
DDXVIDEO: A Lightweight Video Framework for Autonomous Robotic Platforms

Elliot Duff
CSIRO ICT Centre

PO Box 883, Kenmore, Qld 4069, AUSTRALIA
Email: firstname.lastname@csiro.au

Abstract

This paper describes the implementation of a
lightweight video framework for autonomous
robotics platforms. It is based upon DDX (Dy-
namic Data eXchange) which is our third gener-
ation real-time publish-subscribe software (event-
based middleware). Computational resources on
autonomous robotic platforms can be very limited,
and thus it essential that mechanisms for access to
video data have as little impact upon the computa-
tion load as possible.

1 Introduction
We are particularly interested in the navigation of au-
tonomous outdoor robotic platforms: including submarines,
helicopters and ground vehicles. With advances in computer
hardware over the last few years, we have become increas-
ingly interested in systems that are capable of real-time video
processing. As with most research organizations, we have a
number of researchers who are performing different task on
the same platform: i.e. optical flow, stereo, scene segmenta-
tion, beacon localization etc. To solve the task of navigation,
many of these tasks need to be solved in parallel. Therefore it
is important that we establish a common framework for video
acquistion and processing. Here is list of desirable features
for such a framework:

1. ability to decouple video acquisition from video process-
ing and display;

2. support different video sources (analog or digital cam-
era, pre-recorded or processed video);

3. ability to synchronize video with other sensors and con-
trol data;

4. ability to record video without compression or dither;

5. stream video to remote locations over wireless link; and

6. be simple and transparent with very low overheads.

The traditional method has been to develop a monolithic pro-
cess, with separate threads that adhere to a strict API and are

given appropriate resources. This is the approach taken by
the Player/Stage[Vaughanet al., 2003] platform with plug-
gable software modules. Although this has a number of ad-
vantages (i.e code reuse) we would prefer a more decentral-
ized approach. There are a number of alternative robotic soft-
ware platforms that could be used: YARP[Mettaet al.,] and
ORCA [Brookset al.,] using TAO CORBA[Schmidt,] or
CARMEN [Montemerloet al.,] using IPC[Simmons and
James,].

The TAO CORBA A/V [Mungeeet al., 1999] streaming
service is based upon a distributed system which has been
modified to provide local support. For several reasons dis-
cussed in[Corkeet al., 2004], we would prefer the reverse: a
system that is based upon local support with distributed fea-
tures added on. Given this preference and the overall com-
plexity of CORBA, we decided to investigate the possibility
of modifying our own software to support video.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the implementation of supporting video in
DDX and the modifications that were made to increase its
efficiency. Section 3 describes some of the experimental re-
sults, and Section 4 concludes and presents future directions.

2 Implementation

For over 10 years we have been building complex robotic sys-
tems. Over time we have developed a series of software plat-
forms (middleware) to facilitate this endeavor. Our third gen-
eration middleware software is called DDX (Dynamic Data
eXchange). This is event-based middleware that provides
distributed real-time publish/subscribe access to sensorand
control data. It does this through an efficient shared memory
mechanism managed by astore. Thestore provides a
naming service to data in shared memory. Stores on multi-
ple machines can be linked by means of a globalcatalog
and data is multicast between the stores when the data is re-
quested (subscribed to). DDX also has a number of service
applications, including the ability to log and replay data in
real-time. The implementation ofDDXV IDEO consists of an
agreed format in thestore and a suite of applications (see
Figure 1).

Store

video
frame

ddxvideoview

ddxvideoplay

ddxvideosave

UDP
ddxvideosend decode

PNM
ddxvideosnap

Y4M

xv/xview

AVI

ffmpeg

Image Processing

ddxvideo1394

ddxvideoV4L

ddxvideoload

yuvplay/y4mplay

mplayer/xine

Figure 1:DDXV IDEO applications.

2.1 Video Format
Typical video formats can either be packed or planar, use
RGB or YUV colourspace, and have different levels of sub-
sampling. Analogue frame grabbers (such as the BT878
chipset) processed all incoming video as YUV422. In this
packed colourspace the U and V components (chroma) are
down-sampled 2 to 1 in the horizontal direction. This means
that if an RGB colourspace is requested, the image will
only contain colour information that existed in the original
YUV422 image. Another video format is YUV420. In this
colourspace, the U and V (chroma) are downsampled 2:1 in
both the vertical and horizontal direction. This differs from
YUV411, which is downsampled 4:1 in the horizontal direc-
tion. Whilst the YUV420 format has half the chroma resolu-
tion of the YUV422 format, it is the format preferred by JPEG
and MPEG compression routines and by XVideo to display
video under X11. This is important factor when the speed of
encoding and decoding will have an impact upon the com-
putational load. Perhaps the most important factor was the
requirement to be able record and playback the video stream
without compression. The most popular uncompressed video
format is YUV4MPEG [http://mjpeg.sourceforge.net], Y4M
for short. Whilst not perfect, the YUV420P format is a rea-
sonable compromise between resolution, compatibility and
speed, and thus was chosen as the default format for video in
thestore.

