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Chapter 1: Literature Review

Introduction

Australia’s wild catch fisheries are a key contributor to national and international food security,
delivering significant economic and social benefits to the Australian population (Abernethy et al.
2020). There are increasing pressures on Australia’s wild catch fisheries with a growing population
and climate change presenting significant challenges for the industry (Holbrook & Johnson 2014;
Bogard et al. 2019; Smith et al. 2024). Effective fisheries management depends on accurate and up-
to-date biological information to ensure the long-term sustainability and health of wild fish

populations. (Waples 1998; Benestan 2019).

The Southern and Eastern Scalefish and Shark Fishery (SESSF) is the largest Commonwealth fishery
in regards to volume caught. The management area spans almost half of the Australian Fishing Zone,
encompassing both Commonwealth and domestic waters (Emery et al. 2024). As of 2023, 38.5% of
stocks within the SESSF were either subject to overfishing or uncertain, meaning there is insufficient
information to assess whether a stock is sustainably fished accurately (Smith & Dichmont 2017;
Butler et al. 2024). Accounting for 24% of the Gross Value of Production (GVP) of Commonwealth
fisheries, the SESSF contributes significantly to the Australian economy through the domestic
consumption of wild caught fish (Pascoe et al. 2021; Wright et al. 2024). Tiger flathead
(Platycephalus richardsoni) makes up a substantial component of the wild catch being one of the
most valuable species within the fishery (Little et al. 2011; Australian Fisheries Management

Authority 2023).

Recent studies have indicated that a portion of the biological parameters used in tiger flathead stock
assessments are either out-of-date or unknown (Evans et al. 2022). Additionally, tiger flathead
population structure is currently assumed to be panmictic, although no assessment of stock structure
has been undertaken for the species (Emery et al. 2023). Poorly understood stock structure for
commercially important species can lead to the mischaracterisation of management boundaries which
can place populations at risk to overfishing, threatening species longevity and ecosystem function
(Taillebois et al. 2021). There are indicators that suggest multiple populations of tiger flathead may
exist within the fishery, with differences in growth, appearance and reproductive timings being

observed, particularly for fish off the east coast of Tasmania (Liggins 2023).

This literature review aims to examine the current understanding of tiger flathead biology and stock

structure in the SESSF. It will synthesise information on the importance of understanding population
9
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structure in marine teleosts, particularly from a commercial perspective, and the emergence of
population genomics technologies. These findings will provide background context into the analysis

of tiger flathead stock structure, contributing to more reliable stock assessments for the species.

Stock structure in fisheries management

Fishery management units are commonly delineated by geographic jurisdictions, assuming a single,
panmictic population (Zemeckis et al. 2014; Grummer et al. 2019). However, these conventional
stock assessment models can often incorrectly attribute biological stock structure, reducing the
accuracy of stock assessments and thus threatening the longevity of a species (Taillebois et al. 2021).
Where distinct populations do occur, these may respond differently to fishing pressures impacted by
differences in demographic traits such as abundance, mortality, reproduction and growth rates (Cadrin
2020). Productivity may vary between populations and if stock assessments do not consider these
differences, then less productive populations may be overexploited while more productive
populations may be underharvested (Zemeckis et al. 2014). Overharvesting or the unsustainable
removal of fish from populations can degrade and reduce the genetic diversity of fish stocks
(Andersson et al. 2024). Maintaining genetic diversity enhances a stock’s capacity to adapt to
environmental changes, supporting the long-term sustainability of fish populations (Allendorf et al.
2014). Therefore, effective fisheries management relies on the correct identification of biological and

genetic population boundaries (Waples 1998).

A biological stock is defined as a group of fish of the same species that inhabit the same area, with
similar recruitment patterns (Carvalho & Hauser 1994). Conversely, a genetic population is defined
as a geographically and genetically independent group of individuals of the same species, however
definitions vary (Waples & Gaggiotti 2006). Population differentiation can vary in scale from
complete isolation to a single, homogenous stock (Figure 1). Stock separation may arise due to
physical barriers such as sea mounts, deep water and varying oceanographic conditions, such as
eddies, fronts, currents and environmental gradients (Grummer et al. 2019; Bertram et al. 2023).
Biological barriers also contribute to genetic divergence through differences in vagility, distribution
and abundance (Ovenden 2013). Both genetic and genomic techniques can be used to understand
stock structure. Genetic studies examine specific genes, or a limited number of loci to understand
stock structure, whereas genomic studies look at markers across the entire genome, at a significantly
larger scale (Andrews et al. 2016). This provides a more comprehensive analysis of population

structure and connectivity (Cuéllar-Pinzon et al. 2016).

10
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Figure 1: Scale of population differentiation. (A) Complete isolation, (B) Moderate connectivity,

(C), Significant connectivity, (D) Panmictic population (Waples & Gaggiotti, 2006).

Misalignment between biological population structure and management areas has been observed for
many commercially important species (Reis-Santos et al. 2018; Papa et al. 2022). For example,
atlantic cod (Gadus morhua) have been managed in the United States’ waters as two separate units
since 1972. Declared as overfished, a series of management actions were rolled out over decades,
such as reducing fishery catch to help rebuild stocks (McBride & Smedbol 2022). Despite this,
populations continued to decline, and since then, multiple studies have indicated that a portion of this
decline may be due to a misalignment between management units and biological stock structure
(Annala 2012; Zemeckis et al. 2014; Northeast Fisheries Science Center (U.S.) 2022). Evidence of
genetic variation, movement, dispersal of larvae, spawning locations and timings have all contributed
to an updated stock structure of atlantic cod in US waters, highlighting that there are actually five
distinct biological populations, with four stocks requiring individual management (McBride &
Smedbol 2022). Based on this, the New England Fishery Management Council developed an Atlantic
Cod Management Transition Plan which runs from 2025 to 2027 to incorporate these new

management units into the fishery management plan (Singer & Macdonald 2024).

Atlantic herring (Clupea harengus) is a key ecological and commercial species that has been
harvested for centuries (Barrett et al. 2004). The most recent management report of Atlantic Herring
indicated that the stock is currently overfished, although not subject to overfishing (National Oceanic
and Atmospheric Administration 2024). Early genetic studies undertaken over 40 years ago using a
small number of allozyme markers, revealed no genetic differentiation (Andersson et al. 2024). Since
then, studies, using whole genome sequencing have found that there are multiple genetically distinct
populations of atlantic herring, with genetic differentiation attributed to ecological adaptation such as
salinity, water temperature, spawning timelines and light conditions (Han et al. 2020; Bekkevold et
al. 2023). This evidence revealed a mismatch between current management units compared to the

genetic populations. Therefore, updating stock assessments to reflect these genetically distinct stocks
11
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can improve the accuracy of stock assessments, and thus the quality of management actions

(Bekkevold et al. 2023).

Tools and methods for understanding stock structure

A variety of methods can be used to inform stock structure of marine species. Direct measures such
as parasitic markers and otolith chemistry can provide insights into a population’s broad-scale
distributions. Otolith chemistry and morphometrics can provide valuable insights into stock
boundaries through identifying different geochemical gradients and regional growth patterns (Nazir
& Khan 2021). Additionally, tagging and recapture helps to understand movement patterns and
biological boundaries of stocks (Metcalfe et al. 2006; Goddard et al. 2024). Presence and assemblage
of parasites associated with different fish can reveal key ecological information on fish stocks and
help to identify separate stocks (Poulin & Kamiya 2015). Stable isotopes are another direct marker
that can highlight information about the diet and therefore, habitat use of fish (Abrantes et al. 2014).
However, these methods only provide information over an individual’s lifetime. Comparatively,

population genomics provides information over generational timescales (Reis-Santos et al. 2018).

There has been significant development in population genetic approaches and technology. Early
molecular techniques include the use of allozyme markers (Davinack 2024; Payet et al. 2024). The
first measures of genetic variation were reported in the literature over 50 years ago using protein gel
electrophoresis to screen allozyme loci. An allozyme is a form of an enzyme that is encoded by
different alleles in the same gene locus. Electrophoresis supports the detection of allozymes,
separating the molecules by their charge and size (Davinack 2024). Allozymes supported the
detection of distinct populations for a range of marine species (Allegrucci et al. 1997; Bourke et al.
1997; Rossi et al. 1998). For example, a study using allozyme markers found that what was assumed
to be two separate species of oysters (7Tiostrea chilensis and Teostrea lutaria) was in fact two
genetically distinct populations of the same species (7. chilensis) (Buroker et al. 1983; Gosling 2003).
However, allozyme markers offer relatively low resolution as they only capture a small number of
enzyme loci, resulting in a limited ability to reflect genetic coverage and minimising the ability to
accurately assess genetic diversity and population structure (Casillas & Barbadilla 2017).
Additionally, studies found that allozyme polymorphisms represented DNA variations that changed
amino acid sequencies. Therefore, this only represented 25% of all possible amino acid changes due

to its ability to only detect those that change the charge of a protein (Lewontin 1991).

In the 1980’s, studies started using methodologies such as PCR (Polymerase Chain Reaction)
amplification, microsatellite markers and sequencing of mitochondrial DNA (mtDNA) genes
(Cuéllar-Pinzon et al. 2016). These represented significant improvements in screening

12
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methodologies, as the number of variable loci that were able to be analysed increased, thereby
providing higher resolution than allozyme markers (Allendorf 2017). However, mtDNA only reflects
the maternal line, ignoring paternal gene flow (Cuéllar-Pinzén et al. 2016). This can be limiting when
undertaking population genomics studies as it only provides a partial view of ancestry and can

underestimate total gene flow within a population (Antoniou & Magoulas 2014).

