Software for Providing
Remote User Interfaces—
the RTC Library

First Revision, printed June 17, 1997
R. J. Kirkham

Commonwealth Scientific and Industrial Research Organisation
Division of Manufacturing Technology
Melbourne Laboratory

Corner of Albert and Raglan Streets, Preston, Victoria
Postal Address: Locked Bag 9, Preston 3072 AUSTRALIA
Telephone: +61—-3—-9662—7700 Facsimile: +61—-3—9662—7851
World Wide Web: http://www.mlb.dmt.csiro.au/

DRAFT DOCUMENT

Document History

June 17, 1997 First Revision

Page ii First Revision

DRAFT DOCUMENT

Summary

This report describes RTC, which stands for Remote Tool Control. RTC is an integration of an
rRPC (Remote Procedure Call) network protocol with the Tel (Tool Control Language) program-
ming system [4, 8]. Tt is intended to facilitate the writing of graphical user interfaces to control
systems remotely through a computer network.

RTC uses a somewhat different approach to producing graphical interfaces to that used in the
past within the Division’s Industrial Automation Programme. Firstly, the interface itself uses
Tcl and Tk (Tecl’s graphical interface toolkit) [8]. Tcl/Tk permits very fast development of
graphical interfaces, as a given interface can be implemented with much less code compared to
the traditional C approach. As the language is interpreted, the development /test cycle is faster
because there are no compilation delays.

Secondly, the underlying RPC protocol used to communicate with the remote computer is fixed.
Rpc is a good choice, but in the past a new RPC protocol was developed for each application.
This meant that new ‘glue’ code between the protocol and the application has to be re-written
each time. By fixing the RPC protocol, both the client and the server can be generic, largely
pre-written and available in the RTC library, eliminating much application-specific C code.

The remote procedure call protocol RTC provides is modelled after the Tel function call: the
function accepts a number of string arguments, and produces a string result. This protocol has
been found to have considerable advantages, and integrates smoothly with both Tcl clients and
C servers.

The rRTC system provides a Tcl run-time loadable module, used in Tel RTC clients, and a library
for linking with RTC clients and servers written in C. There are also some diagnostic programs
useful for interface development. The system, or appropriate parts thereof, has been tested on
Solaris, SunOS, LynxQS, Linux, and vxWorks operating systems.

Following a short introduction to remote user interfaces in general, this report describes how to
use RTC, through simple examples and descriptions of the Tcl procedures, C library functions,
and diagnostic programs. This is followed by a section dealing more specifically with Tecl user
interfaces using RTC, including a case study of the PIRAT user interface [1, 7]. A final section
describes how to install the rTC ‘distribution’.

The RTC Library Page iii

DRAFT DOCUMENT

Page iv First Revision

DRAFT DOCUMENT

Contents

1 User Interfaces for Remote Systems
1.1 Introduction L
1.2 Why have a Remote Interface?
1.3 Why not have a Remote Interface?

2 Using RTC: An Example
2.1 User Protocol Definition Lo
2.2 Server Side Implementation0 Lo
2.3 Implementing the Rest of the Server o oL,
2.4 Compiling and Testing the Server o
2.5 Tl Client Side L e
2.6 Completing the Tel Cliento o
2.7 Further Examples Lo

3 Library Function Descriptions
3.1 Server Side C Functions e
3.2 C(lient Side Tcl Functions o o
3.3 Client Side C Functions e
3.4 Other C Functions and Variables

4 Utility Programs
4.7 Program rtCSVC v it i e e e e e e e e e e e
4.2 Program rtcclntl L e e e e e
4.3 Program rteping L Lo oL

5 Practical User Interface Design using RTC
5.1 Designing the User Protocol o
5.2 Server Stub Functions Lo
5.3 Stateless Clients e
5.4 Stateless Servers L L L e
5.5 Connectionless versus Connection-oriented Transports
5.6 Using catch around RTCcalls o o o o ...
5.7 Using the server catalogue
5.8 Background Polling for Remote Information
5.9 Program Numbers and the RPC Port-Mapper
5.10 Multi-threaded Clients and Servers
5.11 Server Access Control Lo
5.12 RTC in the PIRAT System o ot i e

6 Conclusion

References

The RTC Library

Page v

DRAFT DOCUMENT

Page vi First Revision

DRAFT DOCUMENT

1 User Interfaces for Remote Systems

1.1 Introduction

Several projects conducted within the Division’s Melbourne Laboratory in the last few years
have included a graphical user interface to control a remote system. The interface, generally an
X Windows program written in C, runs on a UNIX workstation and uses an application-specific
rRPC (Remote Procedure Call) protocol to send commands to and receive data from the remote
computer through a network. In other words, the interface runs on one computer, the program
or system it controls on another, and the two communicate using a custom protocol.

For example, the Buderim Ginger system featured an elaborate XView user interface running on
a Sun workstation, which communicated using two linked RPC protocols with the mvs (Machine
Vision System) processor [5, 6]. The interface controlled and monitored the mvs, displayed its
state to the operator, flashed up the Mvs’s alarm messages, and at the same time allowed the
operator to edit the ginger sorting programs.

These interfaces use RPC not because the remote system is actually physically distant (although
it can be), but because the remote system does not provide a suitable graphical user interface
infrastructure. The vMEbus microprocessor modules frequently used for real-time systems (such
as the Mvs) rarely have a video adaptor to use for an interface, and if they did, it would mean
porting a great deal of graphical user interface code to the real-time kernels generally used on
such hardware.

These interfaces are graphical because of the perceived need to surface prototypes with a fancy,
colourful veneer to show they are ‘hi-tech’. This seems to occur even when such an interface is
not, completely appropriate, such as with the Buderim system. There, the factory-floor operators
have to enter the air-conditioned room where the Sun workstation is kept, remove their rubber
gloves, and fiddle with the interface to enter two pieces of information, before they can actually
turn the machine on.

Leaving aside the question of appropriateness, the author has never been very convinced of
the efficiency of the current method of constructing such interfaces rpecgen and the XView
toolkit for reasons described shortly [4, 3]. Over the past few years he has sporadically tinkered
with various other approaches, before the imperatives of the PIRAT project led him to implement
RTC the remote interface system that is the subject of this report [1, 7]. Before describing rRTC
however, it seems worthwhile to examine some general matters related to remote user interfaces,
starting with the apropriateness issue mentioned above.

1.2 Why have a Remote Interface?

A variety of reasons are proffered for having remote graphical interface. Not all of these are
good reasons. A few are examined below, along with some counter-arguments:

The remote system is indeed remote. It’s hard to argue with this, of course. An excellent
example of this situation is the Safe-T-Cam system, where computers at unmanned sites
around New South Wales are linked by an 1SDN network to a centre in Sydney [?]. Each
site can be represented by an interface window on an operator’s screen and be conveniently
interrogated and commanded through it. However, this is not necessarily an argument for
a graphical user interface: see the points below.

The computer has no display hardware. The vMEbus computer hardware usually often
at the heart of high-performance industrial real-time systems is notorious for providing

The RTC Library Page 1

DRAFT DOCUMENT

no user interface hardware beyond a serial port, so networking it with another computer
that does have a display seems an obvious step. However, since these computer modules
are usually there to control application-specific hardware, it is not clear why adding some
relatively simple hardware to provide a user interface is apparently overlooked. Section 77
describes local interface options further.

The operating system does not support a display. This tends to be the case with the
shared-memory real-time kernels, such as vxWorks and RTEMS [9, 2]. To an extent this
relates to the preceeding point, although these system’s philosophy is often to provide only
basic multi-tasking and 10 facilities, and let the programmer write or obtain software for
this application-specific feature.

They unify a disparate system. A complicated system which involves a number of comput-
ers, even if not remote, might use remote interfaces to collect the controls for each node
onto a workstation screen for the benefit of a single operator. For instacnce, it was the
main reason for choosing to use remote interfaces in the PIRAT system.