The shared memory data structure is shown in Figure 2.
There are three data structures in thestore. The first
is DDX_VIDEO, which contains a header and three video
planes (Y,U,V). The Y is the luminance, whilst the U and V
make up the chrominance at half the resolution of the Y plane.
To accommodate multiple video streams that need to be syn-
chronized (such as stereo) each video stream is placed on top
of one another in memory. This is represented by the number
of fields in each frame. This is shown in Figure 2 where there
are three video fields per video frame.

The data structure is defined in DDX by the following dec-
laration:

DDX_VIDEO_PARAMSDDX_VIDEO

Y

U V

Store − shared memory

frame fields width height frame fields width height

frame

exposure gain

Figure 2: Video data format in store.

DDX_STORE_TYPE(DDX_VIDEO,
struct {

int frame; // Frame sequence number
int fields; // Number of fields in frame
int width;
int height;
char y[MAX];
char u[MAX/4];
char v[MAX/4];
});

The second data structure contains camera parameters
which are updated whenever the camera settings are modified.
Typically, the camera is controlled by a simple RPC request
to the corresponding application. The third data structureis
a simple integer frame counter. This is used to syncronize
normalDDX data with video data.

2.2 Access to Video data

Access to the video data is provided by standards DDX calls
to thestore:

DDX_STORE_ID * storeId = NULL;
DDX_STORE_ITEM * itemPtr = NULL;
storeId = ddx_store_open(NULL, port, timeout);
itemPtr = ddx_store_lookup_item (storeId, "video", NULL,0);

whereddx_store_open is used to make a connection to
the localstore, andddx_store_lookup_item is used
to return a handle to a named item. In this case tovideo. The
item handler is then used to read the video data.

DDX_VIDEO video;
video = ddx_store_read(itemPtr, &video, &ts, 1.0, 1);

This function can be used in blocking or non-blocking
mode. In either case, a local copy is made of the current video
frame. To guarantee the integrity of data, the store places a
mutex around the read and writing of data to shared mem-
ory. This prevents one application writing to memory whilst
another is reading. This behaviour is critical for most sensor
and control data, however if we only wish to “spy” on the
current data, then this locking can be excessive. To prevent
unnecessary locking and copying of data, functions to DDX
were introduced that provide direct assess to the store data.
This is done with the following commands:

DDX_VIDEO * video;
video = ddx_store_var_pointer(itemPtr);
ddx_store_read_direct(itemPtr, &ts, 10.0, 1);

where, ddx_store_var_pointer provides a
pointer to the actual video shared memory. The
ddx_store_read_direct acts as a semaphore in-
forming the application that someone has just finished
writing to the store. The direct assess to video memory
is used by applications (such as display applications) that
will not be significantly affected if the video memory were
altered whilst displaying the image. This type of behavior
can reduce the computational load. Of course, the fact that
we now have direct access to the current video frame is not
without risk, and it is up to the application writer to exercise
caution.

2.3 Video Applications
There are a number of application that have been written that
can load video into thestore:

ddxvideoV4L use V4L (video4linux) drivers to acquire
images from analog framebrabber.

ddxvideo1394 use dc1394 (firewire) drivers to acquire
images from firewire bus.

ddxvideoSVS use SVS libraries [] to aquire range images
from SVS camera (stereo).

ddxvideoload read Y4M (yuv4mjpeg) file and load into
store at specified time-steps.

And a number of applications that display or save video from
thestore:

ddxvideoplay display video stream locally

ddxvideoview display video image remotely (step
though each frame)

ddxvideosave write videostream as Y4M file
(yuv4mjpeg)

ddxvideosnap write single frame as PPM file

ddxvideosend use libavcodec to encode image and send
out through UDP port.

decode to decode UDP packets and display on remote
screen.