Recently, further developments in technologies have led to the adoption of genomic tools such as
Single Nucleotide Polymorphisms (SNPs) and next-generation sequencing (NGS). SNPs are single
base pair changes in the DNA sequence and are spread across the entire genome (Edwards et al.
2007). SNPs can be used to detect genetic differences between regions or stocks, as well as to detect
adaptive variation that may be linked to environmental conditions (Wenne 2023; Krustaleva 2024;
Luetal. 2025). SNPs provide a more comprehensive (biparental) genome coverage and higher quality
data than other techniques such as microsatellites and mtDNA sequencing (Morin et al. 2004). SNP
genotyping has resulted in an increase in accuracy and speed of population genomic analysis at low

costs (Cuéllar-Pinzén et al. 2016).

These advances in technology have supported the identification of various fish populations that have
previously been unable to be detected. For example, the population structure of highly valuable,
migratory species such as yellowfin tuna (Thunnus albacares) has previously been studied using
methods such as mtDNA and allozyme markers (Appleyard et al. 2001; Diaz-Jaimes & Uribe-Alocer
2006; Grewe et al. 2015). These results considered yellowfin tuna to be a single panmictic population.
However, advances in genome-wide SNP genotyping have demonstrated that there are multiple
genetically distinct populations (Grewe et al. 2015). This highlights the power of these technological
advancements, having the potential to significantly improve management of wild catch fisheries,

particularly in relation to stock assessments and reporting (Pecoraro et al. 2018).

Another powerful tool in population genomics is long-read whole genome sequencing (WGS). This
provides an even greater power to detect genetic variation within and between populations (Lu et al.
2025). WGS involves the sequencing of larger fragments of the entire genome and the mapping of
SNPs onto the genome, supporting the identification of a range of biological processes such as gene
flow, adaptation and natural selection (Lu et al. 2025). It also provides access to more SNPs than
other methods such as double digest Restriction site Associated DNA sequencing (ddRAD-seq) and
DArTseq (Martchenko & Shafer 2023). Figure 2 outlines how long-read WGS can be incorporated
into fisheries management, however it is noted that the study outlined in this thesis commenced at

step B, rather than step A.

13
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Figure 2: Process for undertaking long read whole genome sequencing for stock structure analysis.
(A) Development of a high-quality reference genome sequence for the target species. (B) Collection
of samples from target species, followed by whole genome sequencing and detection of genetic
differentiation. (C) SNP analysis to inform population structure and (D) Application to management

boundaries to support sustainable fisheries management (Andersson et al. 2024).

Southern and Eastern Scalefish and Shark Fishery (SESSF)

The SESSF is a Commonwealth-managed, multi-species and multi-gear fishery that spans nearly half
of the Australian Fishing Zone. It operates across both Commonwealth and state waters under
Offshore Constitutional Settlement arrangements and encompasses numerous marine parks within its
boundaries (Emery et al. 2024). The fishery extends from southern Queensland to Tasmania and
across to southern Western Australia, covering depths from 30 to 1200 metres (Figure 3) (Smith &
Smith 2001). It includes several sectors: the Commonwealth Southeast Trawl Sector, East Coast
Deepwater Trawl Sector, Scalefish Hook Sector, Shark Hook and Shark Gillnet Sector, and the Great
Australian Bight Trawl Sector. As the largest Commonwealth fishery, the SESSF accounts for 24%
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of the Gross Value of Production (GVP) of all Commonwealth fisheries. In 2022-23, it generated a

total GVP of AUD $98.58 million (Wright et al. 2024).
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Figure 3: Southern and Eastern Scalefish and Shark Fishery management area (Butler et al. 2024).

The SESSF is managed by the Australian Fisheries Management Authority (AFMA) under a quota-

based system, with additional access controls including gear restrictions, electronic monitoring, and

spatial closures (Emery et al. 2024). A total of thirty-nine stocks are assessed within the fishery, with

the most economically significant species being tiger flathead (P. richardsonii), pink ling

(Genypterus blacodes), blue grenadier (Macruronus novaezelandiae), and orange roughy

(Hoplostethus atlanticus). Together, these four species contribute to 73% of the total value of the

fishery (Australian Fisheries Management Authority 2024). In 2023, fishing mortality assessments

showed that 62% of stocks were not subject to overfishing, 10% were experiencing overfishing, and

28% had an uncertain status (Wright et al. 2024). Biomass assessments for the same period indicated

that 56% of stocks were not overfished, 26% were overfished, and 18% were classified as uncertain

(Figures 4 and 5) (Wright et al. 2024).
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Figure 4: Southern and Eastern Scalefish and Shark Fishery - fishing mortality status for all stocks
assessed, 2004 — 2023 (Wright et al. 2024)
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Figure 5: Southern and Eastern Scalefish and Shark Fishery - biomass status for all stocks assessed,

2004 — 2023 (Wright et al. 2024)

The SESSF is also a climate change hotspot, with waters warming at a rate higher than the global
average (Hobday & Pecl 2014; DCCEEW 2025). This has caused the East Australian Current (EAC)
to intensify, bringing warmer waters poleward (Phillips et al. 2022). Subsequently, there has been an
observed shift in species distribution, contributing to the depletion of commercially important species
such as the striped trumpeter (Latris lineata) and blue warehou (Seriollela brama) (Fulton et al. 2024).
Conversely, recent modelling by the Australian Fisheries Management Authority indicated that
climate change does not have an influence on tiger flathead stock abundance, however, other studies
have contradicted this statement, highlighting that changes in temperature, salinity, current direction
and UV may impact abundance and survival of the tiger flathead (Pecl et al. 2011; Australian
Fisheries Management Authority 2025).

16

OFFICIAL



367

368
369
370
371
372
373
374
375

376

377
378

379
380
381
382
383
384
385
386

OFFICIAL

Tiger Flathead

Tiger flathead, also known as King flathead, Trawl flathead and Deepsea flathead, is endemic to
Australia. It is a bottom dwelling teleost, inhabiting sandy and muddy substrates across the
continental shelf from northern New South Wales, down to Tasmania and across to Southern
Australia (Figure 6) (Kailola et al. 1993). Tiger flathead are found in depths ranging from 10 metres
to 400 metres, with most commercial catches coming from 50 metres to 200 metres (Tilzey et al.
1990; Edgar 2008; Butler et al. 2023). Tiger flathead is relatively sedentary, spending most of the day
resting on the seabed, mud and sand substrate, with no broad-scale geographic movements (Fairbridge

1951; Bruce et al. 2002; Pecl et al. 2011).

Figure 6: Tiger flathead (Platycephalus richardsoni) distribution (Australian National Fish
Collection et al. 2021)

Tiger flathead are benthopelagic piscivores, with adults feeding on small fish and crustaceans, and
cannibalism seen in larger individuals (Bulman et al. 2001; Bruce et al. 2002). They display nocturnal
movement patterns, moving into the water column to search for prey (Colefax 1934). Juveniles
inhabit shallow waters on the continental shelf and migrate to deeper waters in the outer shelf zone
once they mature (Montgomery 1985). Prior to the spawning period, mature fish have been observed
migrating back to shallower waters (Kailola et al. 1993). Spawning periods differ between locations;
female spawning occurs from October to May in New South Wales, while spawning in the Bass Strait

and southern Tasmania occurs from December to February (Fairbridge 1951; Bruce et al. 2002). Tiger
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flathead have a life span of around 20 years, reaching sexual maturity at 3 years old (Barnes et al.
2011). Males commonly reach up to lengths of 50cm, while females are larger, growing up to lengths
of 60cm (Emery et al. 2023) (Figure 7). They are broadcast spawners with high fecundity; females
can produce up to 2.5 million eggs per spawning season (Montgomery 1985). Platycephalid eggs and
larvae, including those of tiger flathead are pelagic, and are well distributed by the currents and
counter currents of the east coast of Australia (Figure 8) (Fairbridge 1951; Taylor et al. 2020). Eggs
and larvae are primarily distributed by the EAC and once they hatch, larvae remain in waters with a
depth of less than 55 metres while they develop (Montgomery 1985). There is still a significant gap
in species specific research regarding pelagic larval duration and distribution. Other platycephalid
species in southern Australia have pelagic larval durations that range from 20 days to 2 months. For
example, the dusky flathead (P. fuscus) has a pelagic larval duration around 1-2 months, while the
sand flathead (P. bassensis) has a pelagic larval duration of approximately 20-40 days (Hamer et al.
2010; Pecl et al. 2011; Hirst et al. 2014).

Figure 7: Tiger flathead (Platycephalus richardsoni) caught within the Southern and Eastern
Scalefish and Shark Fishery
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Tasman Front

Figure 8: Main ocean surface (orange) and subsurface (blue) currents off eastern Australia (Ridgway

& Hill 2009).

