

1

2 3

Using population genomics to understand stock structure of Tiger Flathead (Platycephalus richardsoni) in southeast Australia

5

4

Submitted by 6

7 Amelia Jensen (626926)

BMarAntSc / BBus 8

9

A thesis submitted in partial fulfilment of the requirements of the Bachelor of Marine and Antarctic 10 Science with Honours at the Institute for Marine and Antarctic Studies (IMAS), University of 11 Tasmania. 12

13

October 2025

14

Supervisors: Dr Madeline Green (IMAS, UTAS), Dr Karen Evans (UNESCO), Dr Sharon 15 Appleyard (CSIRO). 16

- I declare that this thesis contains no material which has been accepted for the award of any other degree or diploma in any tertiary institution, and that, to the best of my knowledge and belief, the
- 20 thesis contains no material previously published or written by another person, except where due

21 reference is made in the text of the thesis.

Amelia Jensen

23

22

Acknowledgements

24

- 25 I would firstly like to thank my amazing supervisors, Dr Madeline Green, Dr Sharon Appleyard and
- 26 Dr Karen Evans. Your guidance, time and support have been invaluable over the last 18 months. Your
- 27 passion for sustainable fisheries and conservation has rubbed off on me and I am so grateful for the
- opportunity to work with such amazing women. I couldn't have asked for a better supervisory team.
- 29 Thank you to Dr Rich Little, Dr Alistair Hobday and the SEA-MES team for the opportunity to not
- 30 only undertake my project, but to be involved in such an amazing voyage, attend ASFB 2025 and
- 31 present to a range of industry professionals. You have provided me with amazing opportunities to
- build my network and skills in marine science.
- Thank you to the stock assessments team at CSIRO, Dr Paul Burch, Dr Geoff Tuck, Dr Pia Bessell-
- 34 Browne and Rikki Taylor. Thank you for taking the extra time out of your work to talk me through
- 35 the stock assessment process.
- 36 To Aditya Swami and Alexander Coutts, who helped me navigate around the wonderful world of
- 37 molecular ecology and bioinformatics. I am so appreciative of the time you have spent to help me
- with my lab work, analysis and general support throughout my project.
- To Liv, I am so glad we got to do our research projects together. Thank you for all your help and the
- 40 wonderful memories we got to share over the last year and a half.
- 41 I would like to thank the NRM South team particular shoutouts to Jen, Nepelle, Todd, Adam and
- Laurel. Being able to work for such a supportive organisation has been a pleasure. You have supported
- me over the last three and a half years, provided me with amazing opportunities in the industry, been
- 44 flexible with my working days and committed extra time to help me succeed in this space. Thank
- 45 you.
- Thank you to my friends and family who have supported me through this career transition. Thank
- 47 you for the Facetimes, Tassie visits, run clubs and helping me through the last 3.5 years! A special
- shoutout to my brother Sam, who always supports me to pursue my goals and get the most out of life.
- 49 And finally, thank you to Alison, who encouraged me to take this huge step in my life. I don't know
- if I would have taken this step in my life if it weren't for your encouragement and support.

Chapter 1: Literature Review	689910
Chapter 2: Manuscript	689910
List of appendices Abbreviations	
Abbreviations	
Stock structure in fisheries management Tools and methods for understanding stock structure Southern and Eastern Scalefish and Shark Fishery (SESSF) Tiger Flathead Conclusion References Chapter 2: Manuscript Title: Using population genomics to understand stock structure of tiger flathead (Platy richardsoni) in the Southern and Eastern Scalefish and Shark Fishery Authors Abstract Introduction Population genomics in fisheries management Southern and Eastern Scalefish and Shark Fishery	91012
Stock structure in fisheries management Tools and methods for understanding stock structure Southern and Eastern Scalefish and Shark Fishery (SESSF) Tiger Flathead Conclusion References Chapter 2: Manuscript Title: Using population genomics to understand stock structure of tiger flathead (Platy richardsoni) in the Southern and Eastern Scalefish and Shark Fishery Authors Abstract Introduction. Population genomics in fisheries management Southern and Eastern Scalefish and Shark Fishery.	10
Stock structure in fisheries management Tools and methods for understanding stock structure Southern and Eastern Scalefish and Shark Fishery (SESSF) Tiger Flathead Conclusion References Chapter 2: Manuscript Title: Using population genomics to understand stock structure of tiger flathead (Platy richardsoni) in the Southern and Eastern Scalefish and Shark Fishery Authors Abstract Introduction Population genomics in fisheries management Southern and Eastern Scalefish and Shark Fishery	10
Tools and methods for understanding stock structure Southern and Eastern Scalefish and Shark Fishery (SESSF) Tiger Flathead Conclusion References Chapter 2: Manuscript Title: Using population genomics to understand stock structure of tiger flathead (Platy richardsoni) in the Southern and Eastern Scalefish and Shark Fishery Authors Abstract Introduction Population genomics in fisheries management Southern and Eastern Scalefish and Shark Fishery	12
Southern and Eastern Scalefish and Shark Fishery (SESSF) Tiger Flathead Conclusion References Title: Using population genomics to understand stock structure of tiger flathead (<i>Platy richardsoni</i>) in the Southern and Eastern Scalefish and Shark Fishery Authors Abstract Introduction Population genomics in fisheries management Southern and Eastern Scalefish and Shark Fishery	
Tiger Flathead	14
Conclusion	
References	17
Chapter 2: Manuscript Title: Using population genomics to understand stock structure of tiger flathead (<i>Platy richardsoni</i>) in the Southern and Eastern Scalefish and Shark Fishery Authors Abstract Introduction Population genomics in fisheries management Southern and Eastern Scalefish and Shark Fishery	20
Title: Using population genomics to understand stock structure of tiger flathead (<i>Platy richardsoni</i>) in the Southern and Eastern Scalefish and Shark Fishery Authors Abstract Introduction Population genomics in fisheries management Southern and Eastern Scalefish and Shark Fishery	21
70 Population genomics in fisheries management Southern and Eastern Scalefish and Shark Fishery Southern and Eastern Scalefish and Shark Fishery	30
Authors	cephalus
Abstract	30
70 Introduction	30
Population genomics in fisheries management Southern and Eastern Scalefish and Shark Fishery	30
72 Southern and Eastern Scalefish and Shark Fishery	32
	32
73 Research gaps	22
	33
74 Materials and Methods	
75 Sampling design and collection	34
76 DNA extraction and sequencing	34
77 Quality control and data filtering	34
78 Genetic diversity	34 34 34

79	Population structure	40
80	Results	41
81	Genetic diversity	41
82	Population structuring	43
83	Discussion	46
84	Genetic diversity and population structure	47
85	Phenotypic plasticity and environmental factors	49
86	Limitations	49
87	Management implications and future research	50
88	References	52
89	Appendix	58
90	Declaration of Authorship	68
91		

92

93 List of figures and tables

94 Chapter 1: Literature Review

- 95 Figure 1: Scale of population differentiation. (A) Complete isolation, (B) Moderate connectivity,
- 96 (C), Significant connectivity, (D) Panmictic population (Waples & Gaggiotti, 2006).
- 97 Figure 2: Process for undertaking long read whole genome sequencing for stock structure analysis.
- 98 (A) Development of a high-quality reference genome sequence for the target species. (B) Collection
- 99 of samples from target species, followed by whole genome sequencing and detection of genetic
- differentiation. (C) SNP analysis to inform population structure and (D) Application to management
- boundaries to support sustainable fisheries management (Andersson et al. 2024).
- Figure 3: Southern and Eastern Scalefish and Shark Fishery management area (Butler et al., 2024).
- Figure 4: Southern and Eastern Scalefish and Shark Fishery fishing mortality status for all stocks
- assessed, 2004 2023 (Wright et al., 2024)
- Figure 5: Southern and Eastern Scalefish and Shark Fishery biomass status for all stocks assessed,
- 106 2004 2023 (Wright et al., 2024)
- 107 Figure 6: Tiger flathead (Platycephalus richardsoni) distribution (Australian National Fish
- 108 Collection et al., 2021)
- Figure 7: Tiger flathead (Platycephalus richardsoni) caught within the Southern and Eastern
- 110 Scalefish and Shark Fishery
- Figure 8: Main ocean surface (orange) and subsurface (cyan) currents off eastern Australia (Ridgway
- 112 & Hill, 2009).
- 113 Chapter 2: Manuscript
- Figure 1: Sampling location of tiger flathead (*Platycephalus richardsoni*) split by *a priori* population.
- A, samples from 35°S-36°S; B, samples from 37°S; C, samples from 38°S; D, samples from 39°S; E,
- samples from 40°S; F, samples from 41°S; G, samples from 42°S.
- Figure 2: Genotype heatmap across 20 individuals and 1000 SNP loci. Each column represents an
- individual SNP, while each row represents an individual. Homozygote reference alleles are in green,
- heterozygotes are in orange, homozygote alternative allele is in purple, and missing values (NA) are
- in grey.

- Figure 3: Genotype heatmap across the entire filtered dataset. Each column represents an individual
- SNP, while each row represents an individual. Homozygote reference alleles are in green,
- heterozygotes are in orange, homozygote alternative allele is in purple, and missing values (NA) are
- in grey.
- Figure 4: Minor allele frequencies (MAF) for each a priori population of tiger flathead
- 126 (Platycephalus richardsoni) prior to filtering, along with the overall MAF (top left). MAFs >0.02
- were removed to improve data quality and enhance statistical power.
- Figure 5: Principle Component Analysis (PCA) of tiger flathead (*Platycephalus richardsoni*) using
- neutral loci across axis 1 and 2 (a) and axis 2 and 3 (b). The variance explained by each axis is found
- in parentheses next to the axis label.
- Figure 6: (a) Discriminant Analysis of Principle Components (DAPC) performed with neutral SNP
- genotypes of tiger flathead (*Platycephalus richardsoni*). Clustering was performed using Bayesian
- Information, with populations (n = 7) specified as priors. Insets show eigenvalues for the first 6 axes
- 134 (b) Density distributions of locations along the first discriminant function.
- Figure 7: (a) Values of the cross-entropy criterion to determine the optimum number of ancestral
- clusters (b) Ancestry populations and clustering for tiger flathead (*Platycephalus richardsoni*) based
- on STRUCTURE outputs for SNPs. Colours represent different ancestry populations based on K
- values. Each vertical bar represents and individual.
- **Table 1:** Summary of sampling information per voyage, including voyage dates, number of samples
- per voyage, the minimum length (mm), maximum length (mm) and sex.
- **Table 2:** A priori populations, sampling latitudes and number of samples per population.
- 142 Table 3: Summary of sequential filtering and quality control steps, showing the number of SNPs and
- individuals removed at each stage.
- **Table 4:** Population parameters for tiger flathead (*Platycephalus richardsoni*). Na, Number of
- polymorphic SNPs screened; H_O , observed heterozygosity; H_E , expected heterozygosity; F_{IS} ,
- inbreeding coefficient.
- **Table 5:** Population parameters and diversity indices. H_O, observed heterozygosity; H_E, expected
- heterozygosity; F_{ST} , fixation indices; F_{IS} , inbreeding coefficient.
- **Table 6:** Pairwise genetic differentiation (F_{ST}) values collected for tiger flathead (*Platycephalus*
- *richardsoni*) samples below the diagonal and p-values above the diagonal.