Here is an example that will acquire video at 5Hz in CIF res-
olution.

catalog &
store -m 8M &
ddxlog -c logger.conf &
ddxvideoV4L -camera 2 -skip 5 -size CIF -name video &
ddxvideoview -name video &
ddxvideosave -name video -output /tmp/test.y4m &

Here thecatalog and store are started with suffi-
cient shared memory to handle video. Video is then ac-
quired on a specified channel, with a specified rate and size,
and copied into the store with a specified name. In this

case it is calledvideo. The currentvideo frame can be dis-
played with ddxvideoview. In theory, one could use
ddxlog to record the video stream. However, this log file
is only compatible withDDX. The preferred option is to use
ddxvideosave to record a Y4M file. Once recorded the
Y4M file can displayed withyuvplay or mplayer. It can
also be transcoded (converted to a number of video formats)
with ffmpeg or mencoder.

mencoder -o test.avi -ovc lavc /tmp/test.y4m

One of the features of the Y4M file is that it is possible to
record the time step between each video frame. This time-
step is used to replay the video back to the store in real-time,
which can be used to test the performance of the image pro-
cessing routines.

ddxvideoload /tmp/test.y4m

Furthermore, if the frame counter is recorded in a log file
along with named sensor data, it is possible to synchronize
log data with video data.

2.4 Video Streaming
Although the store can be configured to handle large data
structures (such as images), the sharing of data between stores
is currently restricted to the size of a single UDP packet (8k).
Therefore to send the video sequence to another computer
it is appropriate to bypass the store and broadcast the video
directly. Unfortunately an uncompressed PAL video stream
consumes approximately 256Mbps, which is far beyond the
capabilities of the WiFi network that we have between our
autonomus platforms. Although there are many applications
that can compress and stream video (FFmpeg, Mbone, Mash,
VideoLan, Darwin, RealSystems) they are all designed to
synchronize the video and audio steams.

To achieve synchronization it is important that the pack-
ets arrive in the correct order and at the correct time. Since
neither of these conditions can be guaranteed on the Ether-
net, buffering is required at the receiving end to reorder and
request that lost packets be resent. This buffering can have
a significant effect upon latency, especially in wireless envi-
ronments which can have a low bandwidth and high packets
loss. Since is our intention to use the remote video stream
to control the robot it is critical that the latency be as small
as possible (less than 100ms). Fortunately, since we are not
interested in the audio stream, it possible to write our own
streaming software without buffering.

ddxvideosend -port 8000 &

In this example, the video stream can be decoded and viewed
on another computer with an application calleddecode.
Since, by default, the video is multicast on a UDP socket,
any number of users on site can “tune-in” into port 8000 to
watch the streaming video. This is a very convenient way
to keep track of what is happening on our autonomous plat-
forms without imposing additional load on the system. Thus
we need to choose a video CODEC that provides reasonable

Figure 3: Omnidirectional Megapixel Image.

quality and robustness, with low latency and bandwidth, with-
out consuming too many computational resources. Motion
JPEG is one of the first streaming technologies to be used.
It is robust because there is no interframe dependence, ie.
frames can be lost without significant impact, however signif-
icant compression is required to get below the 8K threshold of
UDP transmission. Higher compression can be achieved with
interframe compression - where there is compression from
one frame to another (ie. MPEG 1,2 & 4). The most appro-
priate for streaming is MPEG4 because it have been designed
to withstand significant packet loss. Since MPEG4 is robust
to packet loss, no attempt is made to recover dropped frames;
reorder frames that are out of sequence, or even to impose a
time-step between frames. As each frame is received it is de-
compressed and displayed. In this way latency is kept to an
absolute minimum. This applications also has the ability to
record the received video sequence to an AVI file.

3 Experimental Platforms
3.1 Ground Vehicle
The ground-vehicle platform (a small ride-on lawn mower)
is fitted with five digital cameras: two fisheye, two stereo,
and an omni-directional mega-pixel camera. These cameras
are connected via Firewire to a single Pentium-M miniITX
computer. The output from the omni-directional cameras is
shown in Figure 3. Colour segmentation of the UV plane is
used to track artificial beacons and segment the road.

3.2 Underwater Platform
The underwater platform (called Starbug) is fitted with a two
stereo pairs of analog cameras. The stereo cameras are line

Figure 4: Analog stereo image taken underwater.

Figure 5: Tertiary image taken from AVS pod.

interlaced and fed into a standard BT878 frame grabber on
a 800MHz PC104 Crusoe processor. InddxvideoV4L the
video is de-interlaced into the respective fields and placedon
top of one another. This is shown in Figure 4, where a num-
ber of rocks on the bottom of a swimming pool can be seen.
The disparity between the images is used to estimate height.
Simultaneously, another pair of forward looking cameras are
used for collision avoidance.