Commercial fishing of tiger flathead commenced in 1915 along the east coast of Australia in the
steam trawl fishery (Klaer 2004). During the steam trawl period, localised depletion occurred in the
New South Wales region, with overfishing causing a stock collapse in the 1940s (Bruce et al. 2002).
Heavy fishing combined with fishers moving into deeper waters to maintain catch rates, sustained
this collapse, while the type of gear used such mesh net size may have also contributed to declines
(Klaer 2001). During World War II, the number of fleets fishing for tiger flathead were significantly
reduced, and subsequently, gear restrictions such as minimum mesh size limits were introduced. This
reduction in fishing pressure led to the recovery of the stock in the 1960s and 1970s (Novaglio et al.
2018). Danish seine and diesel otter trawlers entered the fishery in the 1930s and 1970s, respectively,
with Danish seine trawlers remaining as the primary fishing method for the species to this day (Little
etal. 2011; Tuck 2020). Today, tiger flathead remains a commercially important species, with catches
primarily managed in the SESSF. The total commercial catch in 2022-23 was 1860 tonnes, making
up 21.32% of SESSF Gross Value of Production (GVP) (Australian Fisheries Management Authority
2025).

Tiger flathead is managed as a Tier 1 stock, which is the most robust type of stock assessment
undertaken in the SESSF. These assessments incorporate a wide range of high-quality data to make
the most informed estimation of recommended biological catch (Dowling et al. 2016). There has been
significant development in stock assessment methods for tiger flathead since its inception in 1989.

Initially, stock assessments from 1989 to 2001 consisted of catch data, catch rates, age and length.

19

OFFICIAL



425
426
427
428
429
430
431

432

433
434
435
436
437
438
439
440
441
442
443
444

OFFICIAL

From 2001 to 2004, additional data and analysis were added to assessments to estimate unfished
spawning stock biomass, providing a more dynamic picture of the fishery. In recent years, additional
data such as catch per unit effort, ageing errors, discards, fishing mortality rate and conditional age-
ate-length data have been comprehensively incorporated into the assessments (Day 2016; Tuck 2020).
Currently, the target reference point is to sustain spawning stock biomass at 40% of the unfished
level. This target has not been exceeded since the implementation of the reference point in 2010

(Bessell-Browne 2022).

Conclusion

Population genomics provides valuable insights into the evolutionary history of marine teleosts.
Understanding population structure is critical in ensuring appropriate management boundaries and
catch limits are applied, to support ongoing sustainability of commercially and recreationally
exploited important species. Tiger flathead is an important commercial species in Australia, yet its
stock assessment is limited by a lack of accurate and up-to-date data. With key biological parameters
and stock assessment values used in tiger flathead stock assessments being either out of date or
uncertain (e.g. maturity, length-weight relationship), this poses a significant risk to both tiger flathead
assessments and the SESSF’s long-term sustainability. While tiger flathead is assumed to be a single
panmictic population, there have been no studies to date to test this assumption. This literature review
highlights the clear need for a comprehensive genomic analysis of tiger flathead population structure
in the SESSF and the integration of current and reliable data into management frameworks for the

species.
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Abstract

Effective fisheries management supports the ongoing sustainability and health of wild fish
stocks. Appropriate management relies on the accurate identification of populations and stock
structure of a species. Tiger flathead (Platycephalus richardsoni), a commercially valuable species
in the Southern and Eastern Scalefish and Shark Fishery (SESSF), is assumed to consist of a single
homogeneous panmictic population; however, no molecular studies have been undertaken to
investigate this. Observed differences in growth, appearance, and reproductive timing in tiger
flathead across southeast Australia have previously suggested potential stock structure or
ecophysiological differences among individuals from different geographic locations. The current
study employs a population genomics approach using single nucleotide polymorphisms (SNPs) to
assess genetic connectivity and stock structure of the species. DNA was extracted from 188
individuals across eastern Australia from New South Wales to Tasmania, caught and sampled in 2023
to 2024. No fine-scale genetic structuring was found for tiger flathead, suggesting a single panmictic
stock across the species’ distribution. Results indicate that genomic population structure is congruent

with current management strategies, with high gene flow observed, suggesting that large scale
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731  movements via ocean currents during the egg and pelagic larval phase likely facilitate genetic mixing.
732 This study represents the first population genomics assessment of tiger flathead, contributing to
733 improved fisheries management knowledge within the SESSF and addresses one of the key gaps in

734  biological parameters for the species.
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Introduction

The global population is expected to climb to 10 billion people by 2050, increasing the global demand
for food and thus seafood (Guillén et al 2019; Andersson et al. 2024). This is placing increasing
pressures on Australia’s wild catch fisheries, with climate change contributing to this pressure.
(Holbrook & Johnson 2014; Bogard et al. 2019; Smith et al. 2024). Given such challenges, reliable
and up-to-date biological data is essential in ensuring appropriate management frameworks are
implemented to support sustainability of wild fish stocks (Evans et al. 2022). Population genomics
presents a useful opportunity to understand population structuring of marine teleosts, directly

contributing to stock assessments for commercially and recreationally important species.

Population genomics in fisheries management

Fishery management units across the globe are commonly delineated by geographical boundaries and
anthropogenic considerations rather than biological units. (Zemeckis et al. 2014; Grummer et al.
2019). Additionally, many stock assessments assume panmixia, which occurs when individuals
within a population are equally likely to mate with one another with respect to relatedness, geography,
sex ratios, genotype and phenotype (Andersson et al. 2024; Walton et al 2025). As genetically distinct
populations may respond differently to fishing pressures, this untested misalignment can often reduce
the accuracy of biological parameters used in stock assessments, such as productivity and biomass,
and can lead to the overexploitation of a species or population (Zemeckis et al. 2014; Cadrin 2020;
Andersson et al. 2024). Population genomics is becoming more commonly used in fisheries
management frameworks, supporting the identification (or lack thereof) of biological population

boundaries (Waples 1998).

A population is defined as a geographically and genetically independent group of individuals of the
same species (Waples & Gaggiotti 2006). Genetically distinct populations may arise through a range
of physical, oceanographic and biological barriers, such as sea mounts, currents and species vagility
which can result in restricted gene flow and reduced mating opportunities (Ovenden 2013; Grummer
et al. 2019; Bertram et al. 2023). From allozyme, microsatellite and mitochondrial markers to next-
generation sequencing technologies and reduced representation genome scans, there has been an
increase in both speed and accuracy of population genomics approaches (Cuéllar-Pinzon et al. 2016).
This has led to the increase in the capacity to screen for nuclear markers such as single nucleotide
polymorphisms (SNPs). SNPs are abundant and spread across the entire genome, allowing high
quality data to be obtained for relatively low costs. SNP analyses provide a unique opportunity to
more easily acquire comprehensive genetic data across the genome (hence ‘genomic data’), that can

be incorporated into fisheries management frameworks (Morin et al. 2004, Payet et al. 2024).
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Southern and Eastern Scalefish and Shark Fishery

The Southern and Eastern Scalefish and Shark Fishery (SESSF) is the largest Commonwealth-
managed fishery by catch (Wright et al. 2024). Covering depths of 30-1200 metres, the fishery
extends the southern end of Australia from Western Australia to Queensland (Smith & Smith 2001).
Generating a total GVP of $98.58 million, it accounts for nearly one quarter of the GVP for all
Commonwealth fisheries (Wright et al. 2024). Fishing mortality and biomass assessments from 2023
indicate that between 28% to 44% of stocks within the fishery were either subject to overfishing or
uncertain (Wright et al. 2024). Additionally, the SESSF is a climate change hotspot, with southeast
Australian waters warming at a rate faster than the global average (Hobday & Pecl 2014; DCCEEW
2025). A total of thirty-nine stocks make up the fishery, with one of the most commercially important
species being tiger flathead (Platycephalus richardsoni). In 2022-23, tiger flathead accounted for
over one fifth of the GVP within the fishery (Australian Fisheries Management Authority 2025).

Tiger Flathead

Endemic to southeast Australia, tiger flathead is a demersal marine teleost, inhabiting sandy and
muddy substrates (Kailola et al. 1993). They are found in depths ranging from 10 metres to 400
metres, with most commercial catches coming from 50 metres to 200 metres over the continental
shelf (Tilzey et al. 1990; Edgar 2008; Butler et al. 2023). Their distribution spans southeast Australia
from South Australia to New South Wales, including Tasmania (Australian National Fish Collection
et al. 2021). Previous studies have suggested that tiger flathead are a relatively sedentary species with
no observed broadscale geographic movements (Fairbridge 1951; Pecl et al. 2011; Bruce et al. 2002).
They are benthopelagic piscivores with nocturnal movement patterns, moving into the water column
at night to feed primarily on small fish and crustaceans (Colefax 1934; Bulman et al. 2001). Juveniles
inhabit shallow waters on the continental shelf and migrate to deeper waters in the outer shelf zone
once they mature. Prior to the spawning period, mature fish have been observed migrating back to
shallower waters (Montgomery 1985; Kailola et al. 1993). With a lifespan of 20 years, tiger flathead
reach sexual maturity around 3 years old and are broadcast spawners, producing up to 2.5 million
eggs per spawning season (Montgomery 1985, Barnes et al. 2011). Eggs and larvae of platycephalids
(Family Platycephalidae) are known to be well distributed by the currents of the east coast of
Australia (Fairbridge 1951; Gray & Miskiewicz 2000). The pelagic larval duration (PLD) of tiger
flathead is unknown, however other platycephalid species have PLDs ranging from 20 days to 2
months (Hamer et al. 2010, Pecl et al. 2011, Hirst et al. 2014).
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Research gaps

Despite the commercial importance of tiger flathead, much about their ecology and life history remain
poorly understood. A study undertaken by Evans et al. 2022 found that many of the parameters used
in SESSF stock assessments, including for tiger flathead, are either out of date and / or the reference
source of parameters and values used in assessments are unknown. Of the 12 species assessed in the
Evans et al. (2022) study, 8 had provenance issues. Among this is tiger flathead, with key parameters
used in stock assessments such as maturity and length-weight relationships found to be either older
than 10 years, or the biological origin of the parameters and values is unclear or unreliable.
Additionally, stock assessments for tiger flathead assume panmictic population structure, despite no
previous studies undertaken to investigate this. There has been speculation around the existence of
multiple populations of tiger flathead, with observed morphological differences in growth rates,
appearance and differences in spawning seasons throughout the geographic range of the species
(Kailola et al. 1993). This has been observed in New South Wales with spawning seasons occurring
between October and May, whereas individuals off eastern Tasmania and the Bass Straight spawn

between December to February (Kailola et al. 1993).

