(chan);

These function would, of course, return some status indication, which a real
application would examine and act upon.

2.2 Channels, Devices and Names

Channels would be the smallest individually operable unit. For bit-wise digital
10, a channel would be 1 bit wide; for an ADC it might be 12 or 14 bits. Each
channel would be available through a number of names. As well as the type
grouping suggested above, perhaps other type groupings could be used. Hence,
adc12.3, a 12-bit ADC, might also be known as adc.11, if, for instance, the first
eight ADCs were not 12-bits.

Of more direct use would be to associate meaningful names (or aliases) to
the channels. Thus, adc.3 might also be opened as fuel-level and do.12 as
fuel-solenoid. This means that applications become more readable, and don’t
need to be changed if the channel for a particular external device is re-wired.

Channels are ultimately implemented by hardware devices, which might also
have names. This would permit operations on all the channels on a device,
or alternatively provide yet another naming scheme, so that ipadio.2:dio.12
might refer to digital 10 channel 12 on 1P-ADIO 2.

2.3 Channel Ranges

Channels could be opened in ranges. This would allow a contiguous (or possibly
even discontinuous) set of channels of the same type to be opened and operated
on with the one handle:

int position[3];

io chan;

chan = io_open("adc.0-2");
io_operate(chan, IIO_READ, position);
io_close(chan);

Here the range of three ADCs, perhaps representing the (x,y, z) position of
something, are opened as a range, and read as a set into an array position.
Slightly different semantics would apply for bit-wise digital 10, where bit-packing
into a single integer variable is more useful.
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2.4 Interface System Structure

The interface system would have a two-tiered internal structure: a generic core
containing the application programmer’s interface (io_open(), and so on), and a
set of device driver modules, one for each type of industrial 10 device required.

The core would contain the mechanism for interpreting the channel names and
ranges, and calling the appropriate device driver module(s) for each operation.
Many operations, especially range operations, will need to be broken down into
a sequence of simpler ones, which may be distributed over a number of drivers.

The device drivers would be written to conform to a well-defined interface
standard, so that the 10 system can be easily expanded. A driver would have entry
points for opening, operating, and closing (matching the three main application
level functions), plus an initialisation function. The driver initialisation function
is called once for each device of that type in the system, and establishes a device
state structure, pointers to the hardware registers, and so on.

2.5 Configuration File

On its initialisation, the interface system core would read a configuration file,
which tells it exactly what 10 devices are available for use, and what names by
which they will be known. The information would include the model of the device,
its physical base address, and jumper or other configuration.

A typical configuration file might look like this:

# a configuration file

device vmivme4100 vmel6 0x1280
device xyx230 vme24 0x400000 j23 j34
device vipc600 vmel6 0x4000

alias fuel-level vmivme4100.0:adc.3
alias fuel-solenoid vipc600.0:do.6

This indicates a VMIVME-4100 board on the vMEbus A16 address-space at
address 0x1280, an XvZz-230 board at A24 0x400000, and a VIPC-600 Industry-
Pack carrier board at A16 0x4000. The options on the second line indicate to
the Xxvz-230 driver that jumpers J23 and J24 are on, which might be something
the driver needs to know.

As the configuration file is read, the interface module core would call the
initialisation function for the device, which would return the number and type of
the actual 10 channels provided by it. The core would then create channel name
entries for the channels, and link them back to the driver.

Self-identifying modules, such as IndustryPacks, would be not be entered into
the configuration file. The carrier module only needs to be entered, and its device
driver would initialise the appropriate device drivers for the modules it found on
the carrier. A similar scheme would operate for self-identifying vMEbus boards
(a recent addition to the VMEbus specification), serial bus-addressable remote
devices, or any other self-identifying interface.

Alias names would be contained in the configuration file as well, as shown in
the example. So that shared-memory operating systems, or computers without
file-systems can use the system, the configuration file could also be parsed from
a memory string.

2.6 Channel Operations

While most operations on channels are generic (essentially read and write), the
wide variety of industrial 10 devices suggests allowing an extendible framework
of operations. New operations for specific device types will need to be added
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as required, and device drivers will need to check if a requested operation is
permitted.

For this reason a single operation function io_operate() is proposed, with an
integer operation code. In extending the operation repertoire, however, care needs
to be exercised to prevent a proliferation of ‘the same but different’ operation
codes. As each new device type is added, a generic model for that type of device
needs to be developed, so that other devices of the same type will share the same
operation codes.

Even with an extendible set of operations, some complex devices will not fit
neatly into such a structure. In the end, it may be necessary for a special ‘cover
all’ device driver to allow applications direct access to the device registers. The
interface system would then act only as a rather complicated address resolution
mechanism.

The most difficult type of device is one that is reconfigurable or modal. Timers
and parallel digital 10 chips are often like this. Possibly the selection of mode
can be done within the configuration file, as an option to the device line, with
some other solution for self-identifying devices.

2.7 Channel Scaling

Since each channel’s data passes through a device-specific driver, the driver can
perform scaling or processing so that the application deals only in real-world
units. For instance, an ADC driver could report results as a floating-point number
in volts, rather than the raw count (although access to the raw values should
always be retained). Calibration offset and rate factors could also be included by
some means.

Scaling or other processing could also be performed by the interface system
core, on a channel by channel basis, using parameters defined in the configuration
file. In this way, an LVDT sensor connected to an ADC channel could be read
by the application program in millimetres, simply by including the LVDT rate
(millimetres per volt) in the file.

2.8 Fake Devices and Channels

A difficulty often arises with application software development for systems that
involve 10 devices of this kind. Frequently there is only one fully built system
available, but several programmers want to test the application software at once.

To permit software testing, the hardware could be simulated by substituting
‘fake devices’ for the real ones in the configuration file. In this way the appli-
cations need not be changed to run on systems without the actual hardware, or
with only part of it.

These fake devices could also be linked with temporary application code to
simulate the expected behaviour of the device and the system it is connected
to. This could even extend to simulating the global behaviour of the system,
including the response of fake inputs.

2.9 Interrupts, Events and Exceptions

There could also be a channel type for events, such as interrupts or hardware
exceptions. This would permit easy linking of sections of application code to the
10 system. While getting close to the realm of the operating system, it would be
appropriate for devices like the 1P-OPTO interrupter.
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2.10 Channel Directories and Monitoring

The channel name-space would be available to application programs through some
functions, to allow listings of the available devices and channels to be produced.
This would then allow fairly generic monitoring programs to be written, which
would display all the channels and their values on a screen, perhaps using Tcl/Tk,
and allow interactive command of outputs.

2.11 Remote IO

A simple extension to the system is to permit computers on a network to trans-
parently access 10 devices on another computer. A stateless network protocol,
such as RPC, would be suitable. This would be implemented within the core part
of the interface system.

The configuration file on each computer would declare which 10 devices would
be available to specified other computers (i.e. export a device, or perhaps a chan-
nel of a device), and also which devices are imported from which host, and what
their local name alias is.

To maintain reasonable levels of safety it may be necessary to limit the export-
ing of devices to certain user-names as well (as was done with the PIRAT Remote
Tool Control system). Of course, performance through the network would be
comparatively poor, but considerably more convenient for many applications.

3 Implementation

3.1 Location

A system along these lines is a quite self-contained module which could be sepa-
rately developed in Melbourne, and subsequently brought back to CMTE Brisbane
for proving and eventual use. Hopefully, the system would find use within Mel-
bourne Laboratory as well.