- 151 **Table 7:** Analysis of Molecular Variance (AMOVA) indicating genetic variance among populations,
- among individuals within populations and within individuals.
- 153 List of appendices
- Appendix A: Metadata for 188 tissue samples of tiger flathead (*Platycephalus richardsoni*).
- Appendix B: Reproducibility threshold (0.98), filtering out 12,118 SNPs.
- Appendix C: Red depth (lower threshold of 5 and upper threshold of 100) filtering out 7,790 SNPs.
- Appendix D: Call rate per SNP (a) and per individual (b) using thresholds of 0.98 and 0.94
- respectively, filtering out 47,271 SNPs and 3 individuals.
- Appendix E: Observed heterozygosity (lower threshold 0.1 and upper threshold 0.2) filtering out 2
- individuals.
- Appendix F: Linked loci removing 1,408 SNPs with short distance linkage
- Appendix G: SNPs significantly deviating from Hardy-Weinberg Equilibrium (pink) before (a) and
- after (b) the Benjamini-Hochberg correction.

165 Abbreviations

164

SESSF	Southern and Eastern Scalefish and Shark Fishery				
GVP	Gross Value Production				
PCR	Polymerase Chain Reaction				
SNP	Single Nucleotide Polymorphism				
NGS	Next-Generation Sequencing				
WGS	Whole genome sequencing				
AFMA	Australian Fisheries Management Authority				
EAC	East Australian Current				
PLD	Pelagic Larval Duration				
MAF	Minor Allele Frequency				
PCA	Principle Component Analysis				
DAPC	Discriminant Analysis of Principle Components				
AMOVA	Analysis of Molecular Variance				

Chapter 1: Literature Review

167

168

Introduction

169	Australia's wild catch fisheries are a key contributor to national and international food security,
170	delivering significant economic and social benefits to the Australian population (Abernethy et al.
171	2020). There are increasing pressures on Australia's wild catch fisheries with a growing population
172	and climate change presenting significant challenges for the industry (Holbrook & Johnson 2014;
173	Bogard et al. 2019; Smith et al. 2024). Effective fisheries management depends on accurate and up-
174	to-date biological information to ensure the long-term sustainability and health of wild fish
175	populations. (Waples 1998; Benestan 2019).
176	The Southern and Eastern Scalefish and Shark Fishery (SESSF) is the largest Commonwealth fishery
177	in regards to volume caught. The management area spans almost half of the Australian Fishing Zone,
178	encompassing both Commonwealth and domestic waters (Emery et al. 2024). As of 2023, 38.5% of
179	stocks within the SESSF were either subject to overfishing or uncertain, meaning there is insufficient
180	information to assess whether a stock is sustainably fished accurately (Smith & Dichmont 2017;
181	Butler et al. 2024). Accounting for 24% of the Gross Value of Production (GVP) of Commonwealth
182	fisheries, the SESSF contributes significantly to the Australian economy through the domestic
183	consumption of wild caught fish (Pascoe et al. 2021; Wright et al. 2024). Tiger flathead
184	(Platycephalus richardsoni) makes up a substantial component of the wild catch being one of the
185	most valuable species within the fishery (Little et al. 2011; Australian Fisheries Management
186	Authority 2023).
187	Recent studies have indicated that a portion of the biological parameters used in tiger flathead stock
188	assessments are either out-of-date or unknown (Evans et al. 2022). Additionally, tiger flathead
189	population structure is currently assumed to be panmictic, although no assessment of stock structure
190	has been undertaken for the species (Emery et al. 2023). Poorly understood stock structure for
191	commercially important species can lead to the mischaracterisation of management boundaries which
192	can place populations at risk to overfishing, threatening species longevity and ecosystem function
193	(Taillebois et al. 2021). There are indicators that suggest multiple populations of tiger flathead may
194	exist within the fishery, with differences in growth, appearance and reproductive timings being
195	observed, particularly for fish off the east coast of Tasmania (Liggins 2023).
196	This literature review aims to examine the current understanding of tiger flathead biology and stock
197	structure in the SESSF. It will synthesise information on the importance of understanding population

structure in marine teleosts, particularly from a commercial perspective, and the emergence of population genomics technologies. These findings will provide background context into the analysis of tiger flathead stock structure, contributing to more reliable stock assessments for the species.

Stock structure in fisheries management

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

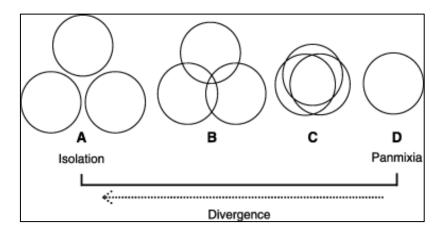
220

221

222

223

224


225

226

227

228

Fishery management units are commonly delineated by geographic jurisdictions, assuming a single, panmictic population (Zemeckis et al. 2014; Grummer et al. 2019). However, these conventional stock assessment models can often incorrectly attribute biological stock structure, reducing the accuracy of stock assessments and thus threatening the longevity of a species (Taillebois et al. 2021). Where distinct populations do occur, these may respond differently to fishing pressures impacted by differences in demographic traits such as abundance, mortality, reproduction and growth rates (Cadrin 2020). Productivity may vary between populations and if stock assessments do not consider these differences, then less productive populations may be overexploited while more productive populations may be underharvested (Zemeckis et al. 2014). Overharvesting or the unsustainable removal of fish from populations can degrade and reduce the genetic diversity of fish stocks (Andersson et al. 2024). Maintaining genetic diversity enhances a stock's capacity to adapt to environmental changes, supporting the long-term sustainability of fish populations (Allendorf et al. 2014). Therefore, effective fisheries management relies on the correct identification of biological and genetic population boundaries (Waples 1998). A biological stock is defined as a group of fish of the same species that inhabit the same area, with similar recruitment patterns (Carvalho & Hauser 1994). Conversely, a genetic population is defined as a geographically and genetically independent group of individuals of the same species, however definitions vary (Waples & Gaggiotti 2006). Population differentiation can vary in scale from complete isolation to a single, homogenous stock (Figure 1). Stock separation may arise due to physical barriers such as sea mounts, deep water and varying oceanographic conditions, such as eddies, fronts, currents and environmental gradients (Grummer et al. 2019; Bertram et al. 2023). Biological barriers also contribute to genetic divergence through differences in vagility, distribution and abundance (Ovenden 2013). Both genetic and genomic techniques can be used to understand stock structure. Genetic studies examine specific genes, or a limited number of loci to understand stock structure, whereas genomic studies look at markers across the entire genome, at a significantly larger scale (Andrews et al. 2016). This provides a more comprehensive analysis of population structure and connectivity (Cuéllar-Pinzón et al. 2016).

Figure 1: Scale of population differentiation. (A) Complete isolation, (B) Moderate connectivity, (C), Significant connectivity, (D) Panmictic population (Waples & Gaggiotti, 2006).

Misalignment between biological population structure and management areas has been observed for many commercially important species (Reis-Santos et al. 2018; Papa et al. 2022). For example, atlantic cod (*Gadus morhua*) have been managed in the United States' waters as two separate units since 1972. Declared as overfished, a series of management actions were rolled out over decades, such as reducing fishery catch to help rebuild stocks (McBride & Smedbol 2022). Despite this, populations continued to decline, and since then, multiple studies have indicated that a portion of this decline may be due to a misalignment between management units and biological stock structure (Annala 2012; Zemeckis et al. 2014; Northeast Fisheries Science Center (U.S.) 2022). Evidence of genetic variation, movement, dispersal of larvae, spawning locations and timings have all contributed to an updated stock structure of atlantic cod in US waters, highlighting that there are actually five distinct biological populations, with four stocks requiring individual management (McBride & Smedbol 2022). Based on this, the New England Fishery Management Council developed an Atlantic Cod Management Transition Plan which runs from 2025 to 2027 to incorporate these new management units into the fishery management plan (Singer & Macdonald 2024).

Atlantic herring (*Clupea harengus*) is a key ecological and commercial species that has been harvested for centuries (Barrett et al. 2004). The most recent management report of Atlantic Herring indicated that the stock is currently overfished, although not subject to overfishing (National Oceanic and Atmospheric Administration 2024). Early genetic studies undertaken over 40 years ago using a small number of allozyme markers, revealed no genetic differentiation (Andersson et al. 2024). Since then, studies, using whole genome sequencing have found that there are multiple genetically distinct populations of atlantic herring, with genetic differentiation attributed to ecological adaptation such as salinity, water temperature, spawning timelines and light conditions (Han et al. 2020; Bekkevold et al. 2023). This evidence revealed a mismatch between current management units compared to the genetic populations. Therefore, updating stock assessments to reflect these genetically distinct stocks

can improve the accuracy of stock assessments, and thus the quality of management actions (Bekkevold et al. 2023).