This study represents the first genomic investigation of stock structure for tiger flathead. It looks at
the intra-specific genomic connectivity of tiger flathead latitudinally across the SESSF and using this
knowledge gained, aims to provide up-to-date data to inform current management strategies,
supporting the ongoing sustainability of the species. To test for population structuring for tiger
flathead within the SESSF, a null hypothesis of no genetic differentiation across sampling locations

(HO) was proposed.

Materials and Methods

Sampling design and collection

Tissue samples of P. richardsoni (n = 188 individuals) were collected along the southeastern Australia
coast between Hobart, Tasmania and Merimbula, New South Wales (Figure 1) in 2023 and 2024.
Sampling occurred on the Research Vessel Investigator, during three of the CSIRO Southeast
Australian Marine Ecosystem Survey (SEA-MES) voyages (Table 1). Individual fish were collected
across three voyages to account for temporal and seasonal variability. Individuals were obtained
utilising McKenna Trawls and euthanised with AQUI-S. Where possible, sex, weight and length data
were also obtained. Muscle samples were collected by dissecting a portion of muscle from above the

pectoral fin and storing it at -20°C before returning to Hobart for subsequent sampling and analysis.
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Figure 1: Sampling location of tiger flathead (Platycephalus richardsoni) split by a priori

populations. A, samples from 35°S-36°S; B, samples from 37°S; C, samples from 38°S; D, samples

from 39°S; E, samples from 40°S; F, samples from 41°S; G, samples from 42°S.
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Table 1: Summary of sampling information per voyage, including voyage dates, number of samples

per voyage, the minimum length (mm), maximum length (mm) and sex.

Voyage | Voyage Voyage end | Number of | Minimum Maximum | Sex
start date date samples length length
(mm) (mm)
1 1/07/2023 28/07/2023 | 65 144 582 12 F
3iM
50 unknown
2 05/05/2024 | 29/05/2024 | 63 183 577 14 F
8M
41 unknown
3 14/11/2024 | 11/12/2024 | 60 288 595 30F
30M

DNA extraction and sequencing

As per Diversity Array Technology’s sample preparation guidelines, 10-15mg of muscle tissue was

subsampled and submerged in 80% ethanol in Qiagen Collection Micro Tubes (Hilden, Germany)
with the associated caps. The scalpel, scissors, tweezers and aluminium foil used on the chopping
board were cleaned between each individual sample using 80% ethanol, bleach, water and Kimtech
Low Lint Wipers (Georgia, United States of America) to prevent contamination of samples. Samples
were posted frozen to Diversity Arrays Technology (Canberra, Australia) for DNA extraction and
sequencing. Sequencing was completed using the DArTseq (1.0) - DArTseq Medium density
sequencing (1.2 mln reads). This uses the Diversity Arrays Technology proprietary complexity
reduction-based sequencing technology. It involves restriction-enzyme digestions, adapter ligation
followed by amplification of adapter ligated fragments, targeting the low copy, informative regions

of the genome (Kilian et al. 2012; Diversity Arrays Technology n.d.).

Quality control and data filtering

Prior to filtering and analysis, individuals were grouped into arbitrary populations based on their
sampling latitude (i.e. 1 degree latitude, split evenly across the region) (Figure 1). As samples were
collected at relatively even intervals across the voyage route, this approach was used to explore
potential spatial patterns in genetic structure across this geographic extent. This resulted in 7 a priori

populations ranging from 35°S to 42°S with 26-31 individuals within each population (Table 2).
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Table 2: A priori populations, sampling latitudes and number of samples per population.

Population Latitude N
A 35°S-36°S 31
B 37°S 26
C 38°S 26
D 39°S 26
E 40°S 27
F 41°S 26
G 42°8S 26
Total 188

Of the 188 tissues subsampled, the SNP extraction yielded 158,628 SNP markers for 187 individuals.
Individual ‘10080594’ was not included due to low-quality DNA and did not pass Diversity Arrays
Technology’s quality control protocols (Appendix A). Quantitative analyses were undertaken using
the statistical package R (ver. 4.4.0) The SNP data and metadata produced by DArT Pty Ltd was
converted into a genlight object for further filtering using the package dartR (ver. 2.9.9.5) (Gruber et
al. 2018). Before filtering the dataset, an initial smearplot of the first 20 individuals and 1000 loci

was generated using the R package dartR (Gruber et al. 2018). This was developed to visualise a
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portion of the data and identify any significant missing values, obvious outliers, or patterns (Figure
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Figure 2: Genotype heatmap across 20 individuals and 1000 SNP loci. Each column represents an
individual SNP, while each row represents an individual. Homozygote reference alleles are in green,
heterozygotes are in orange, homozygote alternative allele is in purple, and missing values (NA) are

in grey.

Various filtering steps were applied to the dataset to improve reliability and quality of the data. A
0.98 reproducibility threshold was applied to the dataset, filtering out 12,118 SNPs (Appendix B).
The data was checked for any invariable sites (SNPs that had missing data for all samples), however,
no additional loci were removed from the dataset. A Minor Allele Frequency (MAF) filter was
applied, with a threshold of 0.02, removing 80,375 loci (Figure 5). The dataset was filtered by read
depth, with a lower threshold of 5 and an upper threshold of 100, removing 7,790 loci (Appendix C).
The call rate per SNP and individual threshold were set to 0.98 and 0.94 respectively, filtering out
47,271 SNPs and 3 individuals (Appendix D).

The application of these stringent filtering steps ensured SNPs and individuals with low call rates are
filtered out, enhancing the quality and reducing bias from missing data. Individuals with unusually
low or high heterozygosity were filtered out. The heterozygosity filter was applied with a lower and
upper threshold of 0.1 and 0.2, filtering out 2 individuals (Appendix E). SNPs with short distance
linkages were also removed to reduce the effect of linkage disequilibrium in the analysis (Appendix

F). This removed a total of 1,408 SNPs, creating a final, high-quality dataset of 9,666 SNPs across
38
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182 individuals (Table 3). The data was also quality controlled by assessing the SNP allele
frequencies against Hardy-Weinberg Equilibrium to determine if any SNPs significantly deviated
from equilibrium. Initially, 3,103 SNPs were identified as outliers from the Hardy-Weinberg
Equilibrium, however, p-values were adjusted for multiple comparisons using the Benjamini-
Hochberg procedure to control for the false discovery rate (Benjamini & Hochberg 1995) (Appendix
G). After correction for multiple comparisons, no SNPs significantly deviated from Hardy-Weinberg

equilibrium, therefore, no further SNPs were removed from the dataset.

The filtered dataset was checked for any remaining monomorphic loci, which indicated no
monomorphic loci needed to be removed. The function gl.outflank from the dartR package was used
to identify and filter for Fsr-based outliers (Gruber et al. 2018). No outliers were present in the data.
A final smearplot was generated to inspect the data, identify any key areas that may not have been

filtered out during the filtering process and identify if any patterns have emerged (Figure 3).

Table 3: Summary of sequential filtering and quality control steps, showing the number of SNPs and

individuals removed at each stage.

Filtering step SNPs Individuals
remaining remaining
Initial dataset 158,628 187
Reproducibility > 0.98 146,510 187
Minor Allele Frequency < 0.02 removed 66,135 187
Read depth between 5 and 100 58,345 187
Call rate per SNP > 0.98 11,074 187
Call rate per individual > 0.94 11,074 184
Heterozygosity per individual between 0.1 and 0.2 11,074 182
Remove short distance linked SNPs 9,666 182
Final dataset: total polymorphic loci retained 9,666 182
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Figure 3: Genotype heatmap across the entire filtered dataset. Each column represents an individual
SNP, while each row represents an individual. Homozygote reference alleles are in green,
heterozygotes are in orange, homozygote alternative allele is in purple, and missing values (NA) are

in grey.

Genetic diversity

The dartR package was used to calculate observed heterozygosity (Ho), expected heterozygosity
(HE), inbreeding coefficient (Fis), Jost’s D and Hedricks Gst (Gruber et al. 2018) (Hedrick 2005; Jost
2008). Genetic differentiation between populations was calculated through fixation indices (Fsr),
using the R package dartR and bootstrapping 100 times (Weir & Cockerham 1984; Gruber et al.
2018). P-values were adjusted using the Benjamini-Hochberg procedure to control for the false

discovery rate (Benjamini & Hochberg 1995).