Once a clear definition of the device driver interface was developed, writing
of this code could be conducted in both locations.

3.2 Operating Systems and Devices

LynxOS is the principal real-time operating system used with the CMTE, so the
initial version of the system will run on LynxOS. However, Melbourne Laboratory
projects still typically use vxWorks, and may in the future use other shared-
memory Kkernels, especially for micro-controller work, although LynxOS may fall
into use there as well.

The system should then be in large part portable between the two operating
systems. If this is achieved, portability to other systems is reasonably straight-
forward. Given the authors current experience, it is the LynxOS aspects of the
project that may be the more time-consuming. However it is a LynxOS imple-
mentation that is required by CMTE.

Specifically for the Drag-line Automation project, an initial batch of device
drivers are required. These are, in priority order, GreenSpring IP-PRECISION ADC,
IP-DIGITAL 48, IP-WATCHDOG, IP-SERIAL, IP-16DAC, IP-DIGITAL 24, and IP-
TIMER. There are also ADAM RS-485 addressable modules which may need to
be integrated into the structure.
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3.3 Timing

Initially, a period of a few weeks would be required to flesh out the details of the
interface specification (for both applications programs and device drivers) and
refine aspects of the model. At that stage a reasonably firm idea of completion to
a certain defined point (perhaps without the remote access or fancy monitoring
facilities) could be given.

3.4 Facilities Required

A Pc or similar running LynxOS will be needed reasonably early on in Melbourne,
so the general approach to the system implementation can be determined (e.g.
memory mapping, loadable kernel drivers, ...). This would later require an 1P
carrier board, plus all the 1P modules mentioned above. Facilities for testing on
vxWorks exist already in Melbourne.
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Appendix F
Header Files

F.1 Header File iio.h

#ifndef _iio_h_
#define _iio_h_

/*

*

This file is part of IIO, the Industrial IO Library
CSIRO Division of Manufacturing Technology
$Id: iio.h,v 1.9 2000/09/11 04:32:39 kir092 Exp $

iio.h -- user level function header
Robin Kirkham, June 1996

* ¥ ¥ ¥ *

*/

/* global channel or channel range identifier */
typedef struct IIO_OPEN * IIO;

/* the config code, used by iio_init() */
typedef enum {

iio_config_none, /* no configuration */

iio_config_stdfile, /* read configuration from standard file */
iio_config_file, /* read configuration from a file */
iio_config_string /* read configuration from a string */

} IIO_CONFIG;

/* the operation code, used by iio_operate() */
typedef enum {
/* generic operation codes */

iio_op_nop, /* no operation */

iio_op_show, /* log status of driver/module */
iio_op_read, /* read input from the channel */
iio_op_readback, /* read previous output from the channel */
iio_op_write, /* write output to channel */

iio_op_clear, /* write zero to channel */

/* space resolution codes, always ORed with an IIO_SIZE */

iio_space_io, /* resolve input/output space */
iio_space_id, /* resolve identity space */
iio_space_int, /* resolve interrupt space */
iio_space_mem, /* resolve memory space */
iio_space_memil6, /* resolve 16-bit memory space */
iio_space_mem24, /* resolve 24-bit memory space */
iio_space_mem32, /* resolve 32-bit memory space */

/* servo controller codes. These are a bit LM628-specific */

iio_sc_start, /* start servo with new target/settings */
iio_sc_stop, /* stop motion */

iio_sc_free, /* disable servo */

iio_sc_read_current, /* read current servo value */
ijo_sc_read_target, /* read target servo value */
iio_sc_write_current, /* write (calibrate) current position */
iio_sc_write_target, /* write target position */
iio_sc_write_target_dt, /* write trapezoidal dt (e.g. velocity) */
iio_sc_write_target_ddt, /* write trapezoidal ddt (e.g. acceleration) */
iio_sc_read_index, /* read last index value */
iio_sc_read_gain_p, /* read loop proportional gain */
iio_sc_read_gain_d, /* read loop derivative gain */
ijo_sc_read_gain_i, /* read loop integral gain */
iio_sc_write_gain_p, /* write loop proportional gain */
iio_sc_write_gain_d, /* write loop derivative gain */
iio_sc_write_gain_i, /* write loop integral gain */

/* Adam module codes */
iio_adam_message, /* exchange command/reply packet */

/* more space resolution codes, always ORed with an IIO_SIZE */
iio_space_port, /* resolve non-mappable port space */

II0_NOPS
} II0_OP;
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/* init flag type */
typedef enum {

ijo_iflag none = 0x0, /* no flags */
ijo_iflag_log = Ox1 /* log some major events */
} II0_IFLAG;

/* opening flag type (EXAMPLES, NOT IMPLEMENTED YET) */

typedef enum {

iio_oflag none = 0x0, /* no flags */

iio_oflag_log = Ox1, /* log operations on this channel */

iio_oflag_excl = 0x2 /* open exclusively (NOT IMPLEMENTED) */
} IIO_OFLAG;

/* return status values */
typedef enum {

iio_status_ok = 0

iio_status_error

iio_status_fatal
} IIO_STATUS;

/* all is well */
-1, /* an error */
-2 /* a serious error */

/* type of module information function */
typedef IIO_STATUS (* IIO_INFOFN) (void);

/* the user functions */
extern IIO_STATUS
iio_init(ITIO_INFOFN 1list[], IIO_IFLAG flags),

iio_open(char *name, IIO_OFLAG flags, IIO *channel),

iio_close(II0 channel),
iio_done(void);

/* family of operate functions */
extern IIO_STATUS

iio_operate(II0 channel, IIO_OP operation, int datal[]),
iio_operate_real(II0 channel, II0_OP operation, double datall),
iio_operate_addr(II0 channel, IIO_OP operation, void *addr[]);

/* family of operate functions for inwards simple
extern IIO_STATUS

iio_operate_in(II0 channel, IIO_OP operation, int

iio_operate_inreal(IIU channel, II0_OP operation,

iio_operate_inaddr(II0 channel, II0O_OP operation,

/* error message access function */
extern char
*iio_emessage_get();

/* the standard module driver list */
extern IIO_INFOFN iio_standardl[];

#endif

channels */

data),
double data),
void *addr);
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F.2

#ifndef _internal_h_
#define _internal_h_

/*

Header File internal.h

* This file is part of IIO, the Industrial IO Library

* ¥ ¥ ¥ *

*/
#include "iio.h"

#include "types.h"
#include <stdarg.h>

/*

CSIRO Division of Manufacturing Technology
$Id: internal.h,v 1.23 2000/09/11 04:32:39 kir092 Exp $

internal.h -- II0 internal data structures and functions
Robin Kirkham, June 1996

* — —_

*/

/* module argument parser types */

typedef enum {
iio_arg_bool,
iio_arg_int8,
iio_arg_inti16,
iio_arg_int32,
iio_arg_int64,
iio_arg_uint8,
iio_arg_uintil6,
iio_arg_uint32,
iio_arg_uint64,
iio_arg_float,
iio_arg_double,
iio_arg_addr,
iio_arg_string,
iio_arg_channel,
iio_arg_file,

II0_NARG
} IIO_ARG;

/* type of channel/module alias */

typedef enum {
iio_atype_none,
iio_atype_global,
iio_atype_local,
iio_atype_module
} IIO_ATYPE;

/* the four forms of
/* boolean flag type

typedef enum {
iio_bool_false = O,
iio_bool_off = O,
iio_bool_no = 0,
iio_bool_true = 1,
iio_bool_on =1,
iio_bool_yes =1