Tools and methods for understanding stock structure

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278279

280

281

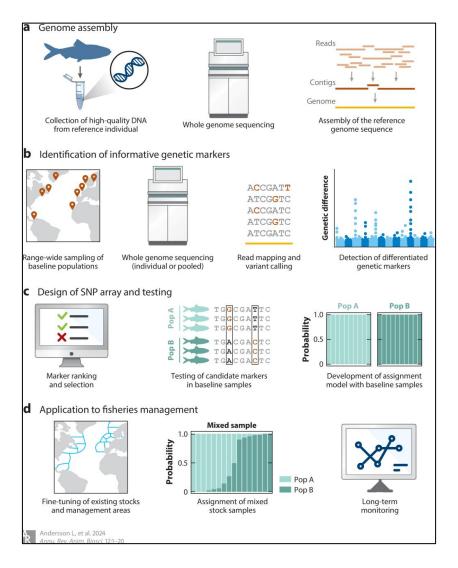
282

283

284

285

286


287

288

A variety of methods can be used to inform stock structure of marine species. Direct measures such as parasitic markers and otolith chemistry can provide insights into a population's broad-scale distributions. Otolith chemistry and morphometrics can provide valuable insights into stock boundaries through identifying different geochemical gradients and regional growth patterns (Nazir & Khan 2021). Additionally, tagging and recapture helps to understand movement patterns and biological boundaries of stocks (Metcalfe et al. 2006; Goddard et al. 2024). Presence and assemblage of parasites associated with different fish can reveal key ecological information on fish stocks and help to identify separate stocks (Poulin & Kamiya 2015). Stable isotopes are another direct marker that can highlight information about the diet and therefore, habitat use of fish (Abrantes et al. 2014). However, these methods only provide information over an individual's lifetime. Comparatively, population genomics provides information over generational timescales (Reis-Santos et al. 2018). There has been significant development in population genetic approaches and technology. Early molecular techniques include the use of allozyme markers (Davinack 2024; Payet et al. 2024). The first measures of genetic variation were reported in the literature over 50 years ago using protein gel electrophoresis to screen allozyme loci. An allozyme is a form of an enzyme that is encoded by different alleles in the same gene locus. Electrophoresis supports the detection of allozymes, separating the molecules by their charge and size (Davinack 2024). Allozymes supported the detection of distinct populations for a range of marine species (Allegrucci et al. 1997; Bourke et al. 1997; Rossi et al. 1998). For example, a study using allozyme markers found that what was assumed to be two separate species of oysters (Tiostrea chilensis and Teostrea lutaria) was in fact two genetically distinct populations of the same species (*T. chilensis*) (Buroker et al. 1983; Gosling 2003). However, allozyme markers offer relatively low resolution as they only capture a small number of enzyme loci, resulting in a limited ability to reflect genetic coverage and minimising the ability to accurately assess genetic diversity and population structure (Casillas & Barbadilla 2017). Additionally, studies found that allozyme polymorphisms represented DNA variations that changed amino acid sequencies. Therefore, this only represented 25% of all possible amino acid changes due to its ability to only detect those that change the charge of a protein (Lewontin 1991). In the 1980's, studies started using methodologies such as PCR (Polymerase Chain Reaction) amplification, microsatellite markers and sequencing of mitochondrial DNA (mtDNA) genes

(Cuéllar-Pinzón et al. 2016). These represented significant improvements in screening

methodologies, as the number of variable loci that were able to be analysed increased, thereby 289 providing higher resolution than allozyme markers (Allendorf 2017). However, mtDNA only reflects 290 the maternal line, ignoring paternal gene flow (Cuéllar-Pinzón et al. 2016). This can be limiting when 291 undertaking population genomics studies as it only provides a partial view of ancestry and can 292 293 underestimate total gene flow within a population (Antoniou & Magoulas 2014). Recently, further developments in technologies have led to the adoption of genomic tools such as 294 Single Nucleotide Polymorphisms (SNPs) and next-generation sequencing (NGS). SNPs are single 295 base pair changes in the DNA sequence and are spread across the entire genome (Edwards et al. 296 2007). SNPs can be used to detect genetic differences between regions or stocks, as well as to detect 297 adaptive variation that may be linked to environmental conditions (Wenne 2023; Krustaleva 2024; 298 Lu et al. 2025). SNPs provide a more comprehensive (biparental) genome coverage and higher quality 299 300 data than other techniques such as microsatellites and mtDNA sequencing (Morin et al. 2004). SNP genotyping has resulted in an increase in accuracy and speed of population genomic analysis at low 301 302 costs (Cuéllar-Pinzón et al. 2016). These advances in technology have supported the identification of various fish populations that have 303 304 previously been unable to be detected. For example, the population structure of highly valuable, migratory species such as yellowfin tuna (Thunnus albacares) has previously been studied using 305 methods such as mtDNA and allozyme markers (Appleyard et al. 2001; Díaz-Jaimes & Uribe-Alocer 306 307 2006; Grewe et al. 2015). These results considered yellowfin tuna to be a single panmictic population. However, advances in genome-wide SNP genotyping have demonstrated that there are multiple 308 genetically distinct populations (Grewe et al. 2015). This highlights the power of these technological 309 advancements, having the potential to significantly improve management of wild catch fisheries, 310 particularly in relation to stock assessments and reporting (Pecoraro et al. 2018). 311 Another powerful tool in population genomics is long-read whole genome sequencing (WGS). This 312 provides an even greater power to detect genetic variation within and between populations (Lu et al. 313 2025). WGS involves the sequencing of larger fragments of the entire genome and the mapping of 314 315 SNPs onto the genome, supporting the identification of a range of biological processes such as gene flow, adaptation and natural selection (Lu et al. 2025). It also provides access to more SNPs than 316 317 other methods such as double digest Restriction site Associated DNA sequencing (ddRAD-seq) and DArTseq (Martchenko & Shafer 2023). Figure 2 outlines how long-read WGS can be incorporated 318 into fisheries management, however it is noted that the study outlined in this thesis commenced at 319 step B, rather than step A. 320

Figure 2: Process for undertaking long read whole genome sequencing for stock structure analysis. (A) Development of a high-quality reference genome sequence for the target species. (B) Collection of samples from target species, followed by whole genome sequencing and detection of genetic differentiation. (C) SNP analysis to inform population structure and (D) Application to management boundaries to support sustainable fisheries management (Andersson et al. 2024).

Southern and Eastern Scalefish and Shark Fishery (SESSF)

The SESSF is a Commonwealth-managed, multi-species and multi-gear fishery that spans nearly half of the Australian Fishing Zone. It operates across both Commonwealth and state waters under Offshore Constitutional Settlement arrangements and encompasses numerous marine parks within its boundaries (Emery et al. 2024). The fishery extends from southern Queensland to Tasmania and across to southern Western Australia, covering depths from 30 to 1200 metres (Figure 3) (Smith & Smith 2001). It includes several sectors: the Commonwealth Southeast Trawl Sector, East Coast Deepwater Trawl Sector, Scalefish Hook Sector, Shark Hook and Shark Gillnet Sector, and the Great Australian Bight Trawl Sector. As the largest Commonwealth fishery, the SESSF accounts for 24%

of the Gross Value of Production (GVP) of all Commonwealth fisheries. In 2022-23, it generated a total GVP of AUD \$98.58 million (Wright et al. 2024).

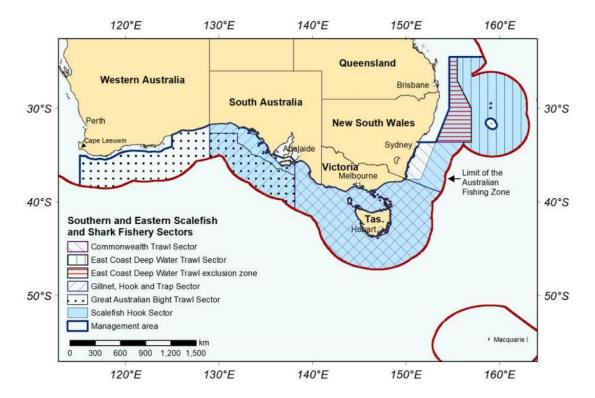
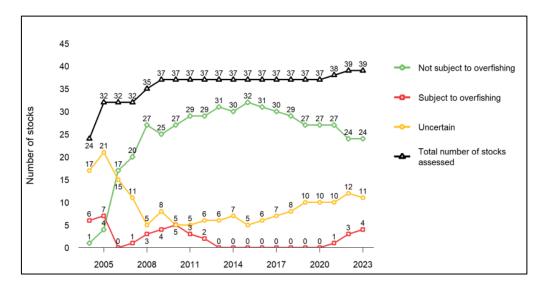
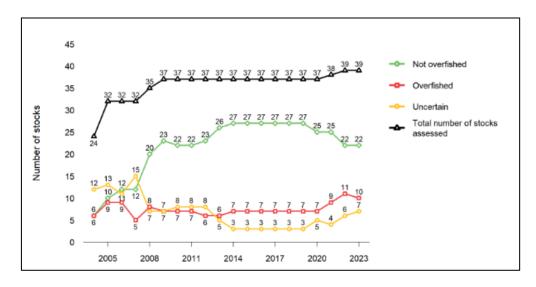




Figure 3: Southern and Eastern Scalefish and Shark Fishery management area (Butler et al. 2024).

The SESSF is managed by the Australian Fisheries Management Authority (AFMA) under a quotabased system, with additional access controls including gear restrictions, electronic monitoring, and spatial closures (Emery et al. 2024). A total of thirty-nine stocks are assessed within the fishery, with the most economically significant species being tiger flathead (*P. richardsonii*), pink ling (*Genypterus blacodes*), blue grenadier (*Macruronus novaezelandiae*), and orange roughy (*Hoplostethus atlanticus*). Together, these four species contribute to 73% of the total value of the fishery (Australian Fisheries Management Authority 2024). In 2023, fishing mortality assessments showed that 62% of stocks were not subject to overfishing, 10% were experiencing overfishing, and 28% had an uncertain status (Wright et al. 2024). Biomass assessments for the same period indicated that 56% of stocks were not overfished, 26% were overfished, and 18% were classified as uncertain (Figures 4 and 5) (Wright et al. 2024).

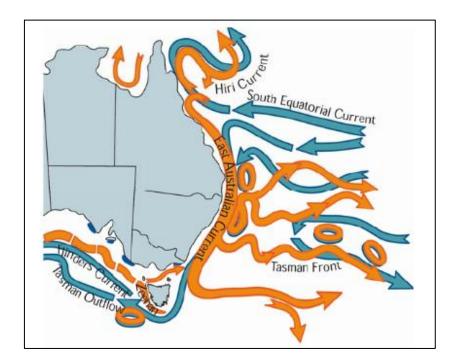
Figure 4: Southern and Eastern Scalefish and Shark Fishery - fishing mortality status for all stocks assessed, 2004 - 2023 (Wright et al. 2024)

Figure 5: Southern and Eastern Scalefish and Shark Fishery - biomass status for all stocks assessed, 2004 - 2023 (Wright et al. 2024)

The SESSF is also a climate change hotspot, with waters warming at a rate higher than the global average (Hobday & Pecl 2014; DCCEEW 2025). This has caused the East Australian Current (EAC) to intensify, bringing warmer waters poleward (Phillips et al. 2022). Subsequently, there has been an observed shift in species distribution, contributing to the depletion of commercially important species such as the striped trumpeter (*Latris lineata*) and blue warehou (*Seriollela brama*) (Fulton et al. 2024). Conversely, recent modelling by the Australian Fisheries Management Authority indicated that climate change does not have an influence on tiger flathead stock abundance, however, other studies have contradicted this statement, highlighting that changes in temperature, salinity, current direction and UV may impact abundance and survival of the tiger flathead (Pecl et al. 2011; Australian Fisheries Management Authority 2025).