Population structure

Population structure was visualised through a principle component analysis (PCA), discriminant
analysis of principle components (DAPC) and a STRUCTURE plot. The PCA was undertaken using
the dartR package, to detect any genetic similarities and visualise any genetic differentiation (Gruber
et al. 2018). A DAPC was executed using the adegenet package (ver. 2.1.11) to further visualise any
genetic differentiation between pre-defined populations (Jombart 2008). Finally, a STRUCTURE plot
was performed using the LEA (ver. 3.18.0) package to understand the admixture proportions of
individuals across an optimal number of clusters (Frichot & Frangois 2015). An optimal number of
ancestral populations (K) was determined using the cross-entropy criterion. Individual admixture

coefficients were estimated at K = 1 to K = 8 putative populations with 5 replicates for each value of
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K. The optimal K value was determined when the cross-entropy initially decreased (Frichot et al.
2014, Frichot & Francois 2015). An Analysis of Molecular Variance (AMOVA) was performed using
the R package hierfstat (Goudet 2005). An AMOVA was performed to further validate the genetic

diversity parameters of the study, such as Fsr and Fis.

Results

Genetic diversity

All populations had low allelic diversity with mean minor allele frequencies (MAF) near 0 (range
0.112 — 0.121) with an overall mean MAF of 0.056 (Figure 4). Expected heterozygosity was
consistent across all locations (Hg = 0.174-0.176, Table 4), with observed heterozygosity slightly
lower than expected heterozygosity (Ho = 0.156-0.160, Table 4). The inbreeding coefficients (Fis)
were similar across all locations (Fis = 0.070-0.094, Table 4).

Overall A B
n=231 n=26
50000 15000 15000
. 40000 - -
5 30000 £ 10000 £ 10000
2 20000 [} o
O $0000 O 5000 o 5000
0 0 0
0.0 0.1 02 03 04 05 0.0 0.1 02 0.3 04 05 0.0 0.1 02 0.3 04 05
MAF MAF MAF
C D E
n=26 n=26 n=26
15000 15000 15000
§ 10000 § 10000 § 10000
o 5000 O 5000 O 5000
0 0 0
0.0 0.1 02 0.3 04 05 0.0 0.1 02 0.3 0.4 05 0.0 0.1 02 0.3 0.4 05
MAF MAF MAF
F G
n=26 n=26
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€ 10000 ‘€ 10000
-] 3
S 5000 S 5000
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Figure 4: Minor allele frequencies (MAF) for each a priori population of tiger flathead
(Platycephalus richardsoni) prior to filtering, along with the overall MAF (top left). MAFs >0.02

were removed to improve data quality and enhance statistical power.

Table 4: Population parameters for tiger flathead (Platycephalus richardsoni). Na, Number of
polymorphic SNPs screened; Ho, observed heterozygosity; He, expected heterozygosity; Fis,

inbreeding coefficient.

Population n Na Ho He Fis
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A 31 9018 0.157 0.175 0.085
B 26 8643 0.156 0.176 0.094
C 26 8657 0.159 0.175 0.074
D 25 8697 0.156 0.174 0.085
E 26 8612 0.157 0.175 0.079
F 24 8707 0.160 0.176 0.074
G 25 8744 0.160 0.176 0.070

Minimal genetic differentiation was detected across all locations, indicated by the overall Fsr value
(Fst=0.0002, Table 5) and pairwise Fsr values (0.000 — 0.001, Table 4). As per Meirmans & Hedrick
2011, Fsr values can be negative, which have been interpreted as 0 for this study. This observation
was further supported by an AMOVA, showing an Fsr of 0.0003 and an Fis value of 0.0948, with
90.49% of genetic differentiation coming from among individuals, rather than populations, indicating
no significant rejection of the null hypothesis (Table 7). Panmixia is further supported by Jost’s D
and Hedrick’s Gsr (0.0001 and 0.0003, respectively, Table 5). As the overall and pairwise
comparisons indicated no significant genomic differentiation, further testing based on allele
frequencies for male and females in each population was not undertaken. When comparing SNP allele
frequency differences amongst the arbitrary populations, significant genetic differentiation (Fst =
0.0012) was detected between locations F and B (following Benjamini-Hochberg correction)
(P<0.001, Table 6), suggesting evidence to support minimal genetic structuring between the two

locations.

Table 5: Overall population parameters and diversity indices. Ho, observed heterozygosity; HE,

expected heterozygosity; Fsr, fixation indices; Fs, inbreeding coefficient.

Ho Hg Fis
0.156 0.172 0.095

Fst
0.0002

Jost’s D
0.0001

Hedrick’s Gst
0.0003

Table 6: Pairwise genetic differentiation (Fst) values (below the diagonal) for tiger flathead
(Platycephalus richardsoni) samples, grouped according to arbitrary populations. P-values above the

diagonal, significant P-values (following Benjamini-Hochberg correction) are shown in bold.

A B C D E F G
A 0.850 0.740 0.740 0.850 0.630 0.870
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B 0.000 0.630 0.630 0.850 0.000 0.740
C 0.000 0.000 0.650 0.650 0.420 0.920
D 0.000 0.000 0.000 0.650 0.630 0.850
E 0.000 0.000 0.000 0.000 0.210 0.740
F 0.000 0.001 0.001 0.000 0.001 0.630
G 0.000 0.000 0.000 0.000 0.000 0.000

Table 7: Analysis of Molecular Variance (AMOV A) indicating genetic variance among populations,

among individuals within populations and within individuals.

Source of Variation | Sum of squares Variance % of Variation
components

Among populations 0.4320 0.0003(Fsr) 0.03%

Among  individuals | 157.2347 0.0948 (F1s) 9.48%

within populations

Within individuals 1504.6638 - 90.49%

Total 1662.3310 0.0951 100.00%

Population structuring

Population structuring among the seven tiger flathead arbitrary groupings was not evident from a
PCA, with no clustering of individuals or populations (Figure 5). In the PCA Axis 1, 2 and 3
accounted for 0.8% of genetic variation, indicating weak structuring. This was further supported with
a DAPC, showing significant overlap between locations and individuals in each population were not
spatially structured, thereby reinforcing the acceptance of the null hypothesis and assumed panmixia
(Figure 6). The optimal number of ancestral populations (K) based on the cross-entropy criterion was
two (K = 2). However, the STRUCTURE plot indicated no population structuring between locations
as despite the optimal number of ancestral populations being 2, all individuals were assigned with a
high probability to a single ancestral population (Figure 7). All analyses support the acceptance of
the null hypothesis of no genomic differentiation among tiger flathead samples in the SESSF during
2023 to 2024.
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Figure 6: (a) Discriminant Analysis of Principle Components (DAPC) performed with neutral SNP

genotypes of tiger flathead (Platycephalus richardsoni). Clustering was performed using Bayesian

Information, with populations (n = 7) specified as priors. Insets show eigenvalues for the first 6 axes

(b) Density distributions of locations along the first discriminant function.
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Figure 7: (a) Values of the cross-entropy criterion to determine the optimum number of ancestral
clusters (b) Ancestry populations and clustering for tiger flathead (Platycephalus richardsoni) based
on STRUCTURE outputs for SNPs. Colours represent different ancestry populations based on K

values. Each vertical bar represents and individual.

Discussion

Here we present the first comprehensive genomic population analysis of tiger flathead. Results
indicate that tiger flathead in southeast Australia consists of a single, panmictic population, supporting
the acceptance of the null hypothesis. Based on next-generation sequencing of SNPs, these results
contribute to the previously limited knowledge on population structuring for the species and these
findings can be used to support the management of tiger flathead, supporting long term sustainability

of the species.
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Genetic diversity and population structure

Results indicate no evidence of genetic structuring for tiger flathead along the southeast coast of
Australia. The Fsr values (mean = 0.0002) were low, indicating high gene flow between locations
and weak structuring. This is further supported by the Jost’s D and Hedrick’s Gsr values (0.0001 and
0.0003). With values close to zero, this indicates that populations are genetically similar with close
to no genetic variation among populations and similar allele frequencies (Hedrick 2005; Jost 2008).
Furthermore, the AMOV A shows that over 90% of genetic variation occurs within individuals rather
than being at a population level, supporting panmixia. A similar study was conducted by van
Herwerden et al 2009 on Red Emperor (Lutjanus sebae) across the west and east coast of Australia.
Results were comparable, showing a panmictic population, with an overall Fst of -0.006 and majority
of genetic variation occurring within individuals rather than populations. Tiger flathead display
modest genetic diversity (Ho = 0.156), which is consistent across all arbitrary populations (Ho =
0.156 - 0.160). Although this is on the lower scale of genetic diversity (0-1), this is consistent with
other marine teleosts and there is no sufficient evidence to suggest this is of concern. For example,
snapper (Chrysophrys auratus) from southeastern Australia displays similar genetic diversity, with

observed heterozygosity (Ho) ranging from 0.181 to 0.203 (Bertram et al. 2023).

Although there was one significant pairwise difference between locations B and F (Fst = 0.001, P-
value < 0.01), the overall Fst value (0.002) coupled with the other population homogeneity
parameters suggest no genetic differentiation. This is important to consider in population genomics
as Waples (1998) notes that ‘not all statistically significant test results indicate biologically important
differences.” If management decisions are based exclusively on statistically significant differences
without considering the biological factors, this can result in the loss of economic, social and cultural
benefits associated with the harvest and consumption of a stock. Additionally, if we restrict human
activities (e.g. harvesting) without considering biological validity, it can increase the difficulty in
achieving sustainable resource management in the future (Waples 1998). For example, studies using
discrete genetic data assume that sampling is multinominal and a violation of this assumption can
result in a significant test result despite there being no differences in populations. When conducting
genetic studies such as this, sampling protocols almost always violate this assumption (Waples 1998).
Therefore, despite the significant statistical pairwise difference between locations B and F;
biologically, it can be assumed that there is minimal to no genetic differentiation between the

locations.