} II0_BOOL;

/*
/*
/*
/*

channel name */

*/

/* the channel type */

typedef enum {
iio_chtype_di,
iio_chtype_do,
iio_chtype_dio,
iio_chtype_oco,
iio_chtype_ocio,

iio_chtype_bi,
iio_chtype_bo,
iio_chtype_bio,
iio_chtype_boco,
iio_chtype_bocio,

iio_chtype_adc,
iio_chtype_dac,
iio_chtype_enc,
iio_chtype_rdio,

--- ENUMERATIVE TYPES

boolean "-flag" or "-no-flag" */
8-bit signed */

16-bit signed */

32-bit signed */

64-bit signed */

8-bit unsigned */

16-bit unsigned */

32-bit unsigned */

64-bit unsigned */

float */

double */

any address */

a dynamic string */

an II0 channel descriptor */
a file-descriptor */

not an alias */
global alias */
local alias */
module alias */

digital in */

digital out */

digital in/out */

open collector out */
open collector in/out */

bitwise digital in */

bitwise digital out */

bitwise digital in/out */
bitwise open collector out */
bitwise open collector in/out */

analogue to digital */
digital to analogue */
positional encoder */
reversible digital in/out */
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iio_chtype_isa, /* ISA spacex/
iio_chtype_ip, /* IP space */
iio_chtype_null, /* the null device */
iio_chtype_vme, /* VMEbus space */
iio_chtype_sc, /* servo controller */
iio_chtype_adam, /* Adam 4000 address */
IIO_NCHTYPES /* LAST x/

} IIO_CHTYPE;

/* file open attributes */
typedef enum {

ijo_fattr_rdonly = (1 << 0), /* open for read */
iio_fattr_wronly = (1 << 1), /* open for write */
ijo_fattr_rdwr = (1 << 2), /* open for read and write */
iio_fattr_append = (1 << 3), /* start at end of file */
iio_fattr_creat = (1 << 4), /* create if not there */
iio_fattr_trunc = (1 << 5), /* truncate on open */
ijo_fattr_excl = (1 << 6) /* access exclusively */

} IIO_FATTR;

/* structure magic numbers */
typedef enum {

ijo_magic_minfo = 0x4d494e46, /* "MINF" x/
iio_magic_module = 0x4d4f444c, /* "MODL" x*/
iio_magic_chnode = 0x43484e4f, /* "CHNO" =/
iio_magic_chinfo = 0x4348494e, /* "CHIN" x/
iio_magic_ipinfo = 0x4d50494e, /* "IPIN" x/
iio_magic_map = 0x564d4150, /* "UMAP" x/
iijo_magic_namex = Ox4e414d45, /* "NAME" =/
iio_magic_open = 0x4f50454e, /* "OPEN" x/
iio_magic_opnode = 0x4f504e4f, /* "OPNO" =/
ijo_magic_sentinel = 0x4d4d4féc, /% "IIOL" */
iio_magic_state = 0x53544154 /* "STAT" =/

} II0_MAGIC;

/* mapping type */
typedef enum {
iio_maptype_memory,
iio_maptype_port
} IIO_MAPTYPE;

/* how many times a module can be installed */
typedef enum {

iio_multi_no,

iio_multi_yes
} IIO_MULTI;

/* format of a channel name */
typedef enum {

iio_nform_gg, /* global generic form */

iio_nform_gs, /* global specific form */

iio_nform_lg, /* local generic form */

iio_nform_1s /* local specific form */
} IIO_NFORM;

/* kind of operation code argument */
typedef enum {

iio_oparg_none = 0x00, /* no arguments */
iio_oparg_in = 0x01, /* inward argument */
iio_oparg_out = 0x02, /* outward argument */
iio_oparg_inout = 0x03, /* in and out argument */
iio_oparg_data = 0x10, /* data argument */
iio_oparg_addr = 0x20 /* address argument */

} IIO_OPARG;

/* type of probing */
typedef enum {

iio_ptype_read = Ox1, /* try reading */

iio_ptype_write = 0x2, /* try writing */

iio_ptype_rdwr = 0x3 /* try reading and writing */
} IIO_PTYPE;

/* mask/roll of IIO_SIZE when rolled into an operation code */
#define ITO_SPACE_MASK ((1 << 8) - 1)
#define II0_SIZE_MASK (IIO_SPACE_MASK << 8)

/* probe/resolve register/bus access size types */
typedef enum {

iio_size_8 = (1 << 8), /* byte access */
iio_size_16 = (2 << 8), /* word access *x/
iio_size_32 = (4 << 8), /* long word access */
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iio_size_64 = (8 << 8)
} II0_SIZE;

/* tfile access method */
typedef enum {
iio_tfile_file,
iio_tfile_filename,
iio_tfile_string
} IIO_TFILE;

/* TTY control tags */

typedef enum {
iio_ttypar_none 0x0,
iio_ttypar_even = 0xl1,
iio_ttypar_odd = 0x2,
iio_ttypar_ignore = 0x10,
iio_ttypar_mark = 0x20

} IIO_TTYPAR;

typedef enum {
iio_ttyflow_none = 0x0,
iio_ttyflow_rtscts = Oxl1,
iio_ttyflow_xonxoff = 0x2,
iio_ttyflow_xonany = 0x4,
iio_ttyflow_hupcl = 0x10
} IIO_TTYFLOW;

typedef enum {
iio_ttymap_instrip = Ox1,
iio_ttymap_incrnl = 0x2
} IIO_TTYMAP;

typedef enum {
iio_ttyecho_none
iio_ttyecho_echo
} IIO_TTYECHO;

0x0,
Ox1

typedef enum {
iio_udata_int,
iio_udata_real,

/*

/*
/*
/*

/*
/*

really long word access */

file descriptor */
file name */
string pointer */

integer user data */

real (double) user data */
address user data */
bitfield data */

iio_udata_addr, /*
iio_udata_bit /*
} IIO_UDATA;
/*
K
*/

typedef struct IIO_ADAMINFO IIO_ADAMINFO;
typedef struct IIO_ALIAS IIO_ALIAS;
typedef struct IIO_OPEN IIO_OPEN;

typedef struct IIO_CHNODE IIO_CHNODE;
typedef struct IIO_CHINFO IIO_CHINFO;
typedef struct IIO_OPNODE IIO_OPNODE;
typedef struct IIO_IPINFO IIO_IPINFO;
typedef struct IIO_MAP IIO_MAP;

typedef struct IIO_MINFO IIO_MINFO;
typedef struct IIO_MODULE IIO_MODULE;
typedef struct IIO_MREG IIO_MREG;

typedef struct IIO_MSTATE IIO_MSTATE;
typedef struct IIO_NAMEX IIO_NAMEX;
typedef struct IIO_OPINFO IIO_OPINFO;
typedef struct IIO_SENTINEL IIO_SENTINEL;
typedef struct IIO_STATE IIO_STATE;
typedef struct IIO_SLL IIO_SLL;

/* opaque mutex and file types */
typedef void IIO_MUTEX;
typedef void IIO_SHMUTEX;
typedef int IIO_FILE;

/* type of a module install function */
typedef IIO_STATUS (* IIO_INSTALLFN) (
ITI0_MODULE #*module, char *argv[]
)5

/* type of a module init function */

------ FORWARD DECLARATIONS

FUNCTION POINTER TYPES
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typedef IIO_STATUS (* IIO_INITFN) (