Tiger Flathead

Tiger flathead, also known as King flathead, Trawl flathead and Deepsea flathead, is endemic to Australia. It is a bottom dwelling teleost, inhabiting sandy and muddy substrates across the continental shelf from northern New South Wales, down to Tasmania and across to Southern Australia (Figure 6) (Kailola et al. 1993). Tiger flathead are found in depths ranging from 10 metres to 400 metres, with most commercial catches coming from 50 metres to 200 metres (Tilzey et al. 1990; Edgar 2008; Butler et al. 2023). Tiger flathead is relatively sedentary, spending most of the day resting on the seabed, mud and sand substrate, with no broad-scale geographic movements (Fairbridge 1951; Bruce et al. 2002; Pecl et al. 2011).


Figure 6: Tiger flathead (*Platycephalus richardsoni*) distribution (Australian National Fish Collection et al. 2021)

Tiger flathead are benthopelagic piscivores, with adults feeding on small fish and crustaceans, and cannibalism seen in larger individuals (Bulman et al. 2001; Bruce et al. 2002). They display nocturnal movement patterns, moving into the water column to search for prey (Colefax 1934). Juveniles inhabit shallow waters on the continental shelf and migrate to deeper waters in the outer shelf zone once they mature (Montgomery 1985). Prior to the spawning period, mature fish have been observed migrating back to shallower waters (Kailola et al. 1993). Spawning periods differ between locations; female spawning occurs from October to May in New South Wales, while spawning in the Bass Strait and southern Tasmania occurs from December to February (Fairbridge 1951; Bruce et al. 2002). Tiger

flathead have a life span of around 20 years, reaching sexual maturity at 3 years old (Barnes et al. 2011). Males commonly reach up to lengths of 50cm, while females are larger, growing up to lengths of 60cm (Emery et al. 2023) (Figure 7). They are broadcast spawners with high fecundity; females can produce up to 2.5 million eggs per spawning season (Montgomery 1985). *Platycephalid* eggs and larvae, including those of tiger flathead are pelagic, and are well distributed by the currents and counter currents of the east coast of Australia (Figure 8) (Fairbridge 1951; Taylor et al. 2020). Eggs and larvae are primarily distributed by the EAC and once they hatch, larvae remain in waters with a depth of less than 55 metres while they develop (Montgomery 1985). There is still a significant gap in species specific research regarding pelagic larval duration and distribution. Other *platycephalid* species in southern Australia have pelagic larval durations that range from 20 days to 2 months. For example, the dusky flathead (*P. fuscus*) has a pelagic larval duration around 1-2 months, while the sand flathead (*P. bassensis*) has a pelagic larval duration of approximately 20-40 days (Hamer et al. 2010; Pecl et al. 2011; Hirst et al. 2014).

Figure 7: Tiger flathead (*Platycephalus richardsoni*) caught within the Southern and Eastern Scalefish and Shark Fishery

Figure 8: Main ocean surface (orange) and subsurface (blue) currents off eastern Australia (Ridgway & Hill 2009).

Commercial fishing of tiger flathead commenced in 1915 along the east coast of Australia in the steam trawl fishery (Klaer 2004). During the steam trawl period, localised depletion occurred in the New South Wales region, with overfishing causing a stock collapse in the 1940s (Bruce et al. 2002). Heavy fishing combined with fishers moving into deeper waters to maintain catch rates, sustained this collapse, while the type of gear used such mesh net size may have also contributed to declines (Klaer 2001). During World War II, the number of fleets fishing for tiger flathead were significantly reduced, and subsequently, gear restrictions such as minimum mesh size limits were introduced. This reduction in fishing pressure led to the recovery of the stock in the 1960s and 1970s (Novaglio et al. 2018). Danish seine and diesel otter trawlers entered the fishery in the 1930s and 1970s, respectively, with Danish seine trawlers remaining as the primary fishing method for the species to this day (Little et al. 2011; Tuck 2020). Today, tiger flathead remains a commercially important species, with catches primarily managed in the SESSF. The total commercial catch in 2022-23 was 1860 tonnes, making up 21.32% of SESSF Gross Value of Production (GVP) (Australian Fisheries Management Authority 2025).

Tiger flathead is managed as a Tier 1 stock, which is the most robust type of stock assessment undertaken in the SESSF. These assessments incorporate a wide range of high-quality data to make the most informed estimation of recommended biological catch (Dowling et al. 2016). There has been significant development in stock assessment methods for tiger flathead since its inception in 1989. Initially, stock assessments from 1989 to 2001 consisted of catch data, catch rates, age and length.

From 2001 to 2004, additional data and analysis were added to assessments to estimate unfished spawning stock biomass, providing a more dynamic picture of the fishery. In recent years, additional data such as catch per unit effort, ageing errors, discards, fishing mortality rate and conditional ageate-length data have been comprehensively incorporated into the assessments (Day 2016; Tuck 2020). Currently, the target reference point is to sustain spawning stock biomass at 40% of the unfished level. This target has not been exceeded since the implementation of the reference point in 2010 (Bessell-Browne 2022).

Conclusion

Population genomics provides valuable insights into the evolutionary history of marine teleosts. Understanding population structure is critical in ensuring appropriate management boundaries and catch limits are applied, to support ongoing sustainability of commercially and recreationally exploited important species. Tiger flathead is an important commercial species in Australia, yet its stock assessment is limited by a lack of accurate and up-to-date data. With key biological parameters and stock assessment values used in tiger flathead stock assessments being either out of date or uncertain (e.g. maturity, length-weight relationship), this poses a significant risk to both tiger flathead assessments and the SESSF's long-term sustainability. While tiger flathead is assumed to be a single panmictic population, there have been no studies to date to test this assumption. This literature review highlights the clear need for a comprehensive genomic analysis of tiger flathead population structure in the SESSF and the integration of current and reliable data into management frameworks for the species.

445 References

- Abernethy, K., Barclay, K., McIlgorm, A., Gilmour, P., McClean, N., & Davey, J. (2020). Victoria's
- 447 fisheries and aquaculture: Economic and social contributions (FRDC 2017-092). University of
- 448 Technology Sydney.
- Abrantes, K. G., Barnett, A., & Bouillon, S. (2014). Stable isotope-based community metrics as a
- 450 tool to identify patterns in food web structure in east African estuaries. Functional Ecology, 28, 270–
- 451 282.
- 452 Allegrucci, G., Fortunato, C., & Sbordoni, V. (1997). Genetic structure and allozyme variation of sea
- bass (Dicentrarchus labrax and D. punctatus) in the Mediterranean Sea. Marine Biology, 128, 347–
- 454 358.
- Allendorf, F. W. (2017). Genetics and the conservation of natural populations: Allozymes to
- 456 genomes. *Molecular Ecology*, 26(2), 420–430.
- Allendorf, F. W., Berry, O., & Ryman, N. (2014). So long to genetic diversity, and thanks for all the
- 458 fish. *Molecular Ecology*, 23(1), 23–25.
- Andersson, L., Bekkevold, D., Berg, F., Farrell, E. D., Felkel, S., Ferreira, M. S., Fuentes-Pardo, A.
- 460 P., Goodall, J., & Pettersson, M. (2024). How fish population genomics can promote sustainable
- 461 fisheries: A road map. *Annual Review of Animal Biosciences*, 12, 1–20.
- Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G., & Hohenlohe, P. A. (2016). Harnessing the
- power of RADseq for ecological and evolutionary genomics. *Nature Reviews Genetics*, 17(2), 81–
- 464 92.
- Annala, J. H. (2012). Report of the workshop on stock structure of atlantic cod in the Gulf of Maine
- 466 region. Gulf of Main. https://gmri-org-production.s3.amazonaws.com/documents/Microsoft Word -
- 467 Cod workshop final report 25 July 2012 1.pdf
- Antoniou, A., & Magoulas, A. (2014). Application of mitochondrial DNA in stock identification. In
- S. X. Cadrin, L. A. Kerr, & S. Mariani (Eds.), Stock identification methods (pp. 257–295). Elsevier.
- 470 Appleyard, S. A., Grewe, P. M., Innes, B. H., & Ward, R. D. (2001). Population structure of yellowfin
- 471 tuna (Thunnus albacares) in the western Pacific Ocean, inferred from microsatellite loci. Marine
- 472 Biology, 139, 383-393.
- 473 Australian Fisheries Management Authority. (2023). Southern and Eastern Scalefish and Shark
- 474 Fishery (SESSF): Species summaries 2023.

- 475 Australian Fisheries Management Authority. (2024). Southern and Eastern Scalefish and Shark
- 476 Fishery (SESSF): Species summaries 2024.
- 477 Australian Fisheries Management Authority. (2025). Southern and Eastern Scalefish and Shark
- 478 Fishery (SESSF): Species summaries 2025.
- 479 Australian National Fish Collection, CSIRO, & Bray, D. J. (2021). Tiger flathead, Platycephalus
- 480 *richardsoni*. https://fishesofaustralia.net.au/Home/species/3363
- Barnes, L. M., Gray, C. A., & Williamson, J. E. (2011). Divergence of the growth characteristics and
- longevity of coexisting Platycephalidae (Pisces). Marine and Freshwater Research, 62(11), 1308–
- 483 1318.
- Barrett, J. H., Locker, A. M., & Roberts, C. M. (2004). The origins of intensive marine fishing in
- 485 medieval Europe: The English evidence. Proceedings of the Royal Society of London. Series B:
- 486 *Biological Sciences*, 271(1556), 2417–2421.
- Bekkevold, D., Berg, F., Polte, P., Bartolino, V., Ojaveer, H., Mosegaard, H., Farrell, E. D., Fedotova,
- 488 J., Hemmer-Hansen, J., Huwer, B., Trijoulet, V., Albertsen, C. M., Fuentes-Pardo, A. P., Gröhsler,
- T., Pettersson, M., Jansen, T., Folkvord, A., & Andersson, L. (2023). Mixed-stock analysis of Atlantic
- 490 herring (Clupea harengus): A tool for identifying management units and complex migration
- 491 dynamics. ICES Journal of Marine Science, 80(1), 173–184.
- Benestan, L. (2019). Population genomics applied to fishery management and conservation. In M. F.
- Oleksiak & O. P. Rajora (Eds.), *Population genomics: Marine organisms* (pp. 399–421). Springer
- 494 Nature.
- Bertram, A., Bell, J., Brauer, C. J., Fowler, A., Hamer, P., Sandoval-Castillo, J., Stewart, J.,
- Wellenreuther, M., & Beheregaray, L. B. (2023). Biogeographic provinces and genomically
- delineated stocks are congruent in snapper (*Chrysophrys auratus*) from southeastern Australia. *ICES*
- 498 *Journal of Marine Science*, 80(5), 1422–1430.
- 499 Bessell-Browne, P. (2022). Tiger flathead (Neoplatycephalus richardsoni) stock assessment based
- on data up to 2021. Department of Agriculture, Fisheries and Forestry.
- Bogard, J. R., Farmery, A. K., Baird, D. L., Hendrie, G. A., & Zhou, S. (2019). Linking production
- and consumption: The role for fish and seafood in a healthy and sustainable Australian diet. *Nutrients*,
- 503 11(8), Article 1766.
- Bourke, E. A. (1997). Allozyme variation in populations of Atlantic salmon located in different rivers
- in Ireland. ICES Journal of Marine Science, 54(6), 974–981.