These findings are further supported by the STRUCTURE plot, with almost all individuals primarily

belonging to one cluster (cyan). Despite the optimal number of clusters from the cross-entropy being
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K = 2; looking at these results against the PCA, DAPC and Fsr values, it can be concluded that there
is minimal to no population structuring for tiger flathead. This is a common limitation of the delta K
method for identifying optimal cluster numbers in a STRUCTURE analysis. This method can often
result in the over or underestimation of population structure. For example, delta K does not allow the
optimal number of clusters to be K = 1, therefore, conducting STRUCTURE analysis alongside other
methods such as PCA and DAPC is key in ensuring findings are not misinterpreted (Janes et al. 2017).

These genetic findings suggest that population connectivity is being maintained despite adult tiger
flathead being relatively sedentary (Australian Fisheries Management Authority n.d.) This potential
for population connectivity aligns with the hypotheses that eggs and larvae are well distributed by the
currents and counter currents of the east Australian coast (Fairbridge 1951). Despite limited
knowledge on the pelagic larval duration of tiger flathead; other platycephalid species such as the
dusky flathead (P. fuscus) and sand flathead (P. bassensis) have pelagic larval durations that range
from around 20 days to 2 months (Hamer et al. 2010, Hirst et al. 2014, Pecl et al. 2011). This suggests
that the pelagic larval duration of tiger flathead is long enough to support passive movement and

mixing along the southeast coast of Australia.

This pattern of dispersal has been widely observed and is the primary dispersal mechanism supporting
connectivity of marine populations (Booth et al. 2007; van Herwerden et al 2009). One of the main
oceanographic drivers of gene flow for tiger flathead would be the East Australian Current (EAC).
The EAC is a western boundary current, running along the east coast of Australia from ~ 22° S to
43°S latitude, reaching velocities up to ~90 cm/s (Ridgway & Dunn 2003). The EAC has powerful
dispersal mechanisms for marine fish, transporting tropical larval fish down into temperate waters
(Booth et al. 2007). The EAC strengthens in the austral summer (December to February), bringing
high eddy kinetic energy and southward extension which in turn, promotes the transportation and
connectivity of fish populations (Xu et al. 2022). The strengthening of the EAC over the austral
summer also coincides with tiger flathead spawning season, thus promoting gene flow between
locations. Other platycephalid species also experience larval dispersal and connectivity through ocean
currents. For example, a newly recognised platycephalus species in China has population connectivity
driven by the Taiwan Warm Current and Yellow Sea Warm Current as well as winter monsoon winds.
Conversely, a genetically distinct population of the same species in Tokyo Bay is more genetically
isolated due to barriers created by the Japanese landmass and Kuroshio and Tsushima Warm Current

(Cheng et al. 2019).
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Phenotypic plasticity and environmental factors

Given tiger flathead form a single, panmictic population, the observed regional differences, such as
differences in growth rates, appearance and spawning seasons, suggest that this is the result of
phenotypic plasticity, or epigenetic differences rather than having any underlying population
structuring (West-Eberhard 2005). Tiger flathead may adapt to their local environmental conditions
such as habitat, temperature and food availability, resulting in varying morphological differences.
This has been observed in other marine species, for example, the european anchovy (Engraulis
encrasicolus) comprises of a single panmictic population in the north-western Mediterranean.
However, fish from various locations within this area exhibit morphological differences driven by
environmental factors (Tudela 1999). Investigating the epigenetic differences of tiger flathead would
provide further understanding behind these observed morphological differences and may provide
insight in the species’ adaptive capability and resilience. This can be particularly relevant to better
understand how the species may adapt to climate change (Mattoo et al. 2025). It is important to note
that this type of analysis requires a deeper understanding of the whole genome, however, to support
this, a reference genome for the genus Platycephalus has recently been sequenced and is currently

undergoing assembly (Green, M, personal communication, September 11, 2025).

Differences in size and age of fish observed off Tasmania may also be due to differences in fishing
pressure. Through the use of different gear types and more intensive harvesting, fisheries pressure
can impact populations by disproportionately removing larger fish from populations. This can result
in an evolutionary response, with more heavily fished individuals maturing earlier and at a smaller
size (Mishra 2025). Therefore, this would mean that fish off Tasmania are more lightly fished than
those off Victoria and New South Wales. Stock assessments for tiger flathead currently account for
differences in length compositions in Tasmania through the use of an areas-as-fleets approach
(Bessell-Browne 2022). This involves treating different spatial areas as ‘fleets’ to account varying
fishing intensities across a single stock, rather than conducting separate stock assessments (Cope &

Punt 2011).

Limitations

It 1s important to note that due to time and sampling constraints, this study only focusses on eastern
individuals across the distribution of the species. Future research should incorporate samples from
western Tasmania and the western Bass Strait to strengthen the understanding of tiger flathead
population structure across the entire range. Additionally, only five samples were able to be collected

from 35° S, therefore these were incorporated into population alongside samples from 36° S. More
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samples from 35° S and further north should be collected and incorporated into the analysis in future

studies.

Cross-contamination between samples is a risk when conducting bottom trawling and processing.
Although all efforts to avoid cross contamination were implemented, this remains a limitation to
conducting studies on this scale. Furthermore, multiple technicians conducted sampling of muscle
tissue. A standard protocol was used for subsampling; however, multiple handlers can introduce
uncertainty and risk of sampling error. Sex specific data was only obtained for a small portion of
samples. Given acceptance of the null hypothesis, further sex specific and temporal analyses were

not conducted, however this may limit further analysis should it be undertaken in the future.

Although SNPs are a powerful tool for population genomic studies, they also come with a range of
limitations which are important to understand. To generate comprehensive SNP datasets, they require
large portions of high-quality DNA. This was able to be obtained in this study as tiger flathead are
not a species of concern, allowing invasive techniques to be used to obtain DNA. However, this can
be difficult to obtain for other species such as those that are protected due conservation concern
(Zimmerman et al. 2020). SNPs are only biallelic, which provide less information than polymorphic
markers such as microsatellites. However, SNPs are much more abundant and accessible than their
microsatellites counterparts, making them a preferred alternative for many studies (Xiong & Jin
1999). Finally, ascertainment bias is a limitation to using SNPs in population genomic studies. This
is the result of non-random sampling of individuals and / or biased SNP discovery methods which
can skew results (Lachance & Tishkoff 2013). Ascertainment bias can only be removed if the whole
genome is sequenced for every individual within a population, which was not able to be undertaken
in this study. However, ascertainment bias is less of a concern in population genomics studies as it

still allows sufficient detection of individual clustering (Morin et al. 2004).

Management implications and future research

This study is a positive step towards understanding key knowledge gaps for the sustainable
management of tiger flathead, an important commercial species within Australia. The findings are
congruent with current management strategies, supporting the assumption used in stock assessments
that tiger flathead form a single panmictic population (Bessell-Browne 2022). Further research should
focus on updating outdated biological parameters such as maturity and weight-length relationship to
increase the robustness and reliability of stock assessments for the species. Epigenetic studies on tiger
flathead adaptability and resilience, particularly in a warming climate may also be useful in

determining how climate change may impact abundance and distribution of tiger flathead. This will
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provide insight into the morphological differences observed across the geographic range and the

drivers behind those differences.

Ensuring up to date biological data for wild catch fisheries is essential to ensure sustainable fisheries
management. Although population structure for tiger flathead is now better understood, ongoing
monitoring and population genomic studies still need to be undertaken in the future to ensure we are
capturing any genetic structuring that may arise. Should the status of the fishery change, this may
need to be conducted on a more regular basis to understand impacts on the genetic diversity and

structural changes of the species.

The datasets and raw data analysed in the study are available in the CSIRO and University of

Tasmania SharePoint.
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Appendix
Appendix A: Metadata for 188 tissue samples of tiger flathead (Platycephalus richardsoni).