They make the system easy to use. This is often asserted in favour of graphical user in-
terfaces in general, but is of course only true for a good graphical user interface. In fact,
a good design will have distilled the interface/operator interactions down to the optimum
set required for effective control of the system. This set is independent, of the interface
technology. In other words, a well thought-out interface constructed using old-fashioned
electrical buttons and lamps might well be easier to use than a hastily assembled graphical
interface.

They look good. This argument is typically allied with the preceeding one, in the context of
providing a ‘professional’ looking system. Clearly a completed system should be aesthet-
ically pleasing, but in the author’s view the aesthetic extends beyond a colourful display
to engineering design issues such as its appropriateness to purpose.

1.3 Why not have a Remote Interface?

As well as good (and not so good) arguments for having remote graphical interfaces, there are
good arguments against having them:

The users might not want one. An excellent example is the Buderim operators with their
rubber gloves. While graphical interfaces are becoming widespread, they are not yet
common on factory automation, and may be unfamiliar or inconvenient for many people.
Clearly the design and technology of the interface must consider its final users.

The software structure is more complicated. A remote interface complicates the struc-
ture of a system, because a network communication protocol must be devised, and code
written to interface it to both the main application and its remote interface. This means
the system will contain more code than if the interface had been integrated into the main
application, assuming this is possible: from this it follows that the system will take longer
to design, implement and test.

They show up unreliability. Two separate programs must cooperate effectively over a net-
work. Any unreliability in either computer or the network between them will be reflected
at the most visible point the user interface. Designing software to cope with unreliability
in a safe and convenient manner is not always easy. And while the user may be merely
inconvenienced by the lock-up of a graphical interface, someone else may be placed in
danger by machinery under control of the failed system.

Page 2 First Revision

DRAFT DOCUMENT

They might be insecure. Most networks are subject to an unauthorised access risk to some
degree. The dangers of placing control of a system in a network protocol must therefore
be carefully considered from that point of view as well.

They mean another computer has to be there. Where the remote interface is not actu-
ally remote, it means there are two computers in proximity, with presumeably twice (or
whatever) the capital and maintenance burden. This may be significant, especially if the
preferred platform for the graphical interfaces a Sun Workstation.

The RTC Library Page 3

DRAFT DOCUMENT

2 Using RTC: An Example

An interface using RTC can be developed server-first, client-first, or both can be worked on
together. It is probably more straightforward to establish the server apparatus first, test it, and
then work on the client side.

To illustrate using RTC, an example application is presented here. It is very simple indeed
and correspondingly useless but can be tried to make sure you can compile and link servers,
and use wish with RTC. For the sake of brevity, the example lacks some of the error checking
code that would normally be included on both the Tcl and C side. The source of the example
programs can be found in the rRTC distribution.

2.1 User Protocol Definition

Let us assume that we want a graphical interface (client) for printing messages on one of a
number of serial terminals connected to a remote computer (server). The client might have to
work with a couple of different servers, which might have different numbers of serial ports.

This suggests the server should provide two remote functions: one to report the names of the
available serial port, and the other to print a message on a given serial port. The client should
use the first function to present a list of ports to the user to select from, then accept a message
from the user, and use the second function to print it.

2.2 Server Side Implementation

The server side in the RTC system is always written in C. It comprises a number of stub functions
(in this case, two), and a main() function which:

e initialises the server part of the rRTC library
e registers the stub functions with the server, and
e enters the server wait-loop itself.

The server skeleton looks like this:

#include "rtc.h"

char *listports(int argc, char *argv[]) {
return "0OK";

}

char *message(int argc, char *argv[]) {
return "0OK";

¥
int main(int argc, char *argv[]) {

/* initialise RTC server library */
rtcServerInit();

/* register server stubs */
rtcServerRegister(""message', message);

Page 4 First Revision

DRAFT DOCUMENT

rtcServerRegister("listports", listports);

/* enter server loop */
rtcServer(''udp', 33, argv[0]);

The two stub functions are called listports() and message(). Note that the arguments are
strings, passed using the argec/argv convention, just like function main(), but unlike main()
the function must return a string pointer result.

The server guarantees that the stubs are always called with at least one argument: argv[0] is
the Tcl name the function was invoked by, and argc is always 1 or greater. Real arguments
begin at argv[1]. The server also guarantees that argvlargc] is always NULL.

The main() function first initialises the server part of RTC library, and then registers our tow
stub functions, using rtcServerRegister(). The first argument is the name by which the
function will be known, and the second is a pointer to the function.

If desired, a stub function can be registered under more than one name (the stub can use argv [0]
to tell what name it was invoked under). Stubs can also be re-registered and de-registered, even
after the server has started. This permits ‘dynamic protocols’ to be implemented, something
that is not possible using traditional static RPC.

Finally main() enters the server loop, from which it should never exit. The server accepts a
transport type argument (here, the User Datagram Protocol unp has been selected), a program.
number (more about this later), and a string used to identify the server in any log messages it
may prodiuce.

2.3 Implementing the Rest of the Server

Now that the skeleton of the server is in place, the server stubs can be fleshed out (alternatively,
you may wish to try to compile and test the server as it stands, as described in the following
section it should work).

The simpler of the two stubs is message(). We will make the first argument to this function
be the name of the serial port, and the second the message string to write to it:

#include <stdio.h>

char *message(int argc, char *argv[]) {
FILE *port;

/* open the serial device */
if (! (port = fopen(argv[1]l, "w")))
return "ERROR Can’t open port'";

/* print out message, close port */
fprintf(port, "message: ¥s\n", argv[2]);
fclose(port);

/* return ok result */
return "0OK";

The RTC Library Page 5

DRAFT DOCUMENT

The function returns a string indicating its success or failure. It is up to the user client software,
which calls this function through the RTC mechanism, to interpret the result, and take action:
RTC does not interpret the return strings in any way, and does not care if a stub function thinks
it has failed.

The 1istports() stub is a bit more complicated. It ignores any arguments, but returns a quite
long string containing a space-separated list of the filenames of all the serial port devices it can
find. It assumes that any file in the /dev directory with a name beginning with tty is a serial
port, and uses the UNTX directory-searching functions to compile the list:

#include <fcntl.h>
#include <string.h>
#include <dirent.h>

char *listports(int argc, char *argv[]) {
DIR *dirp;
struct dirent *dirent;
int length = 100;
char *result = rtcServerBuffer(length);

/* open directory */
if (! (dirp = opendir("/dev")))
return "ERROR Can’t open directory";

/* go through each directory entry */
while (dirent = readdir(dirp))

/* accept only names that start with "tty'" */
if (strncmp(dirent->d_name, "tty", 3) == 0) {

/* extend result string as required */

if (strlen(result) + strlen(dirent->d_name) + 8 >= length) {
length += 100;
result = rtcServerBuffer(length);

/* append to result */
strcat(result, " /dev/");
strcat(result, dirent->d_name);

closedir(dirp);

return result;

Up until now, we have only seen stub functions that return static strings as results. How-
ever, they may also return one of their own arguments (or a sub-string of an argument), or a
dynamically allocated string obtained through the function rtcServerBuffer()

This function is used by stubs to get working memory for buffers or for returning results, espe-
cially when the length of the result isn’t known in advance, as in the example. You should use

Page 6 First Revision

DRAFT DOCUMENT

it instead of malloc() and realloc() because the memory allocated by rtcServerBuffer()
is automatically reclaimed by the RTC server after the stub function returns.

The first time rtcServerBuffer() is called, it returns a pointer to a guaranteed clear buffer of
at least the requested size. Subsequent calls re-size this buffer, larger or smaller: if necessary,
it moves its contents to a new location. This feature is exploited in 1istports() above; as the
length of the list of ports gets longer, the buffer containing it is expanded (in lots or 100 bytes,
for the sake of efficiency).