- Bruce, B. D., Bradford, R., Daley, R., Green, M., & Phillips, K. (2002). Targeted review of biological
- and ecological information from fisheries research in the South East Marine Region (Final report).
- 508 CSIRO Marine Research.
- Bulman, C., Althaus, F., He, X., Bax, N. J., & Williams, A. (2001). Diets and trophic guilds of
- demersal fishes of the south-eastern Australian shelf. Marine and Freshwater Research, 52(4), 537–
- 511 548.
- Buroker, N. E., Chanley, P., Cranfield, H. J., & Dinamani, P. (1983). Systematic status of two oyster
- populations of the genus *Tiostrea* from New Zealand and Chile. *Marine Biology*, 77, 191–200.
- Butler, I., Garrett, R., Hobsbawn, P., Thorpe, R., & Young, A. (2023). Fisheries status reports 2023.
- 515 Department of Agriculture, Fisheries and Forestry.
- 516 https://daff.ent.sirsidynix.net.au/client/en_AU/ABARES/search/detailnonmodal/ent:\$002f\$002f\$D
- 517 ASSET\$002f0\$002fSD ASSET:1035183/one
- Butler, I., Patterson, H., Bromhead, D., Galeano, D., Timmiss, T., Woodhams, J., & Curtotti, R.
- 519 (2024). Fishery status reports 2024. Australian Bureau of Agricultural and Resource Economics and
- 520 Sciences.
- 521 https://daff.ent.sirsidynix.net.au/client/en_AU/ABARES/search/detailnonmodal/ent:\$002f\$002f\$D
- 522 ASSET\$002f0\$002fSD ASSET:1036261/one
- 523 Cadrin, S. X. (2020). Defining spatial structure for fishery stock assessment. Fisheries Research, 221,
- 524 Article 105397.
- 525 Carvalho, G. R., & Hauser, L. (1994). Molecular genetics and the stock concept in fisheries. *Reviews*
- 526 in Fish Biology and Fisheries, 4, 326–350.
- 527 Casillas, S., & Barbadilla, A. (2017). Molecular population genetics. *Genetics*, 205(3), 1003–1035.
- 528 Colefax, A. (1934). A preliminary investigation of the natural history of the tiger flathead
- 529 (Neoplatycephalus macrodon) on the SE Australian coast.
- Cuéllar-Pinzón, J., Presa, P., Hawkins, S. J., & Pita, A. (2016). Genetic markers in marine fisheries:
- Types, tasks and trends. Fisheries Research, 173(Part 3), 194–205.
- Davinack, D. (2024). *Molecular ecology & evolution: An introduction*. Wheaton College.
- Day, J. (2016). Tiger flathead (Neoplatycephalus richardsoni) stock assessment using data to 2015.
- 534 Australian Fisheries Management Authority and CSIRO Oceans and Atmosphere Flagship.
- https://research.csiro.au/efar/wp-content/uploads/sites/284/2020/07/TigerFlathead2016-1.pdf

- 536 DCCEEW. (2025). Assessment of the Commonwealth Southern and Eastern Scalefish and Shark
- 537 Fishery. Australian Government Department of Climate Change, Energy, the Environment and
- 538 Water.
- Díaz-Jaimes, P., & Uribe-Alcocer, M. (2006). Spatial differentiation in the eastern Pacific yellowfin
- tuna revealed by microsatellite variation. Fisheries Science, 72, 590–596.
- Dowling, N. A., Punt, A. E., Little, L. R., Dichmont, C. M., Smith, D. C., Haddon, M., Sporcic, M.,
- Fulton, E. A., & Gorton, R. J. (2016). Assessing a multilevel tier system: The role and implications
- of data quality and availability. Fisheries Research, 183, 588–593.
- Edgar, G. (2008). Australian marine life. Reed New Holland.
- Edwards, D., Forster, J. W., Chagné, D., & Batley, J. (2007). What are SNPs? In N. Oraguzie, E. H.
- A. Rikkerink, S. E. Gardiner, & H. N. De Silva (Eds.), Association mapping in plants (pp. 41–52).
- 547 Springer.
- 548 Emery, T., & Liggins, G. (2023). Tiger flathead (2023). FRDC. https://fish.gov.au/Archived-
- Reports/2023/Tiger%20Flathead%20(2023).pdf
- Emery, T., Woodhams, J., & Curtotti, R. (2024). Chapter 8: Southern and Eastern Scalefish and
- 551 Shark Fishery. https://www.agriculture.gov.au/abares/research-topics/fisheries/fishery-
- status/scalefish-shark-fishery# 81-description-of-the-fishery
- Evans, K., Fulton, B., Bulman, C., Day, J., Appleyard, S., Farley, J., Williams, A., & Zhou, S. (2022).
- Revising biological parameters and information used in the assessment of Commonwealth fisheries:
- A reality check and work plan for future proofing. CSIRO Oceans and Atmosphere.
- Fairbridge, W. (1951). The New South Wales tiger flathead, *Neoplatycephalus macrodon* (Ogilby).
- I. Biology and age determination. *Marine and Freshwater Research*, 2(2), 117–130.
- Fulton, E. A., Mazloumi, N., Puckeridge, A., & Hanamseth, R. (2024). Modelling perspective on the
- climate footprint in south east Australian marine waters and its fisheries. ICES Journal of Marine
- *Science*, 81(1), 130–144.
- Goddard, B. K., Guillemin, T. A., Schilling, H. T., Fowler, A. M., Hughes, J. M., Smith, J. A., &
- Stewart, J. (2024). Half a century of citizen science tag-recapture data reveals stock delineation and
- 563 cross-jurisdictional connectivity of an iconic pelagic fish. Reviews in Fish Biology and Fisheries, 34,
- 564 1433–1449.
- Gosling, E. (Ed.). (2003). *Bivalve molluscs: Biology, ecology and culture* (1st ed.). Wiley.

- Grewe, P., Feutry, P., Hill, P., Gunasekera, R., Schaefer, K., Itano, D., Fuller, D., Foster, S., & Davies,
- 567 C. (2015). Evidence of discrete yellowfin tuna (*Thunnus albacares*) populations demands rethink of
- management for this globally important resource. Scientific Reports, 5, Article 16916.
- Grummer, J. A., Beheregaray, L. B., Bernatchez, L., Hand, B. K., Luikart, G., Narum, S. R., & Taylor,
- E. B. (2019). Aquatic landscape genomics and environmental effects on genetic variation. *Trends in*
- 571 *Ecology & Evolution, 34*(7), 641–654.
- Hamer, P., Kemp, J., & Kent, J. (2010). Analysis of existing data on sand flathead larval and juvenile
- 573 recruitment in Port Phillip Bay.
- Han, F., Jamsandekar, M., Pettersson, M. E., Su, L., Fuentes-Pardo, A. P., Davis, B. W., Bekkevold,
- 575 D., Berg, F., Casini, M., Dahle, G., Farrell, E. D., Folkvord, A., & Andersson, L. (2020). Ecological
- adaptation in Atlantic herring is associated with large shifts in allele frequencies at hundreds of loci.
- 577 *eLife*, 9, Article e61076.
- Hirst, A., Rees, C., Hamer, P., Conron, S., & Kemp, J. (2014). The decline of sand flathead stocks in
- 579 Port Phillip Bay: Magnitude, causes and future prospects (Recreational Fishing Grant Program
- 580 Research Report). Fisheries Victoria.
- Hobday, A. J., & Pecl, G. T. (2014). Identification of global marine hotspots: Sentinels for change
- and vanguards for adaptation action. *Reviews in Fish Biology and Fisheries*, 24(2), 415–425.
- Holbrook, N. J., & Johnson, J. E. (2014). Climate change impacts and adaptation of commercial
- marine fisheries in Australia: A review of the science. *Climatic Change*, 124(4), 703–715.
- Kailola, P., Williams, M., Stewart, P., Reichelt, R., McNee, A., & Grieve, C. (1993). Australian
- 586 fisheries resources. Bureau of Resource Sciences.
- 587 Khrustaleva, A. M. (2024). SNP polymorphisms are associated with environmental factors in sockeye
- salmon populations across the Northwest Pacific: Insights from redundancy analysis. *Genes*, 15(11),
- 589 Article 1485.
- Klaer, N. L. (2001). Steam trawl catches from south-eastern Australia from 1918 to 1957: Trends in
- catch rates and species composition. *Marine and Freshwater Research*, 52(4), 399–410.
- Klaer, N. L. (2004). Abundance indices for main commercial fish species caught by trawl from the
- south-eastern Australian continental shelf from 1918 to 1957. Marine and Freshwater Research,
- 594 *55*(6), 561–572.
- Lewontin, R. C. (1991). Twenty-five years ago in Genetics: Electrophoresis in the development of
- evolutionary genetics: Milestone or millstone? *Genetics*, 128(4), 657–662.

- 597 Liggins, G. (2023). Tiger flathead (Platycephalus richardsoni). NSW Department of Primary
- 598 Industries, Fisheries.
- Little, L., Wayte, S., Tuck, G., Smith, A., Klaer, N., Haddon, M., Punt, A., Thomson, R., Day, J., &
- Fuller, M. (2011). Development and evaluation of a cpue-based harvest control rule for the southern
- and eastern scalefish and shark fishery of Australia. ICES Journal of Marine Science, 70(1), 215–
- 602 226.
- 603 Lu, Y., Li, M., Gao, Z., Ma, H., Chong, Y., Hong, J., Wu, J., Wu, D., Xi, D., & Deng, W. (2025).
- Advances in whole genome sequencing: Methods, tools, and applications in population genomics.
- 605 International Journal of Molecular Sciences, 26(1), Article 372.
- Martchenko, D., & Shafer, A. B. A. (2023). Contrasting whole-genome and reduced-representation
- sequencing for population demographic and adaptive inference: An alpine mammal case study.
- 608 *Heredity*, 131(5), 357–370.
- 609 McBride, R. S., & Smedbol, R. K. (2022). An interdisciplinary review of Atlantic cod (Gadus
- 610 morhua) stock structure in the Western North Atlantic Ocean. National Oceanic and Atmospheric
- Administration. https://repository.library.noaa.gov/view/noaa/48082
- Metcalfe, J., Righton, D. A., & Hunter, E. (2006). Designing fish-tagging programmes to understand
- fish movements and population dynamics [Conference contribution]. ASC 2006 Theme session Q.
- Montgomery, S. S. (1985). Aspects of the biology of the tiger flathead P. richardsoni and the
- 615 associated fishery [Doctoral dissertation, UNSW Sydney]. http://hdl.handle.net/1959.4/67721
- Morin, P. A., Luikart, G., Wayne, R. K., & the SNP workshop group. (2004). SNPs in ecology,
- evolution and conservation. *Trends in Ecology & Evolution*, 19(4), 208–216.
- National Oceanic and Atmospheric Administration. (2024). Atlantic herring 2024 management
- 619 track assessment report. https://asmfc.org/resources/science/stock-assessment/atlantic-herring-
- 620 management-track-assessment-report-2024/
- Nazir, A., & Khan, M. A. (2021). Using otoliths for fish stock discrimination: Status and challenges.
- 622 Acta Ichthyologica et Piscatoria, 51(2), 199–218.
- Northeast Fisheries Science Center (U.S.). (2022). Stock assessment update of 14 Northeast
- 624 groundfish stocks through 2018. https://repository.library.noaa.gov/view/noaa/39402
- Novaglio, C., Smith, A. D. M., Frusher, S., Ferretti, F., Klaer, N., & Fulton, E. A. (2018). Fishery
- development and exploitation in South East Australia. Frontiers in Marine Science, 5, Article 145.