Voyage Sample ID | Sampling Date | Latitude Longitude Length (mm) | Weight (g) | Sex
IN2024 V05 | 10098937 14/11/2024 -42.16909 148.525897 | 370 356 M
IN2024 V05 | 10098877 14/11/2024 -42.16909 148.525897 | 418 516 M
IN2024 V05 | 10098882 14/11/2024 -42.16909 148.525897 | 411 486 F
IN2024 V05 | 10098906 14/11/2024 -42.16909 148.525897 | 442 651 M
IN2024 V05 | 10098903 14/11/2024 -42.16909 148.525897 | 472 768 M
IN2023 V05 | 10084740 28/07/2023 -42.11222 148.526193 | 411 532 NA
IN2023 VOS5 | 10084761 28/07/2023 -42.11222 148.526193 | 449 650 NA
IN2023 V05 | 10084770 28/07/2023 -42.11222 148.526193 | 435 570 NA
IN2023 V05 | 10084808 | 28/07/2023 -42.11222 148.526193 | 379 424 NA
IN2023 V05 | 10084810 | 28/07/2023 -42.11222 148.526193 | 477 720 NA
IN2023 V05 | 10085824 | 28/07/2023 -42.11222 148.526193 | 461 636 NA
IN2023 V05 | 10085923 | 28/07/2023 -42.094049 148.615655 | 414 566 NA
IN2023 V05 | 10084804 | 28/07/2023 -42.087384 148.565009 | 408 483 NA
IN2023 V05 | 10084837 | 28/07/2023 -42.087384 148.565009 | 525 1106 NA
IN2023 V05 | 10084841 28/07/2023 -42.087384 148.565009 | 382 378 NA
IN2023 V05 | 10084881 28/07/2023 -42.087384 148.565009 | 366 367 NA
IN2023 V05 | 10084916 | 28/07/2023 -42.087384 148.565009 | 367 377 NA
IN2023 V05 | 10084938 | 28/07/2023 -42.087384 148.565009 | 340 297 NA
IN2023 V05 | 10084940 | 28/07/2023 -42.087384 148.565009 | 434 670 NA
IN2023 V05 | 10084968 28/07/2023 -42.087384 148.565009 | 502 1015 NA
IN2023_VO05 | 10084970 28/07/2023 -42.087384 148.565009 | 440 587 NA
IN2024 V05 | 10099047 14/11/2024 -42.075914 148.482196 | 362 360 F
IN2024 V05 | 10098989 14/11/2024 -42.075914 148.482196 | 317 247 F
IN2024 V05 | 10099049 14/11/2024 -42.075914 148.482196 | 274 153 F
IN2024 V05 | 10098986 14/11/2024 -42.075914 148.482196 | 396 513 F
IN2024 V05 | 10099035 14/11/2024 -42.075914 148.482196 | 301 210 M
IN2024 VOS5 | 10099315 15/11/2024 -41.86854 148.584459 | 391 433 M
IN2024 V05 | 10098850 15/11/2024 -41.781094 148.540289 | 495 930 M
IN2024 V05 | 10109862 11/12/2024 -41.723795 148.444162 | 353 336 M
IN2024 V05 | 10109811 11/12/2024 -41.723795 148.444162 | 310 242 F
IN2024 V0S5 | 10106769 | 8/12/2024 -41.410511 148.586604 | 300 188 M
IN2024 V05 | 10106875 8/12/2024 -41.385663 148.568725 | 427 516 F
IN2024 V03 | 10086172 | 5/05/2024 -41.227653 148.439928 183 37 NA
IN2024 V03 | 10086368 | 5/05/2024 -41.227653 148.439928 | 238 83 NA
IN2024 V03 | 10089455 | 5/05/2024 -41.227653 148.439928 | 228 79 NA
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IN2024 V03 | 10089482 | 5/05/2024 -41.227653 148.439928 | 240 93 NA
IN2024 V03 | 10089495 | 5/05/2024 -41.227653 148.439928 | 264 136 NA
IN2024_V03 | 10089543 | 5/05/2024 -41.227653 148.439928 | 230 76 NA
IN2024_V03 | 10089569 | 5/05/2024 -41.227653 148.439928 | 403 441 NA
IN2024_V03 | 10089442 | 5/05/2024 -41.215342 148.517978 | 346 322 NA
IN2024_V03 | 10089475 | 5/05/2024 -41.215342 148.517978 | 285 172 NA
IN2024_V05 | 10098800 16/11/2024 -41.176812 148.371173 | 274 140 M
IN2024_V03 | 10089843 | 5/05/2024 -41.175434 148.481131 | 233 78 NA
IN2024_V05 | 10099171 16/11/2024 -41.124056 148.405518 | 286 152 M
IN2023_V05 | 10085056 | 24/07/2023 -41.110295 148.473097 | 373 403 NA
IN2023_V05 | 10085132 | 24/07/2023 -41.110295 148.473097 | 393 736 NA
IN2023_VO05 | 10085135 | 24/07/2023 -41.110295 148.473097 | 330 327 NA
IN2023_VO05 | 10085161 24/07/2023 -41.110295 148.473097 | 430 726 NA
IN2023 V05 | 10085197 | 24/07/2023 -41.110295 148.473097 | 297 209 NA
IN2024_V05 | 10101568 16/11/2024 -41.107141 148.385994 | 378 393 F
IN2023 V05 | 10085208 | 24/07/2023 -41.060924 148.474113 | 271 152 NA
IN2023 V05 | 10085213 | 24/07/2023 -41.060924 148.474113 | 354 311 NA
IN2024_V05 | 10106441 9/12/2024 -40.827154 148.685474 | 329 300 M
IN2024 V05 | 10105369 | 9/12/2024 -40.827154 148.685474 | 294 230 M
IN2024 V05 | 10108664 | 9/12/2024 -40.753485 148.628509 | 284 171 M
IN2024_V05 | 10109504 10/12/2024 -40.699212 148.75471 403 567 F
IN2024_V05 | 10109480 10/12/2024 -40.699212 148.75471 475 906 F
IN2024 V03 | 10086129 | 6/05/2024 -40.680163 148.739391 | 286 183 M
IN2024_V03 | 10086150 | 6/05/2024 -40.680163 148.739391 | 275 143 M
IN2024_V03 | 10086189 | 6/05/2024 -40.680163 148.739391 | 405 544 M
IN2024_V03 | 10089144 | 6/05/2024 -40.628374 148.679936 | 440 532 NA
IN2024_V03 | 10090638 | 7/05/2024 -40.594909 148.714739 | 329 211 NA
IN2024_V03 | 10090377 | 6/05/2024 -40.57104 148.795779 | 363 336 F
IN2023_VO05 | 10083704 | 25/07/2023 -40.505644 148.825067 | 384 401 NA
IN2023_VO05 | 10085206 | 25/07/2023 -40.505644 148.825067 | 453 775 NA
IN2024_VO05 | 10107676 | 7/12/2024 -40.358497 148.774063 | 330 317 M
IN2024_VO05 | 10108818 | 7/12/2024 -40.358497 148.774063 | 377 454 M
IN2024_V05 | 10107500 | 7/12/2024 -40.340575 148.756774 | 367 392 M
IN2024_V03 | 10091161 8/05/2024 -40.333214 148.761691 | 372 432 M
IN2024 V03 | 10091162 | 8/05/2024 -40.333214 148.761691 | 469 750 F
IN2023_V05 | 10080179 1/07/2023 -40.323211 148.768471 | 492 945 F
IN2024 V05 | 10108390 | 7/12/2024 -40.274876 148.70242 439 739 F
IN2024 V03 | 10091074 | 8/05/2024 -40.274316 148.702581 | 229 80 NA
IN2024_V03 | 10091075 8/05/2024 -40.274316 148.702581 | 354 400 M
IN2023 V05 | 10080352 | 2/07/2023 -40.096587 148.752493 | 414 622 F
59
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IN2023_V05 | 10080520 | 2/07/2023 -40.053854 148.719825 | 339 266 M
IN2023 V05 | 10080617 | 2/07/2023 -40.053854 148.719825 | 397 445 M
IN2023_V05 | 10080622 | 2/07/2023 -40.053854 148.719825 | 424 563 F
IN2023_V05 | 10080594 | 2/07/2023 -40.044098 148.714092 | 304 184 M
IN2024_VO05 | 10101682 | 18/11/2024 -39.948054 148.739887 | 361 334 F
IN2024_V05 | 10101869 | 18/11/2024 -39.948054 148.739887 | 468 788 F
IN2024_V05 | 10101300 | 18/11/2024 -39.894756 148.75802 344 284 M
IN2024_V03 | 10091179 | 9/05/2024 -39.537952 148.678491 | 299 190 NA
IN2024_V03 | 10091182 | 9/05/2024 -39.537952 148.678491 | 408 573 NA
IN2024_V03 | 10091190 | 9/05/2024 -39.537952 148.678491 | 328 295 NA
IN2024_V03 | 10091192 | 9/05/2024 -39.537952 148.678491 | 478 904 NA
IN2024_VO05 | 10101303 19/11/2024 -39.537573 148.677762 | 398 459 M
IN2023_V05 | 10080845 | 3/07/2023 -39.535029 148.676298 | 368 329 F
IN2023 V05 | 10080905 | 3/07/2023 -39.535029 148.676298 | 379 406