Since this function has to return a list, it might be argued that the result should be returned in
an argc/argv[]-format as well. However, this makes the stubs more complicated, and besides
Tcl is very good at dealing with space-separated tokens this is what a Tcl list 4s. So, Tel
functions such as lindex and constructs such as foreach can be used to deal with these sorts
of results.

2.4 Compiling and Testing the Server

Assuming all this server code is in the file server.c, you can compile and link the server:
magni}, gcc -o server server.c -lrtc-sparc-solaris

You will probably need some -I and -L compiler options so it can locate the RTC header
file rtc.h and server library librtc-sparc-solaris.a, and on operating systems other than
Solaris, different libraries. Once compiled, the server can be run (do this on a separate window,
if possible):

magni} server &
[1] 15259
magnil

The trailing & puts the server process in the background. Now, the server code can be tested,
using the rtcclnt program, part of the RTC package:

magni) rtcclnt

This is an RTC process

Library timestamp 970304174233
magni/0>

rteclnt is a command-shell RTC client program which allows the user to interrogate and test
RTC servers (without actually using Tel: see Section 4.2).

There are commands to set client parameters, and perform remote calls and view the results
(the command help prints a menu). Firstly, we have to use the program command to set the
program number to 33, which is the number our server was registered with. (There is nothing
special about 33, it’s just the number being used for this example). Then, we can try a remote
call on our server, using the call command:

magni/0> program 33

magni/33> call catalogue
listports message ping catalogue
magni/33>

The RTC Library Page 7

DRAFT DOCUMENT

The remote call we tried was called catalogue. RTC servers always have two in-built remote
functions, ping and catalogue. ping always returns the name by which it was invoked (usually,
"ping"), and catalogue returns a space-separated list of the names of all the remote functions
registered with the server. Note that our two server stubs, listports and message, appear
here.

Now we can try calling one of these ...the moment of truth!

magni/33> call listports

/dev/tty /dev/ttypO /dev/ttypl /dev/ttyp2 /dev/ttyp3 /dev/tt
yp4 /dev/ttyp5 /dev/ttyp6 /dev/ttyp7 /dev/ttyp8 /dev/ttya /d
ev/ttyb

magni/33>

The list has wrapped around the screen, but this does not matter: our function seems to work.
We can test the message function as well:

magni/33> call message /dev/tty Hello!
0K
magni/33>

Over on the window where the server was running, we should see the output:

message: Hello!

2.5 Tecl Client Side

Having proved the server is functioning correctly, development of the Tcl client can commence.
Using RTC in a Tel ot Tcl/Tk application script is a three-stage process. The script must:

e load the rTC loadable object module
e obtain and configure an RTC handle
e use the handle to perform remote procedure calls.

RTC is implemented as a loadable object module, which can be loaded into a running Tel
interpreter using the load command, which is available in Tel versions 7.5 and later. (Previously,
the RTC routines were statically linked with Tel and Tcl/Tk to produce the special interpreters
rtclsh and rwish).

While loadable modules solve the considerable problem of multiple, incompatible versions of Tecl
and Tcl/Tk interpreters each with different Tcl extensions built in, they introduce the lesser
problem of locating the correct loadable module for the binary architecture of the computer.
At present, the best solution to this is not yet apparent, and for our example we will use the
following, based on the platform script:

load the RTC module
set RTC /opt/rtc
load $RTC/1lib/rtc-[exec platform].so Rtc

The rTC module adds one new command to the Tcl or Tcl/Tk interpreter: logically enough, it
is called rtc. The command rtc creates an RTC handle in fact, a new Tcl command which

Page 8 First Revision

DRAFT DOCUMENT

represents a particular server. The name of the handle is the first argument to rtc (similar
to the Tk class commands). Optional arguments specify the hostname the server is on, its
program number, time-out periods, and so on:

create an RTC handle
rtc remote -server magni —-transport udp -program 33

This has created a new Tecl command called remote, representing a RTC server providing pro-
gram 33 running on host magni in other words, matching our example server above. The rtc
command does not actually communicate with the server, or use rRPC at all; this only happens
when the handle is actually used.

You can have as many handles as you wish, representing different servers, or even the same
server. The only requirement is that the handles have different names (and are different from
any existing Tel function names).

The handle is invoked with one of three action arguments: call, configure, and destroy. To
actually do an RTC call to our server, use call:

get the 3rd port from the server and say hello to it
set ports [remote call listports]
remote call message [lindex ports 2] Hello!

This calls our server’s listports remote procedure, and stores the list in the ports variable.
This will be a list variable, so the Tcl 1lindex command can be used to extract simple items
from it. Assuming we want to say hello to the third port on the list (which happens to be
/dev/ttypl), the second line calls the message remote procedure, passing the selected file
name as the first argument, and Hello! as the second. If all goes well, a message should
appear on the server on /dev/ttypl.

The RTC handle’s configuration can be changed at any time using the configure action argu-
ment; configure accepts the same options and arguments as the rtc command that created it.
Once the script has finished using the remote server, it can invoke the handle once more, but this
time with the destroy action argument, which, as might be expected, closes any connections
with the server and reclaims the resources used by the handle.

2.6 Completing the Tcl Client

Finally, having shown we can call a remote server from Tcl, we can complete our simple serial
port message application with a reasonably glossy Tel/Tk graphical user interface. To operate,
the user types an message in the box at the top, selects the port they want from the list, and
presses Send:

The RTC Library Page 9

DRAFT DOCUMENT

Send

Adewsnull
Adeuftty
Adeusttyp
Adewsttypd
Alevittypz
Adeusttyps
Adevifttyp4a
AlevSttyps
Adeusttype
Adevittyp7?

The Tel script that produced this interface is below. It begins as a standard shell script, but
with a cunning prologue that re-executes itself as the standard wish Tcl/Tk interpreter, with
the rest of the script as source. The script then loads RTC and creates an RTC handle as
demonstrated above.

Then follows a sequence of standard Tk commands to create the user interface. There is an
entry box for the message, a Send button, and a scrollable list box for the available serial ports.
The first rRTC call, which gets the list of ports from the remote server, occurs just after the
initialisation of this list box. The names of the ports are inserted one by one into the list
using a foreach loop. Note that an initial entry for /dev/null is inserted beforehand; this is
so the list will have at least one sensible entry, in case the server does not report any available
ports. The list box is in single-selection mode, so only one serial port can be selected at once.

The second RTC call occurs only when the user presses the Send button, because the call is
part of the button’s ~command option. The selected serial port name comes from the list box (a
two-stage process), and the string to print from a variable controlled by the entry box.

#!/bin/sh
the next line restarts using wish \
exec wish "$0" "$@"

load the RTC module
set RTC /opt/rtc
load $RTC/1lib/rtc-[exec platform].so Rtc

create an RTC handle called remote
rtc remote -program 33

set up message entry and send button
set entry Hello

entry .entry -textvariable entry

pack .entry -side top -fill x

button .send -text "Send" -command {

Page 10 First Revision

DRAFT DOCUMENT

remote call message [.list get [.list curselection]] $entry

}
pack .send -fill x

set up scrolled listbox of available ports

listbox .list -selectmode single -width 20 -relief raised \
-yscrollcommand ".scroll set"

pack .list -side left

scrollbar .scroll -command ".list yview"

pack .scroll -side right -fill y

.list insert end /dev/null

.list selection set O

get the ports from the server, insert into list
set list [remote call listports]

foreach port $list {

.list insert end $port

2.7 Further Examples

Hopefully, this simple example has shown how easy it is to write RTC servers in C, test them
out, and then write Tcl/Tk RTC clients to use them.

The example has a number of shortcomings, which the careful reader may have already noticed.
In the Tel/Tk client, there is no way to specify the remote server (by default it is the local
host), the network transport to use (the default is UnP), or any program number other than 33.