- 627 Ovenden, J. R. (2013). Crinkles in connectivity: Combining genetics and other types of biological
- data to estimate movement and interbreeding between populations. *Marine and Freshwater Research*,
- 629 *64*(3), 201–207.
- Papa, Y., Morrison, M. A., Wellenreuther, M., & Ritchie, P. A. (2022). Genomic stock structure of
- 631 the marine teleost tarakihi (Nemadactylus macropterus) provides evidence of potential fine-scale
- adaptation and a temperature-associated cline amid panmixia. Frontiers in Ecology and Evolution,
- 633 10, Article 862930.
- Pascoe, S., Schrobback, P., Hoshino, E., & Curtotti, R. (2021). Demand conditions and dynamics in
- 635 the SESSF: An empirical investigation (FRDC Project No 2018-017). FRDC.
- Payet, S. D., Underwood, J., Berry, O., Williamson, J., Macbeth, M., Travers, M., Wedd, D.,
- 637 Saunders, T., & Wellenreuther, M. (2024). Population genomics informs the management of
- harvested snappers across north-western Australia. Scientific Reports, 14, Article 26598.
- Pecl, G. T., Doubleday, Z., Ward, T., Clarke, S., Day, J., Dixon, C., Frusher, S., Gibbs, P., Hobday,
- 640 A., Hutchinson, N., Jennings, S., Jones, K., Li, X., Spooner, D., & Stoklosa, R. (2011). Risk
- 641 assessment of impacts of climate change for key marine species in South Eastern Australia. Part 2:
- 642 Species profiles (Fisheries and Aquaculture Risk Assessment, FRDC Project 2009/070). Fisheries
- Research and Development Corporation.
- Pecoraro, C., Babbucci, M., Franch, R., Rico, C., Papetti, C., Chassot, E., Bodin, N., Cariani, A.,
- Bargelloni, L., & Tinti, F. (2018). The population genomics of yellowfin tuna (*Thunnus albacares*)
- at global geographic scale challenges current stock delineation. Scientific Reports, 8, Article 13890.
- Phillips, L. R., Malan, N., Roughan, M., Harcourt, R., Jonsen, I., Cox, M., Brierley, A. S., Slip, D.,
- 648 Wilkins, A., & Carroll, G. (2022). Coastal seascape variability in the intensifying East Australian
- 649 Current southern extension. Frontiers in Marine Science, 9, Article 925123.
- Poulin, R., & Kamiya, T. (2015). Parasites as biological tags of fish stocks: A meta-analysis of their
- discriminatory power. *Parasitology*, 142(1), 145–155.
- Reis-Santos, P., Tanner, S. E., Aboim, M. A., Vasconcelos, R. P., Laroche, J., Charrier, G., Santos,
- P. T., Swearer, S. E., Dolman, A. M., & Cabral, H. N. (2018). Reconciling differences in natural tags
- 654 to infer demographic and genetic connectivity in marine fish populations. Scientific Reports, 8,
- 655 Article 10343.
- Ridgway, K., & Hill, K. (2009). The East Australian Current (NCCARF Publication). National
- 657 Climate Change Adaptation Research Facility.

- Rossi, A. R., Capula, M., Crosetti, D., Sola, L., & Campton, D. E. (1998). Allozyme variation in
- 659 global populations of striped mullet (Mugil cephalus): Evidence for population structure. Marine
- 660 Biology, 132(2), 227–234.
- 661 Singer, L. T., & Macdonald, H. (2024). Atlantic cod management transition workshops. New England
- 662 Fishery Management Council.
- Smith, A. D. M., & Dichmont, C. M. (2017). Reducing the number of undefined species in the Status
- of Australian Fish Stocks Reports: Phase one categorising 'undefined' species and addressing the
- description of this stock status in the nationally agreed classification framework (FRDC Report 2016-
- 666 135). Fisheries Research and Development Corporation.
- Smith, A. D. M., & Smith, D. C. (2001). A complex quota-managed fishery: Science and management
- 668 in Australia's South East Fishery. Introduction and overview. Marine and Freshwater Research,
- 669 *52*(4), 353–359.
- 670 Smith, K., Watson, A. W., Lonnie, M., Peeters, W. M., Oonincx, D., Tsoutsoura, N., Simon-Miquel,
- 671 G., Szepe, K., Cochetel, N., Pearson, A. G., Witard, O. C., Salter, A. M., Bennett, M., & Corfe, B.
- M. (2024). Meeting the global protein supply requirements of a growing and ageing population.
- 673 *European Journal of Nutrition, 63*(5), 1425–1433.
- Taillebois, L., Davenport, D., Barton, D. P., Crook, D. A., Saunders, T., Hearnden, M., Saunders, R.
- J., Newman, S. J., Travers, M. J., Dudgeon, C. L., Maher, S. L., & Ovenden, J. R. (2021). Integrated
- analyses of SNP-genotype and environmental data in a continuously distributed snapper species
- 677 (Lutjanus johnii, Bloch, 1792) reveals a mosaic of populations and a challenge for sustainable
- 678 management. ICES Journal of Marine Science, 78(9), 3212–3229.
- Taylor, M. D., Becker, A., Quinn, J., Lowry, M. B., Fielder, S., & Knibb, W. (2020). Stock structure
- of dusky flathead (Platycephalus fuscus) to inform stocking management. Marine and Freshwater
- 681 *Research*, 71(9), 1378–1383.
- Tilzey, R. D. J., & Australia. Bureau of Rural Resources. (1990). The South east trawl fishery:
- 683 Biological synopses and catch distributions for seven major commercial fish species. Australian
- 684 Government Publishing Service.
- Tuck, G. N. (2020). Stock assessment for the Southern and Eastern Scalefish and Shark Fishery 2018
- 686 and 2019. Part 1, 2019. Australian Fisheries Management Authority and CSIRO Oceans and
- Atmosphere.

- Waples, R. S. (1998). Separating the wheat from the chaff: Patterns of genetic differentiation in high
- gene flow species. *Journal of Heredity*, 89(5), 438–450.
- Waples, R. S., & Gaggiotti, O. (2006). What is a population? An empirical evaluation of some genetic
- 691 methods for identifying the number of gene pools and their degree of connectivity. Molecular
- 692 *Ecology, 15*(6), 1419–1439.
- Wenne, R. (2023). Single nucleotide polymorphism markers with applications in conservation and
- exploitation of aquatic natural populations. *Animals*, 13(6), Article 1089.
- 695 Wright, D., Emery, T., & Dylewski, M. (2024). Chapter 7 Southern and Eastern Scalefish and Shark
- 696 Fishery. https://daff.ent.sirsidynix.net.au/client/end AU/search/asset/1036261/7
- Zemeckis, D. R., Martins, D., Kerr, L. A., & Cadrin, S. X. (2014). Stock identification of Atlantic
- 698 cod (Gadus morhua) in US waters: An interdisciplinary approach. ICES Journal of Marine Science,
- 699 *71*(6), 1490–1506.

700

Chapter 2: Manuscript

- 702 Title: Using population genomics to understand stock structure of tiger flathead (*Platycephalus*
- 703 richardsoni) in the Southern and Eastern Scalefish and Shark Fishery

704

705

701

- Authors
- Amelia Jensen¹, Karen Evans², Sharon A. Appleyard³, Madeline Green¹
- Institute for Marine and Antarctic Studies, University of Tasmania. 15-21 Nubeena Crescent,
 Taroona, Tasmania, 7053
- 709 2. UNESCO, 7 place de Fontenoy, Paris, 75007
- 3. CSIRO, Castray Esplanade, Battery Point, Tasmania, 7004
- 711 This work was part of the CSIRO South-East Australian Marine Ecosystem Survey (SEA-MES). We
- acknowledge the use of the CSIRO Marine National Facility (https://ror.org/01mae9353) in
- undertaking this research. 2022-032 Biological parameters for stock assessments in Southeastern
- Australia an information and capacity uplift is supported by funding from the FRDC on behalf of
- 715 the Australian Government.

716 Abstract

717

718719

720

721

722

723

724

725

726

727

728

729730

Effective fisheries management supports the ongoing sustainability and health of wild fish stocks. Appropriate management relies on the accurate identification of populations and stock structure of a species. Tiger flathead (*Platycephalus richardsoni*), a commercially valuable species in the Southern and Eastern Scalefish and Shark Fishery (SESSF), is assumed to consist of a single homogeneous panmictic population; however, no molecular studies have been undertaken to investigate this. Observed differences in growth, appearance, and reproductive timing in tiger flathead across southeast Australia have previously suggested potential stock structure or ecophysiological differences among individuals from different geographic locations. The current study employs a population genomics approach using single nucleotide polymorphisms (SNPs) to assess genetic connectivity and stock structure of the species. DNA was extracted from 188 individuals across eastern Australia from New South Wales to Tasmania, caught and sampled in 2023 to 2024. No fine-scale genetic structuring was found for tiger flathead, suggesting a single panmictic stock across the species' distribution. Results indicate that genomic population structure is congruent with current management strategies, with high gene flow observed, suggesting that large scale

- movements via ocean currents during the egg and pelagic larval phase likely facilitate genetic mixing.
- 732 This study represents the first population genomics assessment of tiger flathead, contributing to
- 733 improved fisheries management knowledge within the SESSF and addresses one of the key gaps in
- biological parameters for the species.