IN2024 V03 | 10091236 | 9/05/2024 -39.487866 148.568563 | 467 748 NA
IN2024 V03 | 10091267 | 9/05/2024 -39.487866 148.568563 | 368 351 NA
IN2024 V03 | 10091364 | 9/05/2024 -39.487866 148.568563 | 292 168 NA
IN2024_V05 | 10099932 19/11/2024 -39.475514 148.572277 | 311 196 F
IN2024_V05 | 10100053 19/11/2024 -39.475514 148.572277 | 328 274 M
IN2023_V05 | 10081271 3/07/2023 -39.471432 148.553257 | 222 74 F
IN2023 V05 | 10081305 | 3/07/2023 -39.471432 148.553257 | 267 124 F
IN2023 V05 | 10081306 | 3/07/2023 -39.471432 148.553257 | 248 99 F
IN2024 V03 | 10091165 | 9/05/2024 -39.469257 148.552751 | 397 506 F
IN2024_V05 | 10102073 19/11/2024 -39.452368 148.544117 | 228 85 F
IN2024_VO05 | 10101916 | 19/11/2024 -39.452368 148.544117 | 346 337 F
IN2023_VO05 | 10081089 | 4/07/2023 -39.342528 148.599113 | 387 458 F
IN2023_VO05 | 10081804 | 4/07/2023 -39.342528 148.599113 | 428 587 F
IN2023_VO05 | 10081819 | 4/07/2023 -39.31761 148.624692 | 415 508 F
IN2024_VO05 | 10108274 | 6/12/2024 -39.315066 148.605753 | 350 345 F
IN2023_VO05 | 10081718 | 4/07/2023 -39.29805 148.65133 537 1184 F
IN2024_V03 | 10092835 11/05/2024 -38.879973 148.294572 | 365 376 M
IN2024_V03 | 10092862 | 11/05/2024 -38.879973 148.294572 | 399 522 F
IN2024_V03 | 10092869 | 11/05/2024 -38.879973 148.294572 | 312 264 F
IN2023_V05 | 10084715 | 23/07/2023 -38.216301 149.154564 | 442 631 NA
IN2023 V05 | 10084900 | 23/07/2023 -38.216301 149.154564 | 497 878 NA
IN2023 V05 | 10084920 | 23/07/2023 -38.216301 149.154564 | 449 652 NA
IN2023 V05 | 10084924 | 23/07/2023 -38.216301 149.154564 | 428 573 NA
IN2024 V05 | 10108601 | 4/12/2024 -38.211337 149.154044 | 529 1376 F
IN2024 V05 | 10108617 | 4/12/2024 -38.211337 149.154044 | 580 1583 F
IN2023 V05 | 10084510 | 22/07/2023 -38.204931 149.304733 | 550 1326 NA
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IN2023_V05 | 10084592 | 22/07/2023 -38.204931 149.304733 | 580 1620 NA
IN2023 V05 | 10084596 | 22/07/2023 -38.204931 149.304733 | 558 1474 NA
IN2023_V05 | 10084650 | 22/07/2023 -38.204931 149.304733 | 513 1030 NA
IN2023_V05 | 10084706 | 22/07/2023 -38.204931 149.304733 | 582 1782 NA
IN2024_V03 | 10093223 15/05/2024 -38.199809 149.307747 | 577 1596
IN2024_V03 | 10093303 15/05/2024 -38.199809 149.307747 | 567 1570
IN2024_V05 | 10107047 | 3/12/2024 -38.19259 149.232267 | 595 1908 F
IN2024_V03 | 10094863 | 20/05/2024 -38.165202 149.652505 | 571 1476 NA
IN2024_V05 | 10108880 | 2/12/2024 -38.127051 149.604202 | 436 714 M
IN2024_VO05 | 10108877 | 2/12/2024 -38.127051 149.604202 | 395 536 F
IN2024_V03 | 10092526 | 15/05/2024 -38.109721 149.321603 | 415 499 NA
IN2024_V03 | 10094841 | 20/05/2024 -38.102355 149.540298 | 453 846 NA
IN2024_V03 | 10094496 | 20/05/2024 -38.093468 149.693281 | 418 590 NA
IN2024 V03 | 10094570 | 20/05/2024 -38.093468 149.693281 | 392 512 NA
IN2024 V05 | 10107298 | 30/11/2024 -38.071416 149.87468 394 498 M
IN2024 V05 | 10108498 | 3/12/2024 -38.044246 149.130094 | 385 463 F
IN2024_V05 | 10107057 1/12/2024 -37.978227 149.300338 | 528 1200 F
IN2024_V05 | 10106921 1/12/2024 -37.978227 149.300338 | 378 491 M
IN2024_V05 | 10106422 1/12/2024 -37.97331 149.358791 | 455 618 F
IN2023_V05 | 10083806 17/07/2023 -37.911535 150.049456 | 501 1013 NA
IN2024 V05 | 10104676 | 29/11/2024 -37.836893 149.860365 | 351 406 F
IN2024 V03 | 10096102 | 22/05/2024 -37.733376 150.066029 | 402 513 M
IN2023 V05 | 10081867 | 15/07/2023 -37.733183 150.068486 | 485 800 NA
IN2023_VO05 | 10083386 | 15/07/2023 -37.733183 150.068486 | 461 774 NA
IN2024_VO05 | 10103064 | 22/11/2024 -37.717444 149.924109 | 363 364 M
IN2023_V05 | 10082373 15/07/2023 -37.700167 150.128705 | 478 878 NA
IN2023_V05 | 10083645 16/07/2023 -37.670804 149.962068 | 406 516 NA
IN2024_VO05 | 10102772 | 22/11/2024 -37.624079 149.848454 | 328 250 F
IN2023_VO05 | 10083522 | 16/07/2023 -37.617319 149.908929 | 229 75 NA
IN2024_V03 | 10096806 | 23/05/2024 -37.593918 150.204906 | 488 873 NA
IN2024_V03 | 10096900 | 23/05/2024 -37.593918 150.204906 | 436 667 NA
IN2024_V03 | 10093262 | 19/05/2024 -37.447453 150.261019 | 389 519 F
IN2024_V05 | 10102171 23/11/2024 -37.395047 150.04169 317 226 M
IN2024_V05 | 10101935 | 23/11/2024 -37.351707 150.110871 | 364 388 M
IN2023 V05 | 10083276 | 8/07/2023 -37.329757 150.077422 | 144 18 NA
IN2024 V05 | 10101653 | 23/11/2024 -37.319282 150.086646 | 321 248 M
IN2024 V03 | 10093822 | 17/05/2024 -37.313615 150.19154 328 232 NA
IN2024_V03 | 10093935 17/05/2024 -37.313615 150.19154 288 146 NA
IN2024 V03 | 10093541 17/05/2024 -37.291586 150.290646 | 426 624 NA
IN2024 V03 | 10097888 | 24/05/2024 -37.163332 150.351226 | 470 820 F
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IN2024_V03 | 10093625 16/05/2024 -37.121335 150.233585 | 369 386 NA
IN2024 V03 | 10093850 | 16/05/2024 -37.121335 150.233585 | 319 234 NA
IN2024_V03 | 10096368 | 25/05/2024 -36.95673 150.056586 | 308 196 NA
IN2023_V05 | 10082761 13/07/2023 -36.944279 150.098437 | 285 172 NA
IN2023_V05 | 10082805 13/07/2023 -36.944279 150.098437 | 347 314 NA
IN2023_V05 | 10082906 | 13/07/2023 -36.944279 150.098437 | 278 149 NA
IN2023_V05 | 10082909 | 13/07/2023 -36.944279 150.098437 | 299 192 NA
IN2024_V03 | 10096433 | 25/05/2024 -36.92105 150.105046 | 338 331
IN2024_V03 | 10096469 | 25/05/2024 -36.92105 150.105046 | 332 271
IN2023_V05 | 10082646 | 13/07/2023 -36.917546 150.127732 | 366 424 NA
IN2023_V05 | 10082780 | 13/07/2023 -36.917546 150.127732 | 316 230 NA
IN2023_VO05 | 10082801 13/07/2023 -36.917546 150.127732 | 354 348 NA
IN2024_V03 | 10095171 | 26/05/2024 -36.895624 150.161149 | 380 354 NA
IN2024 V03 | 10095219 | 26/05/2024 -36.860557 150.295874 | 542 1200 NA
IN2024 V03 | 10096750 | 26/05/2024 -36.860351 150.123467 | 344 300 NA
IN2024 V05 | 10104319 | 27/11/2024 -36.756202 150.278648 | 355 352 M
IN2024 V05 | 10104317 | 27/11/2024 -36.756202 150.278648 | 471 1128 F
IN2024 V05 | 10104285 | 27/11/2024 -36.756202 150.278648 | 426 692 M
IN2024 V05 | 10104278 | 27/11/2024 -36.742185 150.276154 | 471 1098 F
IN2024 V03 | 10097909 | 27/05/2024 -36.593615 150.084005 | 370 363 F
IN2024 V03 | 10098029 | 27/05/2024 -36.593615 150.084005 | 343 312 F
IN2024 V03 | 10097810 | 27/05/2024 -36.555778 150.153926 | 400 579 M
IN2024 V03 | 10097573 | 27/05/2024 -36.52339 150.282853 | 514 1270 F
IN2024_V05 | 10106030 | 26/11/2024 -36.38998 150.184347 | 335 299 M
IN2024_VO05 | 10105988 | 26/11/2024 -36.38998 150.184347 | 334 270 F
IN2023_VO05 | 10082957 | 10/07/2023 -36.365783 150.31969 471 884 NA
IN2023_VO05 | 10083059 | 10/07/2023 -36.365783 150.31969 272 168 NA
IN2024_VO05 | 10105081 | 24/11/2024 -36.262097 150.33187 361 360 F
IN2024_V03 | 10098224 | 29/05/2024 -35.980148 150.299991 | 329 244 NA
IN2024_V03 | 10098518 | 29/05/2024 -35.980148 150.299991 | 386 438 NA
IN2024_V03 | 10098548 | 29/05/2024 -35.980148 150.299991 | 305 222 NA
IN2024_V03 | 10098679 | 29/05/2024 -35.980148 150.299991 | 316 228 NA
IN2024_V03 | 10098778 | 29/05/2024 -35.980148 150.299991 | 390 478 NA
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1310  Appendix C: Read depth (lower threshold of 5 and upper threshold of 100) filtering out 7,790 SNPs.
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1311 i

1312  Appendix D: Call rate per SNP (a) and per individual (b) using thresholds of 0.98 and 0.94
1313 respectively, filtering out 47,271 SNPs and 3 individuals.
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1314

1315  Appendix E: Observed heterozygosity (lower threshold 0.1 and upper threshold 0.2) filtering out 2
1316  individuals.
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Observed Heterozygosity by Individual
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1318  Appendix F: Linked loci removing 1,408 SNPs with short distance linkage
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1319

1320  Appendix G: SNPs significantly deviating for Hardy-Weinberg equilibrium (pink) before (a) and
1321  after (b) the Benjamini-Hochberg correction.
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