There is also no handling of the error strings the remote calls might send back, or the Tel
exceptions that might be raised should the RTC/RPC mechanism fail somehow. More subtle is
a problem in the server: the message() stub might block indefinitly writing to a busy serial
device, which will freeze the interface until the RTC call times out.

So, while using RTC is quite easy, there are pitfalls as well. Section 5 of this report attempts to
alert the reader to some pitfalls that have already been fallen into.

The RTC Library Page 11

DRAFT DOCUMENT

3 Library Function Descriptions

This section details the C and Tecl functions provided by the rTC library.

To use the rTC library from a C program, you must include the header file rtc.h. This file
contains ANSIT prototypes of the C functions, manifast contants, and macros. You must link the
program against, the library 1librtc—<cpu>-<os>.a, where <cpu> and <os> represent the cPuU
and operating system names, as revealed by the platform script. The library contains both the
RTC server and client functions.

To use RTC in a Tel script, you must first load the shared object module rtc-<cpu>-<os>.so.

Most of the rTC C functions return an integer result, zero on success, or non-zero on failure.
In the latter case the function rtcMessageGet () can be called to return a string describing the
error. Refer to Section 3.4 for details.

3.1 Server Side C Functions

RTC_STATUS rtcServerInit(void)
This function must be called before any of the other RTC server functions, because it
initialises the RTC server data structures. It also registers the two standard RTC remote
functions, ping and catalogue.

RTC_STATUS rtcServerAuth(RTC_AUTH tag, ...)
This function is called to add further entries to the server access control lists described in
Section 5.11. The arguments are a set of one or more tag/argument pairs, terminated by
a zero. The tags and argument types are:

Tag Argument Type Argument
rtc_auth_host char* client hostname
rtc_auth_uid int UNTX user-id number
rtc_auth gid int UNTX group-id number
rtc_auth_user charx* UNTX user name
rtc_auth_group charx* UNTX group naie

Note that the same tag may appear more than once within the same call. String data is
duplicated by the function, so string arguments need not be static.

The authorisation lists initially contain the hostname of the server machine, and the user-
id and group-ids of the server process. There is no way to remove an entry from the lists;
in practice this has not been found to be necessary. rtcServerAuth() can be called at
any time, even after the server has been entered.

RTC_STATUS rtcServerRegister(char *name, RTC_EXEC function)
Register the C server stub function function() with the server under the name name.
The function will subsequently be invoked by the server task or process when a request to
execute function name comes from a remote client, and it passes the autorisation check.
The stub function must conform to the prototype:

typedef char* (* RTCEXEC)(int argc, char *argv[]);

In other words, the function must accept arge/argv[]-style arguments, in the same way
as the normal C main() function, but should return a character pointer. This must point

Page 12 First Revision

DRAFT DOCUMENT

to either static storage, to one of its argv strings (or a sub-string), or to dynamic storage
obtained from rtcServerBuffer() below.

Only one stub function can be registered with a given name: subsequent registrations
replace earlier ones. However, a stub function can be registered under many different
names. Functions can be de-registered by passing NULL for the function argument.

char* rtcServerBuffer(unsigned size)
Server stub functions can call rtcServerBuffer() to get a pointer to dynamic memory for
return values or scratchpads. The size of the buffer is given by size, and is guaranteed to
be zeroed. The buffer is automatically de-allocated by the server after the call to the stub
function is complete and the string has been transmitted back to the client. This permits
stub functions to return large or variable size strings and remain re-entrant without
fear of memory ‘leaks’.

The buffer can be re-sized simply by calling rtcServerBuffer() with the new size: this
is equivalent to realloc(). Note that the location of the buffer may change, and the
function returns a new pointer. In this case the contents will be copied, so any pointers
into the buffer will need to be re-computed.

RTC_STATUS rtcServer(char *transp, unsigned prog, char *name)
Establish an rTC server, and enter the server main loop, and do not return. In single-
threaded UNTX systems, this is called at the end of main() after the server authorisation
parameters have been set up using rtcServerAuth(), and the server stubs have been
registered using rtcServerRegister(). In multi-threaded UNIX systems, and shared-
memory multi-tasking systems, a new thread or task is generally established, which calls
rtcServer(); rtcServerAuth() and rtcServerRegister() can be called before or after.
Section 5.10 deals with multi-threaded environments in more detail.

Parameter transp is a string indicating the network transport type or types the server
should provide. Generally this will be of the form "tecp', "udp" or "tcp udp", although
some systems may provide additional or alternate transport types. Refer to Section 5.5
for a discussion of transport types.

Parameter prog is the RTC program number, given to this user protocol. Clients use the
program number to find the server they want. Only one server per computer should have a
given program number Section 5.9 deals with program numbers in more detail. Parameter
name is a name for the server messages (argv[0] is normally used).

RTC_STATUS rtcServerShow(void)
Prints out a short summary of the server data structures, including the contents of the
server authorisation lists and the names and addresses of all registered server stubs.

RTC_STATUS rtcServerDone(void)
This function deallocates the server data structures. On some systems it may attempt to
remove the server thread or task. On single-threaded UNIX systems, there is no place to
actually call this function from, but on these systems there is no particular need to, the
the system will reclaim the resources itself.

3.2 Client Side Tcl Functions

The rTc Tcl interface the client side of the system has been modelled on the object-oriented
style used by the Tk widget functions. In that arrangement, new widget commands with names

The RTC Library Page 13

DRAFT DOCUMENT

given by the programmer are created using Tk’s class command functions (such as button
or scrollbar). Most of the parameters of the widget are specified by options to the class
command. The widget is subsequently controlled by invoking the widget command with one of
a set of action arguments (such as configure, call or destroy) and associated arguments.

rtc <handle> [-server <server>] [-program <program>]
[-transport <transport>] [-timeout <timeout>] [-retry <retry>]

[-recreate] [-norecreate] [-debug] [-nodebug]
Create an RTC handle with name handle. handle can subsequently be called as a Tecl

function to invoking remote function calls <handle> is the only mandatory argument to
rtc: all options have useful default arguments. The options are described below. If an
option is repeated, the last one prevails:

-server <server> (default localhost)
Argument <server> is the hostname of the machine running (or which will run) the rTC
server the handle will represent.

-program <program> (default 0)
Argument <program> is the program number on the given <server> the RTC server the
handle will represent. Program numbers are discussed in Section 5.9.

-transport <transport> (default udp)
Argument <transport> specifies the network transport type the handle will use. Unlike
RTC servers, clients can only use one transport type at once. The available transport
types are system-dependent, but will generally be either tcp or udp, corresponding to
the Internet protocols TCP /TP (connection-oriented) or UDP /TP (connectionless). Refer to
Section 5.5 for a discussion of transport types. This option replaces the two former option
flags —tcp and —udp.

-timeout <timeout> (default 25.0 seconds)
Argument <timeout> specified the maximum overall period of a remote call (executed
using <handle> call below). If the server fails to respond within this period, a Tcl
exception will be raised, and the call will return an error string. Refer to Section 5.6 for
details on how to deal with the exception.

-retry <retry> (default 5.0 seconds)
Argument <retry> is only applicable to connectionless transports, such as unpp/1p, and
is otherwise ignored. If a remote server fails to respond, the call is tried again after a
delay of <retry> seconds. This process continues until the overall <timeout> period has
elapsed. The value of <retry> is thus somewhat smaller then that of <timeout>.

-recreate/-norecreate (default -norecreate)
Setting ~recreate mode forces the RTC handle to be ‘re-created’ just before each remote
call. This means the server port-mapper is re-consulted to locate the server port, and on
connnection-oriented transports the old connection is closed and a new one opened. This
is quite inefficient, but makes clients more robust in the face of server unreliability. It is
particularly useful during server development.

-debug/-nodebug (default -nodebug)
Setting —debug mode causes miscellaneous debugging messages to be produced on the
standard error stream, or the logging stream where there is one.