IT0_MREG *reg, IIO_MSTATE *state
)5

/* type of a module operate function */
typedef IIO_STATUS (* IIO_OPFN)(

ITO_MSTATE *state, IIO_MREG *reg, IIO_OPNODE*,
IIO_OP op, unsigned first, unsigned last

)
/* compare function type */
typedef int (x IIO_CMPFN) (II0O_SLL*, IIO_SLL*);

/* tfile callback type */
typedef IIO_STATUS (* IIO_TEXEC) (char *argv[]);

/*
K e STRUCTURE DEFINITIONS
*/
struct IIO_ADAMINFO {
/*
* Information on a particular range setting for an ADAM module.
* A table of these, indexed by the range code, is used to look up
* the scaling constants where required
*/
double
escale, /* scale factor (eng mode) */
hscale; /* scale factor (hex mode) */
char *unit, *range; /* user unit, range/type string */
};
struct IIO_ALIAS {
/*
* Linked list of aliases of either whole channels or channel ranges,
* modules (not ranges) or local channels and ranges. An alias is
* actually stored as name-value strings, and is resolved only when
* invoked in a channel open
*/
ITO_ALIAS *next;
II0_ATYPE type; /* type of alias */
char *name; /* the alias itself */
char *value; /* the thing aliased */
};
struct II0_CHNODE {
/*
* List of available channels. Each element identifies a group of
* channels of the same type and width on a particular module, and
* contains the pointer to the operation function. This list is built
* as the modules are installed, and is searched when modules are
* opened
*/
II0_CHNODE *next; /* linked list pointer */
II0_MAGIC magic; /* magic number */
unsigned int number; /* number of these channels in group */
II0_CHTYPE type; /* channel type */
unsigned int width; /* channel width in bits */
/* sequence numbers of first channel in this group */
unsigned int seqno[4]; /* one for each of the four name forms */
II0_MODULE *module; /* the module that provides them */
IIO_OPFN operate; /* the operation function pointer to use */
II0_CHINFO *chinfo; /* array of information on each channel */
/* extra data for the bitfield pseudo-driver */
II0_CHNODE *rchnode; /* real chnode */
unsigned int rseqno; /* real seqno */
}
struct IIO_CHINFO {
/*

* Specific information on a single channel. There is an array of these

* structures in each IIO_CHNODE, one per local channel. There is a

* default linear scaling, and later perhaps provision for other

* conversions. The limits and initial values of the channel are also
* stored here

*/
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II0_MAGIC magic; /* magic number */
double scale, offset; /* standard linear conversion */
char *unit; /* units after linear conversion */
int initial; /* initial channel value */
int upper, lower; /* limits apply if upper>lower */
II0_BOOL log; /* logging flag */
};
struct IIO_IPINFO {
/*
* This structure is used by IndustryPack Carrier cards. It contains a
* duplicate of the IP’s IDPROM (read as 16-bit words), plus reconstructed
* forms of the manufacturer/product code and the driver ID code.
*/
II0O_MAGIC magic; /* magic number */
iio_uint32_t mid; /* manufacturer code */
iio_uint32_t pid; /* product code */
iio_uint32_t rev; /* module revision number */
iio_uint32_t did; /* driver ID code */
iio_uint32_t flg; /* flags word */
iio_uint16_t *pprom; /* pointer to pack data in datal] */
iio_uint16_t *uprom; /* pointer to user data in data[] */
/* the original data from the IDPROM */
iio_uint16_t prom[0x20];
}
struct II0O_MINFO {
/*
* The minfo structure contains information about a particular
* module driver. Minfos are added to the minfo list with iio_minfo(),
* which is the first (and usually only) act of a module information
* function
*/
II0O_MINFO *next; /* linked list pointer */
II0_MAGIC magic; /* magic number */
char *ident; /* the ident code of the module */
char *model; /* manufacturer, module and description */
char *version; /* module driver RCS version, date etc */
II0_MULTI multi; /* how many times this module can be used */
ITO_INSTALLFN install; /* the install function pointer */
II0O_INITFN init; /* the init function pointer */
};
struct II0_MODULE {
/*
* The module list contains one element for each installed module.
* The module list is extended by iio_module()
*/
II0O_MODULE *next; /* linked list pointer */
II0_MAGIC magic; /* magic number */
II0O_MINFO *minfo; /* module information block */
unsigned int seq; /* module sequence number */
II0_BOOL log; /* log operations on this module */
II0_MSTATE *state; /* global shared state */
II0_MREG *reg; /* module register pointers */
II0_SHMUTEX *mutex; /* module/state mutex */
};
struct ITIO_NAMEX {
/*
* The namex structure is filled out (not created) by iio_namex, and
* contains the broken-down (expanded) form of a channel name. The
* type field indicates the type of the original name. The module
* ident and sequence numbers are only valid for lg and 1ls forms
*/
II0_MAGIC magic; /* magic number */
II0O_NFORM form; /* form of name */
II0_MODULE *module; /* module pointer */
II0_CHTYPE type; /* channel type */
unsigned int width; /* channel width */
unsigned int seql, seq2; /* channel sequence number range */
}
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struct IIO_OPEN {

* Open channel descriptor. There is one of these for each open

* channel or channel range, linked into a single list. A channel may

* represent a single simple channel on a module, or a contiguous range
* of channels (but only of the same type) spread over several modules
* (one IIO_OPNODE for each)

*/
II0_OPEN *next; /* main linked list pointer */
II0O_MAGIC magic; /* magic number */
unsigned number; /* number of simple channels in range */
char *name; /* name under which this channel was opened */
II0O_MUTEX *mutex; /* channel mutex (if a range) */
II0_OPNODE *opnode; /* list of channel nodes */
};
struct IIO_OPNODE {
/*
* A list of these structures hangs off the channel descriptor blocks.
* When a channel is opened by iio_open(), one of these gets
* created for each chnode associated with the open channel
*/
II0_OPNODE *next; /* main linked list pointer */
II0O_MAGIC magic; /* magic number */
II0_CHNODE *chnode; /* channel info block */
unsigned int first; /* first channel seqno in range (ls form) */
unsigned int number; /* number in the range (local) */
unsigned int index; /* index of corresponding user data element */
II0O_BOOL log; /* log operations on this channel */
/*
* This information changes each operation function call,
* but is protected by the module semaphore
*/
IIO_UDATA udata; /* type of user data */
void *base; /* base of user data */
II0_OP op; /* the current operation code */
};
struct II0O_OPINFO {
/*
* Operation info structure. There is an array iio_opinfo[] of these,
* indexed by the IIO_OP operation code. It is used to tell how many
* arguments of what type and what direction
*/
char *name; /* the name of the operation */
char *symbol; /* a symbol for the log message */
II0O_OPARG arg; /* kind and direction of the argument */
};
struct IIO_SENTINEL {
/*
* The sentinel structure is the first IIO0 strincture in shared memory.
* It contains a timestamp from the II0 library itself (output from the
* date command) and from the configuration file. If both of these match
* this the remaining shared memory should be consistent between processes
*/
II0_MAGIC magic; /* magic number */
double library_time; /* "mtime" of library */
unsigned long config_time; /* mtime of config file */
}
struct IIO_SLL {
/*
* All the linked list structures (i.e., most of the above) are
* ordered, and the ordered insert is done using iio_sll_insert().
* This requires the *next element TO BE FIRST in these structures.
* struct ITO_SLL is a dummy structure, with a *next element only
*/
II0_SLL *next;
};
struct IIO_STATE {