3.3 Aerial Platform

The AVS (Air vehicle simulator) is fitted with interchange-
able Firewire cameras, connected to a self-powered wireless
Pentium-M miniITX. The results from the SVS stereo cam-
era are shown in Figure 5, where the range image is inserted
between the left and right image. Another application uses
the range image to estimate location of the ground plane.

3.4 Performance

One key requirement ofDDXV IDEO is the ability to stream
video quickly and robustly over a wireless network. The
results of MPEG4 compression at 200kbps over a IEEE
802.11b network is shown in Figure 6, where a packet loss
of 30% has been simulated by deliberately dropping every
third packet. In this figure, a hand is waived in front of the
camera to demonstrate MPEG4’s ability to rebuild the
image. Note the black squares around the edges of the hand.
Similar robustness was exhibited after re-ordering the
packets, mixing packets from other streams, and dropping
GOP frames. On the AVS platform, the compression
software only consumed 5% of the CPU.

Figure 6: MPEG4 at 200kbps with dropped packets.

Another requirement ofDDXVIDEO is the ability to record
uncompressed video at selected frame rates. On Starbug a
frame rate of 5Hz was required to test optical flow algorithms.
The performance of a 800MHz Crusoe with a laptop hard
drive was rather disappointing with significant delays (up to
0.8s) every minute or so, but this was found to be related to
the EXT3 file system, and was fixed by switching off the jour-
naling function. This highlights the importance customizing
software with the operating system and hardware.

4 Conclusion
DDXVIDEO was originally developed to assist with the de-
velopment of image processing routines on autonomous
plaforms. Since it is now being routinely used on all of our
autonomous platforms (air, land and water) if would be rea-
sonable to conclude that its implementation has been a suc-
cess. Its success lies in the fact that:

• If provides multiple access to the same video stream
with insignificant overhead (just pointers).

• It can store multiple “fields” in the same video frame
with guaranteed synchronization.

• It can save video stream in format that is compatible with
popular video players

• It is possible to replay video stream in real time, with
exactly the same data.

• It uses MPEG4 compression which is efficient and re-
quires minimal bandwidth.

• It uses UDP multicast which has low overheads and very
low latency.

Future directions:

• Support for alternative colourspaces, with different
sizes, compatible with Intel’s IPP.

• Support for off-the-shelf streaming software such as
VideoLan’s VLC.

It is interesting to note that other robotic platforms have
adopted new transport layers based upon shared memory and
UDP: e.g. CRUD in the ORCA platform, and Gazebo in the
Player/Stage.

Acknowledgment
The author would like to thank the rest of the CSIRO Au-
tonomous Systems Laboratory who have contributed ideas
and have thoroughly tested this software. In particular, Pa-
van Sikka for his help with DDX and Cedric Pradalier for his
help with the 1394 code.

References
[Brookset al.,] Alex Brooks, Tobias Kaupp, Alex

Makarenko, Anders Oreback, and Stefan Williams.
Towards Component-Based Robotics. http://orca-
robotics.sourceforge.net.

[Corkeet al., 2004] Peter Corke, Pavan Sikka, Jonathan
Roberts, and Elliot Duff. DDX: A Distributed Software
Architecture for Robotics Systems. InProceedings of the
Australian Conference on Robotics and Automation, Can-
berra, Australia, 2004.

[Mettaet al.,] Giorgio Metta, Paul Fitzpatrick, and
Lorenzo Natale. YARP: Yet Another Robot Platform.
http://yarp0.sourceforge.net.

[Montemerloet al.,] Michael Montemerlo, Nicholas Roy,
and Sebastian Thrun. CARMEN Carnegie-Mellon Robot
Navigation Toolkit. http://www.cs.cmu.edu/ carmen.

[Mungeeet al., 1999] Sumedh Mungee, Nagarajan Suren-
dran, and Douglas Schmidt. The Design and Performance
of a CORBA Audio/Video Steaming Service. InProceed-
ings of the HICSS-32 International Conference on System
Sciences, Multimedia DBMS and the WWW, Hawaii, USA,
1999.

[Schmidt,] Douglas Schmidt. Real-time CORBA with TAO.
http://www.cs.wustl.edu/ schmidt/TAO.html.

[Simmons and James,] Reid Simmons and Dale James.
Inter-Process Communication. Carnegie-Mellon Uni-
veristy. http://www.cs.cmu.edu/ ipc.

[Vaughanet al., 2003] R. T. Vaughan, B P Gerkey, and
A Howard. On device abstractions for portable, reusable
robot code. InProceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
2421–2427, Las Vegas, USA, 2003.