Page 14 First Revision

DRAFT DOCUMENT

Note that only the syntax of arguments is checked: creating an RTC handle does not cause a
remote call or any other network activity. Incorrect arguments (wrong server, program number,
etc) will only be detected when the handle is actually used.

The handle created by rtec, <handle>, can be invoked with one of three action arguments, call,
configure or destroy:

<handle> call <name> [<arg> ...]
Call the remote server function registered with the name <name>, passing it the given
argument, list, and returning the result string.

The RTC <handle> call function returns an error status (TCL_ERROR) if:

e the <handle> call <name> is called incorrectly (<name> is mandatory, al-
though arguments for the remote function are not)

e the underlying RPC mechanism failure reports an error. There are several pos-
sible causes for this:

e the remote server machine cannot be reached or does not, exist

e the server has no port-mapper daemon

e the server isn’t running the desired RTC server (identified by the rTC
program number; see Section 5.9)

e there is a communication failure, leading to loss of the request or re-
sponse packet (more common on connectionless transports)

e the client’s authorisation credentials are rejected by the server (see Section 5.11)
e the remote server does not have a function called jname;.

Note that these errors are related only to the RPc and RTC mechanism which is concerned
only with delivering requests to the user’s remote server stub functions and getting the
results back. Errors detected within the user’s server stub functions do not cause Tcl errors
to be returned. These ‘user errors’ can be signalled back to the calling client through the
return string only, as they form part of the user protocol (see Section 5.1).

If an error occurred, the return string contains an error message indicating the source
of error. Note that the call function may block for up to the <timeout> period before
returning an error. Section 5.6 discusses a way of dealing with such errors in Tel scripts.

<handle> configure [-server <server>] [-program <program>]
[-transport <transport>] [-timeout <timeout>] [-retry <retry>]

[-recreate] [-norecreate] [-debug] [-nodebug]
Alter the configuration of <handle> according to the given options, which are identical

to those for the rtc function. Like the rtc handle creation function, configuring a handle
does not cause a remote procudure call, or any other network activity. Only <handle>
call invokes remote calls.

Calling <handle> configure with no arguments returns a string containing the current
handle configuration.

<handle> destroy

Destroys the RTC handle, closing any connection with the server. The command <handle>
is removed from the Tecl interpreter, so any subsequent attempt to use it will cause an
error.

The RTC Library Page 15

DRAFT DOCUMENT

3.3 Client Side C Functions

The rTC system can also be used directly from a C program, using the functions described below.
This defeats much of the purpose of RTC, but is necessary for situations where a computer does
not have Tcl, yet should be a client of an RTC server.

The client side C functions correspond closely with the Tecl functions described above, because
the Tecl loadable module is implemented using them. The rRTC utility program rtcclnt (Sec-
tion 4.2) allows these functions to be executed directly from a command-line environment.

In C programs, client handles are represented by objects of type RTC, which is a pointer to an
opaque structure holding the configuration information and the RpPc CLIENT pointer.

RTC_STATUS rtcClientInit(void)
This function must be called before any of the other rRTC client functions, because it
initialises the RTC server data structures. It takes no parameters.

RTC_STATUS rtcClientCreate(RTC *rtc, RTC_CONFIG tag, ...)
Creates a client handle object, and places a pointer to it in the location given by the
rtc argument. The handle is then configured using the following arguments, a set of
tag/argument pairs, terminated by a zero. The tags and argument types are:

Tag Argument Type Argument

rtc_config name char* handle name
rtc_config server char* server hostname
rtc_config program int program number
rtc_config transport charx* transport type string
rtc_config timeout int timeout in milliseconds
rtc_config retry int retry in milliseconds
rtc_config recreate RTC_BOOL recreate handle each call
rtc_config debug RTC_BOOL produce debug messages

The meanings of the tags and arguments is exactly the same as the client options described
in the previous sub-section in relation to Tcl client handles, except that here the timeout
and retry periods are specified in milliseconds. The handle name argument relates to the
Tcl <handle> name, and need not be used in C programs.

The same tag may appear more than once, per call; the last such tag/argument pair
prevails. String data is duplicated by the function, and so need not be static. The
RTC_BOOL flag has values rtc_bool_true or rtc_bool false (1 or 0).

Errors in the configuration information, such as non-existant server hosts, wrong pro-
gram numbers, and so on are generally only detected when a remote call is initiated by
rtcClientCall () below.

RTC_STATUS rtcClientConfigure(RTC rtc, RTC_CONFIG tag, ...)
Configure an extant client handle rtc. Tt accepts the same zero-terminated tag/argument
list as rtcClientCreate().

RTC_STATUS rtcClientInterrogate(RTC rtc, RTC_CONFIG tag, ...)
Extract configuration information from an extant client handle rtc. It accepts the same
tags as rtcClientCreate(), but with pointers to the appropriate user objects.

Page 16 First Revision

DRAFT DOCUMENT

A pointer to a dynamically allocated duplicate string is returned into the user’s pointer
for string type configuration data. These strings should be subsequently deallocated by
the user using free().

RTC_STATUS rtcClientCall(RTC rtc, int argc, char *argv[], char **resp)
Perform a remote function call using the handle rtc. Pointers to the individual argument
strings are in the array argv[]; argv[0] points to the name of the remote function to be
called. Parameter argc is the number of arguments, counting argv[0].

Parameter resp is a pointer to a string pointer, which after the call contains a pointer to
a dynamically allocated string containing the result of the remote call, or if the call failed,
a descriptive error message. A new response buffer is allocated for each call. The caller
should subsequently free the buffers using rtcClientResponseFree() (not with free()).

If the remote server is not responding, this function will block for up to the currently
specified timeout period, and will return an error status. Other errors may be detected
immediately.

RTC_STATUS rtcClientResponseFree(char **resp)
Free the response buffer from a previous call to rtcClientCall (). Note that this function
does not, require the original client handle.

RTC_STATUS rtcClientShow(RTC rtc)
Print out the configuration information of handle rtc.

RTC_STATUS rtcClientDestroy(RTC rtc)
Destroy client handle rtc, deallocate its associated data structures and close any file/socket
descriptors. The handle cannot be used again.

RTC_STATUS rtcClientDone(void)
This should be called when the user program has finished with the rTc library. Note that
it does mot close any outstanding client handles; use rtcClientDestroy() to do this first.

3.4 Other C Functions and Variables

Most RTC client, and server C library functions return a status value of type RTC_STATUS. This
has the following values:

Name Value Meaning
rtc_status_ok 0 function suceeded
rtc_status_error -1 recoverable failure
rtc_status_fatal -2 fatal error

The user should check the return status from each function call, and act appropriately. Most
commonly, an error status is caused by a remote call timeout due to the server disappearing,
or incorrect client configuration in the first place.

Fatal errors are caused by memory allocation failures, NULL pointers, corrupted data structures,
and so on. The RTC library attempts to print a diagnostic trace to the standard error or logging
stream. The user program generally cannot continue if this happens.

In either case, an error string can be obtained:

The RTC Library Page 17

DRAFT DOCUMENT

char* rtcMessageGet(void)
Return a pointer to a descriptive string indicating the cause of a recoverable failure or
fatal error. This string should not be altered by the user.

Page 18 First Revision

DRAFT DOCUMENT

4 Utility Programs

There are three utility programs for testing out RTC clients and servers. They run only on UNIX
systems. These programs are run from the bin directory of the RTC distribution, once compiled.

4.1 Program rtcsvc

Program rtcsve is an RTC server featuring only the two standard RTC remote calls, ping and
catalogue:

rtcsve [-p <program>] [-t <transport>]

[-h <clienthost>] [-u <username>] [-g <groupname>] [-r <name>] [-d]
Starts an RTC server offering program number <program>, on the network transport type

<transport>. Option -t may be repeated to add more than one transport type. The
default (possibly system dependent) is to provide both Tcp /1P and UDP/TP transports.
The default program number is O.