/*
* The state structure contains the heads of the main list data
* structures, and the protection mutex for them all

*/
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II0_MAGIC magic; /* magic number */
II0_ALIAS *alias; /* head of alias list */
IIO_OPEN *open; /* head of open channel list */
II0_CHNODE *chnode; /* head of available channel list */
II0O_MAP *map; /* head of available map list */
II0_MODULE *module; /* head of installed module list */
II0O_MINFO *minfo; /* head of available module drivers list */
IIO_MUTEX *mutex; /* per-process core state mutex */
ITIO_MUTEX *omutex; /* per-process open-channel list mutex */
II0_BOOL init; /* initialise, as well as install modules */
II0_BOOL log; /* generate some messages */
};
struct II0_MAP {
/*
* IIO_MAP structures represent a mapping from physical memory to
* virtual (logical, or process) memory, usually to access module
* registers. The mappings are created through the 0S function accessed
* using iio_shmap_alloc(), but the 0S generally won’t reverse-lookup
* physical addresses, so we need to keep a record of the mappings
*/
II0O_MAP *next; /* linked list pointer */
ITI0_MAGIC magic; /* magic number */
II0_MAPTYPE type; /* mapping type (memory or port) */
void *paddr; /* physical address of base of mapping */
void *vaddr; /* virtual address of base of mapping */
unsigned size; /* size of mapping in bytes */
};
/*
K II0 LIBRARY FUNCTIONS/GLOBALS
*/

extern IIO_STATUS
iio_adam_dread(char *dex, int digits, int *result),
ijo_adam_hread(char *hex, int digits, int *result),
iio_adam_hwrite(int value, int digits, char *string);
extern IIO_ADAMINFO
iio_adam_infol[];

extern IIO_STATUS
ijo_alias(char *argv[]),
iio_alias_insert(IIO_ATYPE type, char *name, char *value),
ijo_alias_find(char *name, IIO_ATYPE *atype, char **value),
iio_alias_show(void);

extern IIO_STATUS

iio_arg(char *argv[], char *option, IIO_ARG type, ... ),

ijo_arg_index(char *argv[], char *option, unsigned ind, IIO_ARG type, ... ),
iio_arg_list(char *argv[], ...),

iio_arg_index_list(char *argv[], unsigned index, ...),

ijo_arg_remnants(char *argvl[]);
extern char
*iio_arg_blank;

extern II0_INFOFN
iio_builtin([];

extern IIO_STATUS
iio_channel(char *argv[]);

extern IIO_STATUS
iio_chnode(
II0O_MODULE *module, IIO_CHTYPE type, unsigned int width,
unsigned int number, IIO_OPFN operate, IIO_CHNODE **chnode

iio_chnode_linear (IIO_CHNODE *, unsigned, double sc, double of, char *un),
iio_chnode_limits(IIO_CHNODE *, unsigned, int initial, int low, int high),
iio_chnode_log(IIO_CHNODE *, unsigned, IIO_BOOL),
ijo_chnode_show(II0O_BOOL longform) ;

extern int
iio_chnode_cmp(II0_SLL *s1, IIO_SLL *s2);

extern IIO_STATUS
iio_chtype_find(char *string, IIO_CHTYPE *type, unsigned int *width);
extern char
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*iio_chtype_string[];

extern IIO_STATUS
iio_config_exec(char *argv[]);

extern int
iio_data_get (IIO_OPNODE #*opnode, unsigned seqno);

extern double
iio_data_get_real (IIO_OPNODE *opnode, unsigned seqno);

extern void
*iio_data_get_addr (II0O_OPNODE *opnode, unsigned seqno) ;

extern IIO_STATUS
iio_data_set (II0_OPNODE *opnode, unsigned seqno, int value),
ijo_data_set_real (II0_OPNODE *opnode, unsigned seqno, double value),
iio_data_set_addr (II0_OPNODE *opnode, unsigned seqno, void *value) ;

extern II0_STATUS
iio_done_iio(void);

extern IIO_STATUS
iio_init_iio(
IIO_INFOFN 1list[], IIO_IFLAG flags,
II0_BOOL init, IIO_TFILE method,
)

extern IIO_STATUS
ijo_ipinfo_read(IIO slot, IIO_IPINFO *ipinfo),
iio_ipinfo_ident(II0 slot, iio_uint32_t mid, iio_uint32_t pid),
ijo_ipinfo_show(IIO slot);

extern IIO_STATUS
iio_map(IIO_OPEN *chan, IIO_OP space, unsigned lbase, unsigned lsize),
iio_map_new(IIO_OP space, void *paddr, unsigned psize),
iio_map_ptov(IIO_MAPTYPE type, void *paddr, unsigned size, void #**vaddr),
iio_map_vtop(IIO_MAPTYPE type, void *vaddr, unsigned size, void **paddr),
iio_map_type(IIO_OP space, IIO_MAPTYPE x*type),
iio_map_done(void),
iio_map_show(void);

extern IIO_STATUS
iio_minfo(
const char *ident, const char *name, const char *version,
ITO_MULTI multi, IIO_INSTALLFN install, IIO_INITFN init
iio_minfo_call(IIO_INFOFN infofn[]),
iio_minfo_find(char *ident, IIO_MINFO **minfo),
iio_minfo_show(void);

extern IIO_STATUS
iio_module(char *argv[]),
iio_module_state(II0O_MODULE *module, unsigned int size),
iio_module_reg(IIO_MODULE #*module, unsigned int size, IIO_MREG **reg),
iio_module_find(char *string, IIO_MODULE **module),
iio_module_show(void);

extern II0_STATUS
iio_namex(char *name, IIO_NAMEX *namex);

extern IIO_STATUS
iio_null(void);

extern IIO_STATUS
iio_open_show(IIO_OPEN *chan);

extern IIO_OPINFO
iio_opinfol[]l;

extern IIO_STATUS
iio_opinfo_lookup(char *string, II0_OP #*operation),
iio_opinfo_show(void);

extern IIO_STATUS
iio_phantom(void);

extern IIO_STATUS
iio_resolve(
IIO_OPEN *chan, IIO_OP space, IIO_SIZE size,
unsigned laddr, void **vaddr
iio_resolve_physical(
ITO_OPEN *chan, IIO_OP space, IIO_SIZE size,
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unsigned laddr, void **paddr
iio_resolve_list(IIO_OPEN *chan, II0O_OP space, ...);

extern IIO_STATUS
ijo_return_error(char *emessage, char *file, unsigned int lineno),
ijo_return_fatal(char *emessage, char *file, unsigned int lineno);

extern IIO_STATUS
iio_sll_insert(IIO_SLL **head, IIO_SLL *new, IIO_CMPFN cmp);

extern IIO_STATUS
iio_state_init(void);

extern IIO_STATE
*ijio_state;

extern double
iio_timestamp;

extern IIO_STATUS
iio tflle(IIO TEXEC texec, IIO_TFILE method, ),
iio_tfile_stdarg(IIO_TEXEC texec, IIO_TFILE method va_list ap);

~
*

- -—= -—= -—= --- FUNCTIONS IN OS MODULE

There is one module per operating system which should contain all of the
functions below, which implement, emulate or re-package certain system calls
or standard library calls, so that the remainder of the library omnly
accesses the system through this module. The module is generally named
after the system, e.g. vxworks.c, lynxos.c, and so on.