Introduction

The global population is expected to climb to 10 billion people by 2050, increasing the global demand for food and thus seafood (Guillén et al 2019; Andersson et al. 2024). This is placing increasing pressures on Australia's wild catch fisheries, with climate change contributing to this pressure. (Holbrook & Johnson 2014; Bogard et al. 2019; Smith et al. 2024). Given such challenges, reliable and up-to-date biological data is essential in ensuring appropriate management frameworks are implemented to support sustainability of wild fish stocks (Evans et al. 2022). Population genomics presents a useful opportunity to understand population structuring of marine teleosts, directly contributing to stock assessments for commercially and recreationally important species.

Population genomics in fisheries management

Fishery management units across the globe are commonly delineated by geographical boundaries and anthropogenic considerations rather than biological units. (Zemeckis et al. 2014; Grummer et al. 2019). Additionally, many stock assessments assume panmixia, which occurs when individuals within a population are equally likely to mate with one another with respect to relatedness, geography, sex ratios, genotype and phenotype (Andersson et al. 2024; Walton et al 2025). As genetically distinct populations may respond differently to fishing pressures, this untested misalignment can often reduce the accuracy of biological parameters used in stock assessments, such as productivity and biomass, and can lead to the overexploitation of a species or population (Zemeckis et al. 2014; Cadrin 2020; Andersson et al. 2024). Population genomics is becoming more commonly used in fisheries management frameworks, supporting the identification (or lack thereof) of biological population boundaries (Waples 1998).

A population is defined as a geographically and genetically independent group of individuals of the same species (Waples & Gaggiotti 2006). Genetically distinct populations may arise through a range of physical, oceanographic and biological barriers, such as sea mounts, currents and species vagility which can result in restricted gene flow and reduced mating opportunities (Ovenden 2013; Grummer et al. 2019; Bertram et al. 2023). From allozyme, microsatellite and mitochondrial markers to next-generation sequencing technologies and reduced representation genome scans, there has been an increase in both speed and accuracy of population genomics approaches (Cuéllar-Pinzón et al. 2016). This has led to the increase in the capacity to screen for nuclear markers such as single nucleotide polymorphisms (SNPs). SNPs are abundant and spread across the entire genome, allowing high quality data to be obtained for relatively low costs. SNP analyses provide a unique opportunity to more easily acquire comprehensive genetic data across the genome (hence 'genomic data'), that can be incorporated into fisheries management frameworks (Morin et al. 2004, Payet et al. 2024).

Southern and Eastern Scalefish and Shark Fishery

The Southern and Eastern Scalefish and Shark Fishery (SESSF) is the largest Commonwealth-769 770 managed fishery by catch (Wright et al. 2024). Covering depths of 30-1200 metres, the fishery extends the southern end of Australia from Western Australia to Queensland (Smith & Smith 2001). 771 772 Generating a total GVP of \$98.58 million, it accounts for nearly one quarter of the GVP for all Commonwealth fisheries (Wright et al. 2024). Fishing mortality and biomass assessments from 2023 773 indicate that between 28% to 44% of stocks within the fishery were either subject to overfishing or 774 uncertain (Wright et al. 2024). Additionally, the SESSF is a climate change hotspot, with southeast 775 Australian waters warming at a rate faster than the global average (Hobday & Pecl 2014; DCCEEW 776 2025). A total of thirty-nine stocks make up the fishery, with one of the most commercially important 777 species being tiger flathead (Platycephalus richardsoni). In 2022-23, tiger flathead accounted for 778 over one fifth of the GVP within the fishery (Australian Fisheries Management Authority 2025). 779

Tiger Flathead

768

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

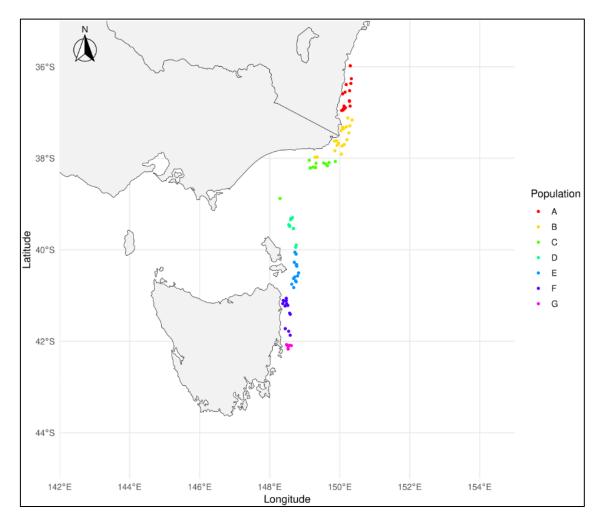
796

797

798

Endemic to southeast Australia, tiger flathead is a demersal marine teleost, inhabiting sandy and muddy substrates (Kailola et al. 1993). They are found in depths ranging from 10 metres to 400 metres, with most commercial catches coming from 50 metres to 200 metres over the continental shelf (Tilzey et al. 1990; Edgar 2008; Butler et al. 2023). Their distribution spans southeast Australia from South Australia to New South Wales, including Tasmania (Australian National Fish Collection et al. 2021). Previous studies have suggested that tiger flathead are a relatively sedentary species with no observed broadscale geographic movements (Fairbridge 1951; Pecl et al. 2011; Bruce et al. 2002). They are benthopelagic piscivores with nocturnal movement patterns, moving into the water column at night to feed primarily on small fish and crustaceans (Colefax 1934; Bulman et al. 2001). Juveniles inhabit shallow waters on the continental shelf and migrate to deeper waters in the outer shelf zone once they mature. Prior to the spawning period, mature fish have been observed migrating back to shallower waters (Montgomery 1985; Kailola et al. 1993). With a lifespan of 20 years, tiger flathead reach sexual maturity around 3 years old and are broadcast spawners, producing up to 2.5 million eggs per spawning season (Montgomery 1985, Barnes et al. 2011). Eggs and larvae of platycephalids (Family Platycephalidae) are known to be well distributed by the currents of the east coast of Australia (Fairbridge 1951; Gray & Miskiewicz 2000). The pelagic larval duration (PLD) of tiger flathead is unknown, however other platycephalid species have PLDs ranging from 20 days to 2 months (Hamer et al. 2010, Pecl et al. 2011, Hirst et al. 2014).

Research gaps


Despite the commercial importance of tiger flathead, much about their ecology and life history remain poorly understood. A study undertaken by Evans et al. 2022 found that many of the parameters used in SESSF stock assessments, including for tiger flathead, are either out of date and / or the reference source of parameters and values used in assessments are unknown. Of the 12 species assessed in the Evans et al. (2022) study, 8 had provenance issues. Among this is tiger flathead, with key parameters used in stock assessments such as maturity and length-weight relationships found to be either older than 10 years, or the biological origin of the parameters and values is unclear or unreliable. Additionally, stock assessments for tiger flathead assume panmictic population structure, despite no previous studies undertaken to investigate this. There has been speculation around the existence of multiple populations of tiger flathead, with observed morphological differences in growth rates, appearance and differences in spawning seasons throughout the geographic range of the species (Kailola et al. 1993). This has been observed in New South Wales with spawning seasons occurring between October and May, whereas individuals off eastern Tasmania and the Bass Straight spawn between December to February (Kailola et al. 1993).

This study represents the first genomic investigation of stock structure for tiger flathead. It looks at the intra-specific genomic connectivity of tiger flathead latitudinally across the SESSF and using this knowledge gained, aims to provide up-to-date data to inform current management strategies, supporting the ongoing sustainability of the species. To test for population structuring for tiger flathead within the SESSF, a null hypothesis of no genetic differentiation across sampling locations (H0) was proposed.

Materials and Methods

Sampling design and collection

Tissue samples of *P. richardsoni* (*n* = 188 individuals) were collected along the southeastern Australia coast between Hobart, Tasmania and Merimbula, New South Wales (Figure 1) in 2023 and 2024. Sampling occurred on the Research Vessel *Investigator*, during three of the CSIRO Southeast Australian Marine Ecosystem Survey (SEA-MES) voyages (Table 1). Individual fish were collected across three voyages to account for temporal and seasonal variability. Individuals were obtained utilising McKenna Trawls and euthanised with AQUI-S. Where possible, sex, weight and length data were also obtained. Muscle samples were collected by dissecting a portion of muscle from above the pectoral fin and storing it at -20°C before returning to Hobart for subsequent sampling and analysis.

Figure 1: Sampling location of tiger flathead (*Platycephalus richardsoni*) split by *a priori* populations. A, samples from 35°S-36°S; B, samples from 37°S; C, samples from 38°S; D, samples from 39°S; E, samples from 40°S; F, samples from 41°S; G, samples from 42°S.

Table 1: Summary of sampling information per voyage, including voyage dates, number of samples per voyage, the minimum length (mm), maximum length (mm) and sex.

Voyage	Voyage	Voyage end	Number of	Minimum	Maximum	Sex
	start date	date	samples	length	length	
				(mm)	(mm)	
1	1/07/2023	28/07/2023	65	144	582	12 F
						3 M
						50 unknown
2	05/05/2024	29/05/2024	63	183	577	14 F
						8 M
						41 unknown
3	14/11/2024	11/12/2024	60	288	595	30 F
						30 M

DNA extraction and sequencing

As per Diversity Array Technology's <u>sample preparation guidelines</u>, 10-15mg of muscle tissue was subsampled and submerged in 80% ethanol in Qiagen Collection Micro Tubes (Hilden, Germany) with the associated caps. The scalpel, scissors, tweezers and aluminium foil used on the chopping board were cleaned between each individual sample using 80% ethanol, bleach, water and Kimtech Low Lint Wipers (Georgia, United States of America) to prevent contamination of samples. Samples were posted frozen to Diversity Arrays Technology (Canberra, Australia) for DNA extraction and sequencing. Sequencing was completed using the DArTseq (1.0) - DArTseq Medium density sequencing (1.2 mln reads). This uses the Diversity Arrays Technology proprietary complexity reduction-based sequencing technology. It involves restriction-enzyme digestions, adapter ligation followed by amplification of adapter ligated fragments, targeting the low copy, informative regions of the genome (Kilian et al. 2012; Diversity Arrays Technology n.d.).

Quality control and data filtering

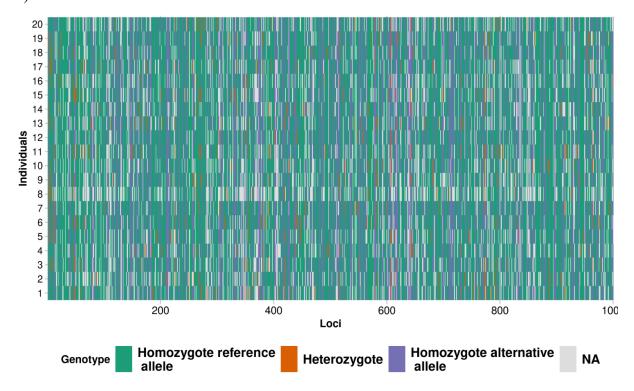

Prior to filtering and analysis, individuals were grouped into arbitrary populations based on their sampling latitude (i.e. 1 degree latitude, split evenly across the region) (Figure 1). As samples were collected at relatively even intervals across the voyage route, this approach was used to explore potential spatial patterns in genetic structure across this geographic extent. This resulted in 7 *a priori* populations ranging from 35°S to 42°S with 26-31 individuals within each population (Table 2).