The -h option adds host <client> to the server’s host authorisation list. Option -u adds
the UNIX user-id number for <username> to the user authorisation list, while -g adds the
UNTX group-id number for <groupname> to the group authorisation list. These options
may appear any number of times.

Option -r registers a stub function with the name <name>; this function behaves iden-
tically to the standard stub function ping, i.e. returns its own name. This option be
repeated for different names.

Option -d enables the logging of debugging messages to the standard error or logging
stream. The messages indicate the source of remote call requests, whether they passed
the authorisation test, and if so, their arguments and reponse.

This program can be used for testing clients (to an extent) by acting as a placeholder for a
projected server. In this case the —-d option is used to add all the remote function names the
server will provide: of course, the server’s responses cannot be simulated.

4.2 Program rtcclnt

Program rtcclnt is an interactive shell-like program used to test servers, before the matching
clients are completed. Its use was demonstrated in Section 2.4.

The command prompt displays the current RTC server hostname and program number (rtcclnt
can only deal with one RTC server at once). The commands server, program, transport,
timeout, retry, recreate, and debug are used to alter the configuration of the client, one item
at a time. The client, configuration can be printed out using show.

Command call initiates a remote call. The call’s result string, or an error message, is printed
out.

Program rtcclnt can execute canned sequences of commands, using the script command, or
can execute any UNTX command using shell. In scripts, lines beginning with # are ignored, but
there are no control structures (if you want them, use Tcl!).

The command help print a complete list of commands and the arguments they take:

h rtcclnt
This is an RTC process

The RTC Library Page 19

DRAFT DOCUMENT

Library timestamp 970307125521
magni/0> he

Commands:
call <name> [<arg> ...] do remote call of <name> with <args>
server <server> set RTC server host to <server>
timeout <period> set timeout period (seconds)
retry <period> set retry period (seconds)
recreate [yln] toggle/set recreate flag
transport [tcpludpl...] set network transport type
program <program> set program number to <program>
debug [yln] toggle/set debug flag
show print RTC client information
source <file> read in/run RTC commands from <file>
shell <command> [<arg> ...] run UNIX <command> with <args>
help print this message
lines beginning with # are ignored
quit quit program

Commands can be abbreviated
magni/0>

4.3 Program rtcping

Program rtcping is a Tcl/Tk program, whose sole purpose is to test the ping remote call, but
with a graphical interface, which looks like this:

[~ rtcping
5&ruer:|per1he1iud

Transport; ¥ TCP -~ UDP

Frogram: |24 ||

Options: M Recreate d Debug

T1meuut:|4n.2 ||

Retry:|2.3 ||

Operation is largely self-explanitary: the configuration of an RTC handle can be altered using
the widgets at the top of the interface: a ping remote call is initiated by pressing the Ping
button. If there is an error, a pop-up appears with the error string in it.

Page 20 First Revision

DRAFT DOCUMENT

5 Practical User Interface Design using RTC

5.1 Designing the User Protocol

In traditional RPC programming, the user’s protocol for a particular application is statically
defined in a file with a formal protocol description language. Usually this file is then parsed
by a program (such as rpcgen) which produces skeleton code for the client and server and for
data encapsulation. The user then fleshes this out by writing server and client stub functions,
gluing the RPC data transfer structures produced by rpcgen with the data structures of the
application program.

With rRTC the situation is much freer; there are really no data structures (although there may
be structured data), and so the protocol is effectively defined by the set of stub functions the
server provides, and the set or responses they will produce. This protocol can be thought of as
the ‘user protocol’, as it is overlaid on the RTC RPC protocol, but defined by the user in much
the same way as ordinary procedures and functions. There is still glue code to be written, but
there is less of it, and it is easily debugged, because the user protocol is human-readable.

Despite there being no need for a formal protocol definition, it is worth planning and document-
ing it, like any other programming exercise. Unlike most, RPC protocols, the user protocol can
be extended dynamically the server can install new stub functions at the request of clients,
and clients can interrogate servers about their capabilities and adapt accordingly.

5.2 Server Stub Functions

The server stub functions receive their arguments as strings in the traditional arge/argv format.
argv[0] is the name the function was invoked (registered) as; argc is always greater than zero;
and argvlargc] is always NULL. Traditional string handling functions, such as atoi(), atof (),
strtol(), strtod(), stremp() and sscanf () can be used to analyse the arguments.

The server stub function’s output is a single string, which can be constructed using sprintf (),
strcat (), and so on. The function can return a constant string, a pointer into a static string
buffer, a pointer into an argument string, or memory obtained using rtcServerBuffer() (Sec-
tion 3.1).

Because there can only be one RTC server thread per address space (see Section 5.10) servers
stubs can safely use local static buffers and return pointers into them. However, the single-
thread restricion may one day be lifted, so this practice is not recommended.

Users can adopt any style of stub function argument passing they desire. While UNTX command-
line options flags and arguments can be used (along with getopt (), although it is not reentrant),
a positional style, where an argument’s position in the argument list indicates what it is, is
generally simpler and more effective.

Thus, argv[1] means one thing, argv[2] another, and so on. If arguments are optional, the
appropriate argument can be passed a DEFAULT string, which the C stub functions chan check for
and substitute the appropriate value. A more flexible arrangement is to arrange the arguments
in order of decreasing usefulness, so that commonly specified argument come first and less
commonly used ones (i.e., the more optional ones) come later.

Stub functions should be relaively relaxed about argument parsing, and should try and do
something sensible with whatever arguments are passed, rather than returning error messages
to the client. This minimises the need for error handling code on the Tcl side, which tends to
clutter up scripts. In general it helps for the stub functions to be arranged to suit easy Tcl

The RTC Library Page 21

DRAFT DOCUMENT

implementation, rather than the other way round.

5.3 Stateless Clients

In any network client/server arrangement, it is much easier if the clients can be made stateless,
or at least mostly stateless. ‘Stateless’ means that they do not make any assumptions about
the server’s state, or try to maintain duplicates of it.

This is simply because the server state might change, but the client will not know about it.
Servers might, change their state unilaterally, or in response to other clients. As well, the client
may lose communications with the server temporarily. The client cannot assume an element of
server state is going to have the same as what it set it to last time. If it needs to use a data
element, it must fetch it from the server each time.

Consider the situation of a server providing a remotely controlled voltage output, such as a
digital-to-analogue convertor. In providing a remote graphical interface using rRTC and Tcl/Tk,
the obvious approach is to use a Tk scale (slider) widget controlling a Tcl variable. The trace
variable function can then be used to arrange for a user function to be called whenever the
variable changes, which does the remote call to update the server voltage. The value displayed
on the slider should thus reflect the voltage coming out the digital-to-analogue convertor on the
server.

This will be true, until another client changes the voltage. The second client will then be
displaying the correct voltage, and the first will be wrong. The only way the first will be able to
display the correct voltage is by querying the server to ‘read back’ the output voltage, as there
is no way the server can tell the client it has changed. The only way the clients will always
display the correct voltage is by continually querying the server, or in other words, polling.

Polling is not particularly elegant, but it is robust, and ensures that the client needs only very
short-term display state. Section 5.8 shows how such polling can be put in the background.

On the other hand, there will be cases where a server response can be assumed to be fixed,
and retaining the reponse as client state justifiable. For instance, in the example of Section 2,
the list of serial port devices was assumed to be fixed, and fetched from the server only once.
Since the number and names of device nodes on UNIX systems are quite static, the assumption
is reasonable in this case.

5.4 Stateless Servers

Servers should also maintain the minimum of state required to do their job. In particular, they
should not assume any particular behaviour from clients, such as expected sequences of remote
calls, because such expectations will be confounded by two clients using the server at once. The
server stub functions are not passed any information about the identity of the clients.