¥ ¥ X K X X X ¥
~

extern char
*iio_configname;

extern II0_STATUS
iio_osinit (IIO_INFOFN list[], IIO_IFLAG iflags),
iio_osdone(void);

extern IIO_STATUS
ijo_emessage_set(char *message);

/* the old GCC does not understand __attribute__ */

#if (__GNUC__ == 2)
extern II0_STATUS
iio_log(char *fmt, ...) __attribute__ ((format(printf, 1, 2)));
#else
extern IIO_STATUS
iio_log(char *fmt, ...);
#endif

extern IIO_STATUS
iio_shmap_alloc(
void *paddr, unsigned int psize,
void **pactual, void **vaddr, unsigned int *vsize
),

iio_shmap_free(void *vaddr, void *paddr, unsigned size);

extern IIO_STATUS
ijo_shmem_alloc(unsigned int size, void **new),
iio_shmem_free(void *o0ld);

extern IIO_STATUS
iio_shmutex_create (II0O_SHMUTEX **mutex),
iio_shmutex_grab(II0O_SHMUTEX *mutex),
iio_shmutex_drop(II0_SHMUTEX *mutex),
iio_shmutex_free(IIO_SHMUTEX *mutex);

extern II0_STATUS
iio_mutex_create(II0O_MUTEX **mutex),
iio_mutex_grab(II0_MUTEX #*mutex),
iio_mutex_drop(IIO_MUTEX *mutex),
iio_mutex_free(IIO_MUTEX *mutex);

extern IIO_STATUS
iio_sem_wait (IIO_MUTEX *mutex),
iio_sem_post (IIO_MUTEX *mutex) ;

extern II0_STATUS
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iio_port_alloc(
void *paddr, unsigned int psize,
void **pactual, void **vaddr, unsigned int *vsize

3
extern void
ijo_port_set8(volatile iio_uint8_t *addr, iio_uint8_t val),
iio_port_setl6(volatile iio_uint16_t *addr, iio_uintl6_t val),
ijo_port_set32(volatile iio_uint32_t *addr, iio_uint32_t val);
extern iio_uint8_t
iio_port_get8(volatile iio_uint8_t *addr);
extern iio_uint16_t
iio_port_getl6(volatile iio_uintl6_t *addr);
extern iio_uint32_t
iio_port_get32(volatile iio_uint32_t *addr);

extern IIO_STATUS
iio_probe(volatile void *vaddr, IIO_SIZE size, IIO_PTYPE ptype);

extern IIO_STATUS
iio_roughdelay(unsigned milliseconds);

extern int
iio_round(double x);

extern IIO_STATUS

iio_tty_line(
II0_FILE tty,
unsigned baud, unsigned nchar, unsigned nstop,
ITO_TTYPAR parity, IIO_TTYFLOW flow, IIO_TTYMAP map,
ITO_TTYECHO echo

)’

iio_tty_raw(
II0_FILE tty,
unsigned baud, unsigned nchar, unsigned nstop,
ITIO_TTYPAR parity, IIO_TTYFLOW flow, IIO_TTYMAP map,
unsigned char min, unsigned char time

iio_tty_send(IIO_FILE tty, char *buffer, unsigned len),
iio_tty_recv(
ITO_FILE tty, char *buffer, unsigned maxlen,
unsigned *len, unsigned ms

/*

*

——————— - ~-—---=-=-————-—————- FUNCTIONS IN LIBC MODULE

The module libc.c contains wrappers for C library (or standard system call)
functions that are used within the rest of the library. If the library is
only ever used at user level (in Unix/Lynx0S), or on vxWorks and RTEMS
(which have a standard C library interface too), then we can probably get
rid of all these wrappers

* X X X X ¥

*/

extern IIO_STATUS
iio_mem_alloc(unsigned int size, void **new),
iio_mem_free(void *o0ld);

extern IIO_STATUS
iijo_string_lookup(char *token, char **table, int *index),
iio_string_dup(char *string, char **new),
ijo_string_cpy(char *dst, char *src);

extern char
*iio_string_chr(char *s, char c),
*iio_string_pbrk(char *s, char *c);

extern int
iio_string_cmp(char *sl1, char *s2),
ijo_string_ncmp(char *sl, char *s2, int len),
iio_string_len(char *string);

extern II0_STATUS
iio_decode_long(char *string, long int *result),
iio_decode_double(char *string, double *result);

/* the old GCC does not understand __attribute__ */

#if (__GNUC__ == 2)
extern IIO_STATUS
iio_slog(char *out, char *fmt, ...)
__attribute__ ((format(printf, 2, 3)));
#else
extern IIO_STATUS
iio_slog(char *out, char *fmt, ...);
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#endif

ext

#if
ext

#el
ext

ern IIO_STATUS
iio_vslog(char *out, char *fmt, va_list ap);

(__GNUC__ == 2)
ern IIO_STATUS
iio_exec(char *fmt, ...)
__attribute__ ((format(printf, 1, 2)));
se
ern II0_STATUS
iio_exec(char *fmt, ...);

#endif

ext

ext

/*
*

*/
#de
#if

#de
#en

~
EE R SR U SRR R G R D R R R R R R R R R R R R R R R R R R R R R

*
~

ern IIO_STATUS

iio_file_open(char *name, IIO_FATTR fattr, IIO_FILE *file),
iio_file_close(IIO_FILE file);

ern char

iio_file_getC(IID_FILE file);

- - -—- --- MISC
/* use HIDDEN for local objects */

fine HIDDEN static

ndef NULL

fine NULL ((void *)0)
dif

- — —-— -— -—= ERROR MACROS

This is a slightly embellished error-return-collapse arrangement. All
functions return IIO_STATUS, defined in iio.h to be an enumerative:

iio_status_ok function executed sucessfully
iio_status_error function found non-fatal error
iio_status_fatal function found fatal error

There are macros to generate the error returns, and macros to call functions
and test the result. This makes the code much more readable, as it is not
covered in messy if(...) statement (actually it is, but they are done by
macros so they aren’t seen). It also allows cunning things to be done, like
printing file/line numbers and subroutine call traces for fatal errors.

To return an error from a function, use iio_error() or iio_fatal():

return iio_error("Bad thingy whatsit");
or
return iio_fatal("Really bad thingy whatsit");

The string argument should be a string constant (as shown), or a global

or static string pointer; it is stored for later printing. It can be
retrieved using iio_emessage_get(). If the error is from a system call

or operating system function, use iio_error_system(), or iio_fatal_system(),
to generate the message from the system errno or equivalent:

if ((£fd = open( ... )) < 0)
return iio_error_system;

To call functions, you can use iio_eret(), or iio_fret()

iio_eret( function(arg, ...) );
or
iio_fret( function(arg, ...) );

iio_eret() calls function(), and if it returns fatal error status, logs
a message, and returns fatal error status. If it returns non-fatal error
status, no message is printed, and it returns error status; if ok status,
nothing is done.

iio_fret() is the same, but only returns for fatal errors; non-fatals

DO NOT cause a return and it is up to the code at this point to deal with
the error (using a variable to catch the status).