Servers should help their clients to be stateless. The remote functions they provide should make
it convenient and efficient for clients to poll for displays of the server state. For instance, on
the server controlling the digital-to-analogue convertor, there should be a function that sets the
output to a given voltage, and another that returns the current voltage.

There should not be a function that, for example, increments the output voltage be a given
amount, as to use this the client needs to assume it knows the current voltage, which might
have changed since it last read it.

Page 22 First Revision

DRAFT DOCUMENT

5.5 Connectionless versus Connection-oriented Transports

Allied to statelessness is the choice of network tranport protocols. Generally this is a choice
between a connectionless (datagram) transport, such as UPD /TP, or connection-oriented (stream)
transport, such as TCP/1p.

In general, connectionless transports are preferable for user interfaces, particularly during de-
velopment. They ensure a ‘loose’ coupling between servers and clients, which can be killed and
restarted without having to wait for connections to time-out and close.

However, they bring into relief the issues of statelessness discussed above. An RPC exchange on
a connectionless transport is the exchange of two datagrams, the request and the reply. Either
datagram might be lost in transmission. If a client has not received the reply for its request
within the retry period, it sends the request again, and continues to send it until it gets a reply,
or the overall time-out period has elapsed. Now, if it was the reply datagrams that were being
lost in transmission, the server would have recieved a whole sequence of identical requests, which
it would have faithfully executed. As long as one reply datagram makes it back to the server,
the RPC exchange is regarded as sucessful.

In the case of our server with the voltage output, there would be no problem with the multiple
requests if they were to simply set the voltage. The voltage would be set to the same value a
number of times, but this would not matter. If the requests were to increment the output, the
situation would be very different!

Connection-oriented transports bypass this problem (but this should be no excuse for writing
stateful clients). They tend to give better performance on lossy networks, such as serial links and
packet radio systems. However, on local ethernet networks they seem to have little advantage.

When using connection-oriented transports (or at least, TCP/1P), case is required to properly
shut down the connection, otherwise one end (usually the client) will be left ‘dangling’, inoper-
ative until the connection times-out, which can take some minutes. RPC servers generally don’t
clean up on exit very well, and on vxWorks and similar systems, the server is usually terminated
by the reset and reboot of the whole computer. For these reasons, connectionless protocols are
usually preferble.

5.6 Using catch around RTC calls

Tecl functions, including the rTC handle operations, return both a string result and a status
code. The status code indicates if the procedure suceeded, or if there was an error; in the
latter case, the result string is supposed to indicate what the error was. Errors are returned for
conditions where the Tcl script cannot normally continue, such as when functions are given the
wrong number of arguments, underlying system calls fail, and so on.

When a function returns an error, the Tcl interpreter halts execution of the script and prints
out the return string as the error message, along with a stack dump. (Tk does much the same
thing, but in a pop-up window). In most cases errors occur infrequently enough to leave their
handling to the default Tcl mechanism. However, remote procedure calls require more careful
treatment. Because they depend on network infrastructure, remote daemons and servers, and
authentication processes working together properly, they are more likely to fail.

In a remote user interface application, handling errors of this nature is very important. The
interface can be the user’s only ‘view’ of a system, and problems and frustrations that occur
here reflect badly on the system as a whole. The interface should never ‘lock up’, nor should
the end user ever be presented with a stack dump.

The RTC Library Page 23

DRAFT DOCUMENT

The Tcl catch function can be used to deal with errors from RTC calls before the Tcl mechanism
does. Assuming we have an RTC handle called remote and a remote function called 1s:

if [catch {remote call 1s $args} result]
an rpc error occurred
message_popup "Can’t contact remote server: $result"

T} else {

check for a user error
if {[1lindex $result 0] == "ERROR"} {

message_popup "There was a remote server error: $result"

}

deal with a good response

}

In this case, a message pop-up is thrown up if an error is caught, which is only a marginal
improvement on the default Tk mechanism. However, the pop-up could, for instance, permit
the user to select a different server and retry the operation.

Remember that RTC calls return Tecl errors only when the RTC or RPC mechanism fails, and not
when the user server stub functions report errors through their return string. In the example,
the first token of the return string is checked for the word ERROR, but the user may choose to
employ any protocol (Section 5.1).

5.7 Using the server catalogue

All rRTC servers provide a catalogue function, which returns a list of the names of all functions
registered on the server. This can be used by clients in various ways.

The catalogue functions can be used as part of the user protocol, in cases where servers offer
a variable number or range of services which must be adapted to by a single client.

The example given in Section 2 is like this: the client doesn’t initially know how many terminal
devices the server has, or what their names are. An alternative implementation could have the
server register an RTC stub function for each terminal device available, rather than listports
and message. The client would use catalogue to get the available functions (effectively, the
list of ports), and would call one of the functions directly to print the message.

If users do not like the <handle> call <name> call syntax, they may insert <name; into the

Tecl interpreter directly, by defining a procedure:

proc name args {
if [catch {remote call name $args} result] {

}

return $result

}

This has the advantage of hiding the catch mechanism (and user error handling as well, if
desired). The catalogue function can be used to automate this process, inserting every remote
function offered by the server into the interpreter:

Page 24 First Revision

DRAFT DOCUMENT

if [catch {remote call catalogue} allfuncs] {

}
foreach func $allfuncs {
proc $func args {
if [catch {remote call $func $args} result] {

}

return $result

In this case, the remote functions have to be fairly consistent in their operation, at least with
respect to errors. It is also important that the names the stubs are registered with in the server
do not clash with any extant functions or variables on the Tecl client side, or contain illegal
characters.

5.8 Background Polling for Remote Information

Often a Tcl/Tk interface to a system must maintain an up-to-date display of the remote systems
state or process variables. Unfortunately, the server cannot tell the client when this state has
changed and needs to be re-displayed. The only alternative is for the client to poll the server
at regular intervals, and re-display the data if it has changed.

This process can be ‘backgrounded’ using the Tcl after function. After a script has initialised
everything, it calls a function poll:

proc poll {{period 1000}} {
display_update
after $period poll $period

Function display_update uses RTC to get new data from the server and display it. Then poll
scedules itself to be called back by the Tcl interpreter after period milliseconds, and so on.

To be workable, this scheme needs a little refinement. Polling needs to be disabled while Tk
widgets (such as scales) are being adjusted, or strange things happen. This can be done by
binding a function to the button press/pointer leave events of the affected interactors.

The PIRAT user interface Tcl scripts (Section 5.12) used polling for display update. A generic
polling module poll.tcl was used (see the sources).

5.9 Program Numbers and the RPC Port-Mapper

The rTC program numbers, which are assigned by the user, are equivalent to RPC service
numbers, which differentiate one RPC service from another. The rRPC service numbers used by
RTC servers and clients are simply the RTC program numbers added to 600 000 000 decimal.

This allows RTC to make use of the standard RPC port-mapper daemon that is present on
all systems equipped with rRrc. (This daemon is variously called portmap, rpc.portmapd or
rpcbind). The port-mapper is the clearing-house between RPC clients and servers, and is itself
an RPC server.

The RTC Library Page 25

DRAFT DOCUMENT

It operates as follows: a server program initially registers itself with the port-mapper on its
machine, sending it the RPC service number for the protocol it proposes to serve. The port-
mapper returns a new Internet port number, and the server establishes itself, listening for
requests on that port. Clients seeking a particular RPC service initially contact the port-mapper
on the server machine, sending the number of the RPC service they desire. The port-mapper
returns the port number the server should be using, which the client then uses to complete the
user’s remote call.

Clients usually only need to deal with the port-mapper once in their lifetime, because server
processes usually have longer lifetimes than clients. During server development, however, the
reverse can be true. The RTC ‘client-recreate’ option (in its various forms) can be valuable in
this situation.