/*
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* This macro is used when generating errors, usually used with
* a return statement. The S argument should be a static string pointer.
*/

#define iio_error(S) iio_return_error((S)

/*
* This macro is for generating FATAL errors; as for the above, but logs
* a message indicating where is was detected, as well as printing S
*/

#define iio_fatal(S) iio_return_fatal((S)

/*
* This macro evaluates S once (usually a function call) and returns from
* the calling function if S is an error. This is used to pass up errors
* at lower levels. If S indicates a fatal error, a tracing message is
* logged as well
*/
#define iio_eret(8) \
switch ((8)) { \
case iio_status_ok: \
break; \
case iio_status_error: \
return iio_status_error; \
case iio_status_fatal: \

FILE LINE__)

» —= —_— -

FILE LINE__)

y —= —_— -

iio_log( \
"II0: called from: file %s, line %d\n", \
__FILE__, __LINE_.); \

return iio_status_fatal; \

}

#define iio_fret(S) \
switch ((S)) { \
case iio_status_ok: \

break; \
case iio_status_error: \
break; \
case iio_status_fatal: \
iio_log( \
"IIO0: called from: file %s, line %d\n", \
__FILE__, __LINE__); \
return iio_status_fatal; \
}
#endif
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F.3 Header File types.h

#ifndef _types_h_
#define _types_h_
/*
* This file is part of IIO, the Industrial IO Library

* CSIRO Division of Manufacturing Technology

* $Id: types.h,v 1.3 2000/06/20 08:28:53 kir092 Exp $

*

* types.h -- known size integer types

* Robin Kirkham, June 1996

*/

/*

* I hate this file, because we are second-guessing the compiler. But I see
* no real alternative at present: only vxWorks defines certain size integer
* types. Hence, this nonsense. We assume gcc. The #predicate() stuff is

* apparently not ANSI, but the compiler only complains if we use -pedantic
* as well (but it still works). You can test this file by compiling and

* running debris/test.c

*/

#ifndef __GNUC__
#error This should be compiled by GCC
#endif

#if defined(m68000) || defined(m68010) || defined(m68020) || \
defined(m68030) || defined(m68040) || defined(m68060) || \
defined(i386) || defined(i486) || defined(i586) || \
defined(ppc) || defined(powerpc) ||
defined(sparc) || defined(sparclite)

/* gcc does these all like this */
typedef char iio_int8_t;
typedef short int iio_intil6_t;
typedef int iio_int32_t;
typedef long long int iio_int64_t;

typedef unsigned char iio_uint8_t;

typedef unsigned short int iio_uintl6_t;
typedef unsigned int iio_uint32_t;

typedef unsigned long long int iio_uint64_t;

#else
#error Integer sizes not defined
#endif

/* is this right? */
#define widthof (typ) (sizeof (typ) * 8)

#endif
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alias, [, Y, [9 D-25, [IJ
global generic, 7 DAC, B, [, 4, 3, 4, EJ, B3, 4, B0,
global specific, 8 [0, (12, 13
local generic, 8 data structures, 1
local specific, 8 DC,
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DI,

Diamond
DMM-32-AT, P4, B3, [Z1]

directory
iio/bin, [Z4
iio/doc, [[Z9
iio/doc/manual, [[29
iio/doc/manual/module,
iio/doc/proposal, [[29
iio/h, [Z4
iio/1ib, [Z4
iio/src, B8, MY, BG, [24, [23
iio/src/chip, b3, [29
iio/src/module, AY, B9, b4, [24
iio/src/object, [[Z4
iio/src/os, [

distribution tree, [23, [Z4

DMT, f

DS1620, b2

ECP7 7 m

ECP+EPP, [[10

EISA,

endianism, pJ,

enumerative
iio_arg_bool,
iio_bool_false,
iio_bool_true,
ITI0_CHTYPE, B2
iio_chtype_zog, b9
iio_iflag_log, 1
iio_iflag none, P1
iiomulti mno, B3
iiomulti_yes,
iio_oflag-log, £
iio_oflag none, P2
1I0.0P, 53
iio_ptype_read, 4
iio_ptype_write, f4
iio_space_id, b1
iio_status_error,
iio_status_fatal,
iio_status_ok,

EPP, [[UY, [T

error, p3
macros, b3
originating,
return string,

file

./iio.conf, [1, [

/dev/mem,

/dev/ttya,

/dev/vmel6,

/etc/iio.conf, [

/vw/iio.conf, [1

iio.conf, [[T7

iio'h7 ’ @7 7 m? m

iio/bin/i486-1inux/iio, [[23

iio/bin/iio, [29

iio/bin/platform, [23

iio/lib/1ibiio-i486-1linux.a,
=23

iio/src/Makefile, Y, b4, [Z34,
=23

iio/src/standard.c,

init.c,

internal.h, i, A8, B9, b3, b4, b1,
b2, b3, [C1, BY, L31

lynxos.c, [(1

Makefile, P1, @Y, [(1, [[3, [23, [23

opinfo.c, B3

solaris.c, [[1]

standard.c, @9

stdarg.h, [(1

types.h, i, [27, [49

vxworks.c, [(1

fish tanks,
function

exit (), E1

flock(), [

fopen(), B2

free(),

getpagesize(), [[9

iio_alias(), [, [(3

iio_alias find (), [

iio_alias_insert(), [, [

iio_arg(), B3-B1, EJ, £, [0

iio_arg_index (), B1

iio_arg_index_1list (), B1

iio_arg list (), B7

ijo_arg remnants(), [

iio_channel(), [7Q, 3

iio_chnode (), B2, AH, AT, b3, [2

iio_chnode_1limits (), B3, [

iio_chnode_linear (), B3, [

iio_chnode new(), [2, [

iio_close(),

iio_config exec(), [[J

iio_data_get(), fG, [[@

iio_data_get_addr (), fd, bY, @

iio_data get _real(), 4, [[@

iio_data_set (), 6, [[@

iio_data_set_addr(), @G, b9, bU,
ras ]

iio_data_set_real(), E4, [[@

iio_done(), P4, B3, [(§

iio_done_iio(), [[§

iio_emessage _get(), £, 4

ijo_file_close(),

iio file getc(), BT

iio_file open(), T

iio_init()a ﬂ? Ea 7 a 7 ma
B9, 74, [[3

iio_init_iio(), B4, B9, [[U, [1, [[¥

iio_ipinfo_ident (), f4, B4, b1

iio_ipinfo_read(), p1

iio log(O), B3

iiomap(O), B4, B8-S, [, [2,
3, 13

iio_mapnew(), [

iiomap_ptov(), [[1, [

iio map_typeQ), ]

iiomem_alloc(), /9

iio_mem_free(), [g

iiominfo(), BZ, B3,

iiominfo_call(),

iiomodule(), [0, [

iiomodule_cmp(), [[Q

iiomodule _create(), [0
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iio_module_reg(), B4, FJ
iio_module_state(), B4, B3, 0
iiomutex_alloc(),
iiomutex drop(), BU
iiomutex_free(), BU
iio_mutex_grab(), BU
iio_namex(), [[4
iio_namex_chan(), [4
iio_open(), P2, P4, B4, B1, 64, [[3-
ras|
iio_operate(), B3, B2, b1, (48,
B4, £z
iio_operate_addr(), B3, EG, B3,
ﬂ? ﬂ? E
iio_operate_bitfield(), [[4, [@
iio_operate_call(), [[4, [[@
iio_operate_in(), B3, 4
iio_operate_inaddr (), B3, [4
iio_operate_inreal(), B3, [{
iio_operate real(), B3, E3, [3,
[, rz0
iio_osdone(), [[§
iio_osinit (), B4, [[Q, (1
iio_port_alloc(), [[1], [9
iio_port_get16(), [[9
iio_port_get32(), [[9
iio_port_get8(), [[9
iio_port_set16(), [[g
iio_port_set32(), [
iio_port_set8(), [[9
iio_probe(), 4, b4,
iio_resolve (), B94-#2, b3-bY, [,
2
iio_resolve_ list(), i2
iio_return_error(),
iio_return_fatal(),
iio_shmap_alloc(), [, (2, [
iio_shmap_done(), [
iio_shmap_free(), [[§
iio_shmem_alloc(), [3-K0
iio_shmem_done (), /Y, 9
iio_shmem free(), [[9
iio_shmutex_alloc(),
iio_shmutex_drop(), BU
iio_shmutex_free(), BU
iio_shmutex_grab(), BU
iio_sll_insert(), B4, [0, [
iio_state_init (),
iio_tfile(), BY, [
iio_tty_line(),
iio_tty_raw(),
iio_tty_recv(),
iio_tty_send(),
iio_xxyzzy1234(0), fY
ioctl(), 2,
malloc(), A, Y,
printf (), B3
read(), [[2
smem_create (), [[§, [9
smem_get (), [[9
stremp(),
vxMemProbe (),
write(), [

GNU7 m? m? @7 @

GreenSpring, B, E4,
ATC-30,
ATC-40, P2, 27
IP-16DAC, [33
IP-ADC, B3
IP-ADIO, [[30
IP-DAC, B, [9, 4,
IP-DIGITAL 24, g1, 27, [33
IP-DIGITAL 48, P§, 33
IP-DUAL PI/T,
IP-OPTO, [[37
IP-PRECISION-ADC, [T
IP-PRECISION ADC, [33
IP-QUADRATURE,
IP-SERIAL, b4, [[U0, [33
IP-SERVO, [[UT],
IP-TIMER, [[33
IP-WATCHDOG, b4, [[U3, [Z1, [33

VIPC-610, [9, [13
VIPC-616, [13

ID-PROM, EY, 7 a 7 m7 Ea 7 m

identification function, B, 32,

IEEE,

110, 28, 1

IndustryPack, see 1P

initialisation, B

initialisation function, 31, 43, b9, [[Q

probing, 44

initialising function, B2

installation function, B1], 33, b8, 64, [J

interrupts, B0, B3,

1P, B, B, [, B3-£1, £4, b4-b7, b1, B2, B3,
po-ron, [03, (U3, [12, [I3,

z3, 133
ISA7 m7 m? ’ 7 m? 5 7 7 7
o3,

library size,
little-endian, 55
local alias, [[1]
LVDT, [[32

LynxOS, [, [7, 21, 3, 8, [, [23, [33
shared mutex problem,

macro

_FILE_, B3

_LINE__, B3

iio_eret (), P4, B3, BY, 63

iio_error(), B3, E4,

iio_fatal(), B3,

iio_fret(), B4, B3

II0_SIZE_MASK,
memory

dynamic,

mapping, [[1

protected, B3, [9

shared, B3, (9
MMU7 7 7 7 7 ﬂ? @
model ident, 5, [1, B2, [0
module, B, 5, [1,

alias, [[1]

driver, B,

ADAM modules, BJ]
CPU modules,
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address space, b7
directory,
documentation,
generic code, 54
IndustryPack,
proxy, 54
source code,
testing,
ident, [d, [Q
ident code, 6
initialisation, fg
installation, [
list, [[0
mutex, B3, [[Q, [[3
parameters, B, 6, B4, [T, [[1
self-identifying, {4, b4, 64
sequence number, 6
Motorola
MC68040,
MC68230,
MVME-160, [09
MVME-1600,
MVME-1603,
MVME-1604,
MVME-162, B,
MVME-162LX,
MVME-167, [[9,
MPU, [[U], [[UG
MS-DOS, [0Y, 29
mutex,

NPN,

object-oriented, B3,
operating system, [

files,

serial ports,
operation, 12

code, 14,

generic, 14
function, Dv 7 457 7 Q7 E7
node, [(4
read, 12
write, 12

operational phases, b1

PC, [, B, BY, B3, P2, [U4, [U§-[IT, [27,

pC-104,
pc/104, P4, [27
pc/AT, [[04

PCI7 7 7
PI/T,

PID, 3,
PIRAT, [, [33

POSIX’ m7 E?
PowerPC,

program
/bin/echo,
/bin/true,
configure, [[23, [Z3
gee, b1
gmake, [[25
iio’ 7 Ma @’ Mv m
1s, [[Z1

make7 ’ ’ m
platform, [Z3 [Z3
uname, [[23

PROM,

RAM,

RCS, 7 7 m

register
endianism problem, pj
write-only,

register structure, B4, 34, [[Q
chip driver, 53

registration-callback, B3

ROM,

RPC, [33

RS-232c¢, b1l

RS-422,

RS-485, B1], [33

RTD, BY,

RTEMS, [, [1, B3,

sca,

SE,

servo controller, [[4,

SI7 7 E

spp, [[0Y, [1J

state block,

state structure, B4, B9, &3, [[J
allocating, 34
chip driver, 53

Tews DatenTechnik
TIP-850-11, [T
trajectory generator, [4

TTL,
TTL/CMOS,
type

char * type,

double type, B8,
float type,

110 type, B2, BG, [[3, [[@
II0_ALIAS type, [[3
II0_ATYPE type, [[3
II0_BOOL type,
II0_CHINFO type, [[3
II0_CHNODE type, B2, (3, [[2, [[@
II0_FILE type, BY, B,
iio_int16_t type,
iio_int32_t type,
iio_int64_t type,
iio_int8_t type,
II0_IPINFO type, b1
IT0_MAGIC type,
II0.MAP type, [[1]
II0_MINFO type,
II0_MODULE type, [0, [[@
II0_MREG type, B3,
IT0_MSTATE type, B4, B3,
II0_MUTEX type,
II0_NAMEX type, [[4
II0_NFORM type, [(2
II0_OPEN type, (33

II0-OPNODE type, i, A4, b3, (34
II0_SENTINEL type, [

II0_SHMUTEX type,
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II0_SIZE type,
IT0_STATUS type,
II0_UDATA type, [[@
iio_uint16_t type, BG, b3, [Z1
iio_uint32_t type, BB, b3
iio_uint64_t type,
iio_uint8_t type, B4, b3, [Z1
int type, B3
SEM_ID type,
void type,
void * type,

type safety,

units,
SI,
channel property, 15
UNIX7 m? ﬂ? ﬂ? D7 @7 , @7 7 7 @7
b4, 63, 64, [77, (8, BY, B3,

user data, @@, [[@,

variable
argv(], B9, [[
CHIPNAMES,
errno,
iio_arg blank, [[1]
iio_chtype_stringl[], B2
iio_first, [
iio_opinfo[]l, B3
iio_pagesize, [[9
iio_standard, 1, B9, £9,
iio_state, pY, [[J
iio_state->alias, [(3
iio_state->chnode, pY, [[2
iio_state->map, pY, [
iio_state->minfo, BY, [[J
iio_state->module, pY, [[0
iio_state->mutex,
iio_state->omutex, BY, [[3, [3
iio_state->open, BY, [[3
iio_timestamp, [(§
MODULENAMES,
myDriverList, P9
PATH, [Z4
stderr, B3
vMEbus, [, B, @, [9, 274, B3, b8, b1,
7 ’ m? E? m? 7 7
[T3-IT13, 3]
vmic, B
VMIVME-25324, [T4, [[27
VMIVME-2534, [9, [T4, [Z1
VMIVME-2534A, B
VMIVME-4100, [[T§
vxWorks, [, B, [, 21, £1, B4, B4, B3, 68,
(7381, B3, B4, [[23, [33, [33

XYZzY-1234, B4, B3
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