The port-mapper only remembers a single port number for each service number. If a second
server of the same service registers itself, the previous registration for that service is lost.
However, clients can continue to use the first server on the original port, because the new server
will be given a different port number. New clients will be given the new server’s port number.

The port-mapper also does not trace server processes. If a server exits, it should in principle
contact the port-mapper daemon to un-register itself, or the daemon will continue to report the
abandoned port number to potential clients. Unfortunately, an exiting server can inadvertantly
un-regisiter a newer server of the same service number, resulting in no such servers being
registered.

In general, more than one RPC/RTC server of a given service/program number per machine

should be avoided.

5.10 Multi-threaded Clients and Servers

The rrc client library is itself fully re-entrant, and may be safely used in multi-threaded C
programs, assuming the underlying rpPC library can be. This varies from platform to platform,
and may apply for some operations and not others.

The rRTC server is not fully re-entrant, and only one thread per address space may enter the
server loop. (‘Address space’ means a process on a UNTX-like system, or a whole system for
a vxWorks-like shared-memory kernel). This is mainly because the RPC server loop on most
platforms is not re-entrant.

This does not mean that RTC server processes cannot be multi-threaded, just that there can
be only one thread being the server. Other threads can call RTC server functions, such as
rtcServerRegister() and rtcServerAuth(), at any time, as the server lists are properly
protected by a monitor semaphore.

Server stub functions are called in the context of the server thread. It is up to the programmer
to use monitors in the stubs if they access thread-shared data, which is fairly likely. Remember,
however, that stubs should not block (at least not for long), because the whole server is affected.

The rPC implementation on Solaris can permit the server to spawn a new thread for each
request; this mode is intended for high throughput rRPC servers with client functions that may
block. It not presently supported by RTC.

5.11 Server Access Control

RTC offers a more sophisticated authorisation control scheme than is generally used in RPC
servers, which by default respond to requests from ‘all comers’. The intention is to limit server

Page 26 First Revision

DRAFT DOCUMENT

reponse only to requests from clients on certain machines and having certain UNIX user-id and
group-ids. By default, only requests eminating from the same machine and with the same
user-id and default group-ids as the server has will be honoured (and then, only if the service
number described above matches). If the range of acceptable machines, users or groups is to be
extended, as is usually the case, the the RTC authorisation functions described in Section 3.1
need to be used.

The server maintains three acceptance lists, one for machine host-names, one for user-ids, and
one for group-ids. There is a function to add an element to each list. When a client sends an
RTC request, the RPC mechanism sends with it an auth_unixz credential. This structure contains
the client machine name, the user-id of the sender, and the group-ids of all the groups the sender
is a member of. The server tests the credential to ensure

e the client’s host-name is in the server’s host-name list, AND

e the client’s user-id is in the server’s user-id list, OR
e the client’s effective group-id is in the server’s group-id list, OR
e any of the client’s group-ids are in the server’s group-id list.

If the test fails, the server refuses the request, and returns a code to the client indicating that
its credentials were not acceptable (AUTH_BADCRED).

This authorisation system cannot be regarded as ‘secure’, since auth_uniz credentials are easily
forged. (The more secure auth_des system is unfortunately not widely available). Its purpose is
not to increase security from malicious attack although it is an improvement over normal RPC
practice but to improve security against accidental errors by developers, or where two users
using the same RTC application (or service number) on different machines.

This flows from the observation that RPC protocols have occasionally been used to control ‘real’
equipment, such as robot arms, so the security of access to the server is an obvious factor in
the safety of such systems. Equipment of this kind should never be controlled through
a computer network unless adequate fail-safe local safety provisions are in place, such as
power-interlocked access gates and emergency-stop buttons.

5.12 RTC in the pirat System

The rRTC distribution includes the Tcl/Tk user interface scripts used by the PIRAT sewer inspec-
tion system. These are of no particular use without the corresponding server, but are useful to
illustrate an interface to a complicated system built using an early version of RTC.

There are four separate programs dealing with the four main operational areas of the PIRAT
system: power and data gathering (master mode), vehicle and winch (operator mode), laser
scanner, and sonar scanner. These four separate interfaces ran on a Sun workstation, and
communicated with an RTC server running as a task on a vMEbus vxWorks real-time system.
The server provided over twenty remote functions controlling or monitoring individual aspects
of the disparate system. The interface programs collected these functions together into a unified
presentation, allowing semi-skilled (or sleep-deprived) operators to control the system in relative
safety.

The RTC Library Page 27

DRAFT DOCUMENT

6 Conclusion

The remote graphical user interface has become something of a standard feature of systems
constructed within the Division’s Industrial Automation Programme. While the appropriateness
of such interfaces can occasionally be questioned, there is little doubt their provision consumes
significant programmer time. The appearance of Tel (Tool Control Language) and its associated
X Windows toolkit Tk prompted the author to review the mechanisms which these interfaces
are implemented. The result was the Tecl extension library RTC (Remote Tool Control), which
has been the subject of this report.

RTC is basically a fixed RPC protocol with a client interface integrated with Tcl, and a pre-
written, run-time extendible server core. Server functions are written in C to a standard pro-
totype and registered with the server. These functions can then be remotely called from a Tcl
script almost as simply as a normal Tecl function.

The client side of RTC can be used on any system that provides the Tcl interpreter and the
standard RPC client, libraries almost any UNIX system. Clients can also be written in C,
avoiding the use of Tcl. Implementation on Microsoft Windows platforms may be feasible. The
server libraries can be compiled for most Unix systems that provide rrc, and will also run on
small shared-memory multi-tasking kernels, such as vxWorks, also provided that they have rRPC.

RTC was used to construct the main operator interfaces for the PIRAT Instrument System, which
provided an ideal vehicle to test the initial implementation and develop effective ways of using
it. The PIRAT interfaces were developed surprisingly quickly, vindicating the rRTC approach.

Page 28 First Revision

DRAFT DOCUMENT

References

[1] G. Campbell, K. J. Rogers, and J. Gib-
ert. PIRAT Project, Quantitative Sewer
Inspection Stage 2: Development and
Assessment of a System for Field Use.
Confidential Technical Report MTM-415,
CSIRO Division of Manufacturing Technol-
ogy, Melbourne, May 1995.

[2] On-Line Applications Research Corpora-
tion. Real Time Executive for Military Sys-
tems: C Applications User Guide. U.S.
Army Missile Command, Redstone Arse-
nal, AL 35898-5254, July 1994.

[3] SunSoft Inc. OpenWindows Version 3:
XView Reference Manual. Sun Microsys-
tems Inc., 2550 Garcia Avenue, CA 94043,
U.S.A, 1991.

[4] SunSoft Inc. rpcgen Programming Guide.
In SunOS Network Programming Guide.
Sun Microsystems Inc., 2550 Garcia Av-
enue, CA 94043, U.S.A, 1991.

[5] R. J. Kirkham and P. I. Corke. Bud-
erim Ginger Project Technical Report: RO-
BOSORTER, Overview. Confidential Tech-
nical Report MTM-371, CSIRO Division
of Manufacturing Technology, Melbourne,
December 1994.

[6] R.J. Kirkham, P. I. Corke, and H. Nguyen.
Buderim Ginger Project Technical Report:
The ROBOSORTER Machine Vision Sys-
tem. Confidential Technical Report MTM-
425, CSIRO Division of Manufacturing
Technology, Melbourne, September 1995.

[7] R. J. Kirkham and A. J. Dreier. Data
Handling and Control Software. PIRAT
Project Stage 2 Technical Report MTM-
404, CSIRO Division of Manufacturing
Technology, Melbourne, May 1995.

[8] John K. Ousterhout. Tel and the Tk
Toolkit. Addison-Wesley, 1994.

[9] Wind River Systems. wvzWorks Program-
mer’s Guide. Wind River Systems, Inc,
1010 Atlantic Avenue, Alameda CA 94501-
1147, 1992.

The RTC Library

Page 29