Table 2: A priori populations, sampling latitudes and number of samples per population.

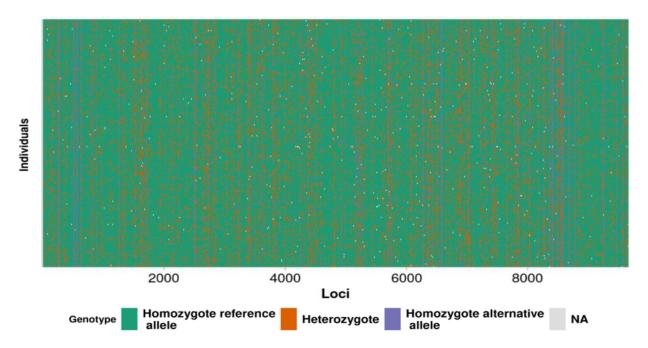
Population	Latitude	N
A	35°S-36°S	31
В	37°S	26
С	38°S	26
D	39°S	26
Е	40°S	27
F	41°S	26
G	42°S	26
Total		188

Of the 188 tissues subsampled, the SNP extraction yielded 158,628 SNP markers for 187 individuals. Individual '10080594' was not included due to low-quality DNA and did not pass Diversity Arrays Technology's quality control protocols (Appendix A). Quantitative analyses were undertaken using the statistical package R (ver. 4.4.0) The SNP data and metadata produced by DArT Pty Ltd was converted into a genlight object for further filtering using the package dartR (ver. 2.9.9.5) (Gruber et al. 2018). Before filtering the dataset, an initial smearplot of the first 20 individuals and 1000 loci was generated using the R package dartR (Gruber et al. 2018). This was developed to visualise a

portion of the data and identify any significant missing values, obvious outliers, or patterns (Figure 2).

Figure 2: Genotype heatmap across 20 individuals and 1000 SNP loci. Each column represents an individual SNP, while each row represents an individual. Homozygote reference alleles are in green, heterozygotes are in orange, homozygote alternative allele is in purple, and missing values (NA) are in grey.

Various filtering steps were applied to the dataset to improve reliability and quality of the data. A 0.98 reproducibility threshold was applied to the dataset, filtering out 12,118 SNPs (Appendix B). The data was checked for any invariable sites (SNPs that had missing data for all samples), however, no additional loci were removed from the dataset. A Minor Allele Frequency (MAF) filter was applied, with a threshold of 0.02, removing 80,375 loci (Figure 5). The dataset was filtered by read depth, with a lower threshold of 5 and an upper threshold of 100, removing 7,790 loci (Appendix C). The call rate per SNP and individual threshold were set to 0.98 and 0.94 respectively, filtering out 47,271 SNPs and 3 individuals (Appendix D).


The application of these stringent filtering steps ensured SNPs and individuals with low call rates are filtered out, enhancing the quality and reducing bias from missing data. Individuals with unusually low or high heterozygosity were filtered out. The heterozygosity filter was applied with a lower and upper threshold of 0.1 and 0.2, filtering out 2 individuals (Appendix E). SNPs with short distance linkages were also removed to reduce the effect of linkage disequilibrium in the analysis (Appendix F). This removed a total of 1,408 SNPs, creating a final, high-quality dataset of 9,666 SNPs across

182 individuals (Table 3). The data was also quality controlled by assessing the SNP allele frequencies against Hardy-Weinberg Equilibrium to determine if any SNPs significantly deviated from equilibrium. Initially, 3,103 SNPs were identified as outliers from the Hardy-Weinberg Equilibrium, however, p-values were adjusted for multiple comparisons using the Benjamini-Hochberg procedure to control for the false discovery rate (Benjamini & Hochberg 1995) (Appendix G). After correction for multiple comparisons, no SNPs significantly deviated from Hardy-Weinberg equilibrium, therefore, no further SNPs were removed from the dataset.

The filtered dataset was checked for any remaining monomorphic loci, which indicated no monomorphic loci needed to be removed. The function *gl.outflank* from the *dartR* package was used to identify and filter for F_{ST}-based outliers (Gruber et al. 2018). No outliers were present in the data. A final smearplot was generated to inspect the data, identify any key areas that may not have been filtered out during the filtering process and identify if any patterns have emerged (Figure 3).

Table 3: Summary of sequential filtering and quality control steps, showing the number of SNPs and individuals removed at each stage.

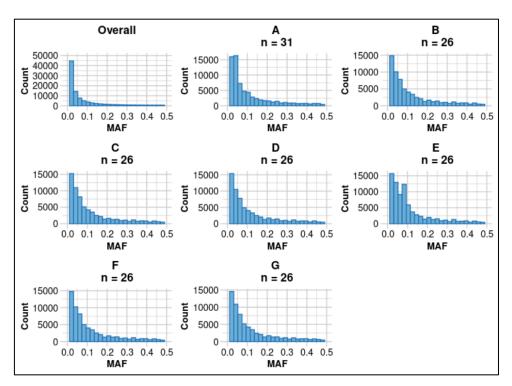
Filtering step	SNPs	Individuals
	remaining	remaining
Initial dataset	158,628	187
Reproducibility > 0.98	146,510	187
Minor Allele Frequency < 0.02 removed	66,135	187
Read depth between 5 and 100	58,345	187
Call rate per SNP > 0.98	11,074	187
Call rate per individual > 0.94	11,074	184
Heterozygosity per individual between 0.1 and 0.2	11,074	182
Remove short distance linked SNPs	9,666	182
Final dataset: total polymorphic loci retained	9,666	182

Figure 3: Genotype heatmap across the entire filtered dataset. Each column represents an individual SNP, while each row represents an individual. Homozygote reference alleles are in green, heterozygotes are in orange, homozygote alternative allele is in purple, and missing values (NA) are in grey.

Genetic diversity

The dartR package was used to calculate observed heterozygosity (H_O), expected heterozygosity (H_E), inbreeding coefficient (F_{IS}), Jost's D and Hedricks G_{ST} (Gruber et al. 2018) (Hedrick 2005; Jost 2008). Genetic differentiation between populations was calculated through fixation indices (F_{ST}), using the R package dartR and bootstrapping 100 times (Weir & Cockerham 1984; Gruber et al. 2018). P-values were adjusted using the Benjamini-Hochberg procedure to control for the false discovery rate (Benjamini & Hochberg 1995).

Population structure


Population structure was visualised through a principle component analysis (PCA), discriminant analysis of principle components (DAPC) and a STRUCTURE plot. The PCA was undertaken using the dartR package, to detect any genetic similarities and visualise any genetic differentiation (Gruber et al. 2018). A DAPC was executed using the adegenet package (ver. 2.1.11) to further visualise any genetic differentiation between pre-defined populations (Jombart 2008). Finally, a STRUCTURE plot was performed using the LEA (ver. 3.18.0) package to understand the admixture proportions of individuals across an optimal number of clusters (Frichot & François 2015). An optimal number of ancestral populations (K) was determined using the cross-entropy criterion. Individual admixture coefficients were estimated at K = 1 to K = 8 putative populations with 5 replicates for each value of

K. The optimal K value was determined when the cross-entropy initially decreased (Frichot et al. 2014, Frichot & François 2015). An Analysis of Molecular Variance (AMOVA) was performed using the R package *hierfstat* (Goudet 2005). An AMOVA was performed to further validate the genetic diversity parameters of the study, such as F_{ST} and F_{IS}.

Results

Genetic diversity

All populations had low allelic diversity with mean minor allele frequencies (MAF) near 0 (range 0.112 - 0.121) with an overall mean MAF of 0.056 (Figure 4). Expected heterozygosity was consistent across all locations ($H_E = 0.174$ -0.176, Table 4), with observed heterozygosity slightly lower than expected heterozygosity ($H_O = 0.156$ -0.160, Table 4). The inbreeding coefficients (F_{IS}) were similar across all locations (F_{IS} = 0.070-0.094, Table 4).

Figure 4: Minor allele frequencies (MAF) for each a priori population of tiger flathead (*Platycephalus richardsoni*) prior to filtering, along with the overall MAF (top left). MAFs >0.02 were removed to improve data quality and enhance statistical power.

Table 4: Population parameters for tiger flathead (*Platycephalus richardsoni*). Na, Number of polymorphic SNPs screened; H_O , observed heterozygosity; H_E , expected heterozygosity; F_{IS} , inbreeding coefficient.

A	31	9018	0.157	0.175	0.085
В	26	8643	0.156	0.176	0.094
C	26	8657	0.159	0.175	0.074
D	25	8697	0.156	0.174	0.085
E	26	8612	0.157	0.175	0.079
F	24	8707	0.160	0.176	0.074
G	25	8744	0.160	0.176	0.070

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

Minimal genetic differentiation was detected across all locations, indicated by the overall F_{ST} value $(F_{ST} = 0.0002, Table 5)$ and pairwise F_{ST} values (0.000 - 0.001, Table 4). As per Meirmans & Hedrick 2011, F_{ST} values can be negative, which have been interpreted as 0 for this study. This observation was further supported by an AMOVA, showing an F_{ST} of 0.0003 and an F_{IS} value of 0.0948, with 90.49% of genetic differentiation coming from among individuals, rather than populations, indicating no significant rejection of the null hypothesis (Table 7). Panmixia is further supported by Jost's D and Hedrick's G_{ST} (0.0001 and 0.0003, respectively, Table 5). As the overall and pairwise comparisons indicated no significant genomic differentiation, further testing based on allele frequencies for male and females in each population was not undertaken. When comparing SNP allele frequency differences amongst the arbitrary populations, significant genetic differentiation (F_{ST} = 0.0012) was detected between locations F and B (following Benjamini-Hochberg correction) (P < 0.001, Table 6), suggesting evidence to support minimal genetic structuring between the two locations.

Table 5: Overall population parameters and diversity indices. H_O , observed heterozygosity; H_E , expected heterozygosity; F_{ST} , fixation indices; F_{IS} , inbreeding coefficient.

H_0	H_E	Fis	Fst	Jost's D	Hedrick's GST
0.156	0.172	0.095	0.0002	0.0001	0.0003

958

959

960

961

957

Table 6: Pairwise genetic differentiation (FST) values (below the diagonal) for tiger flathead (Platycephalus richardsoni) samples, grouped according to arbitrary populations. P-values above the diagonal, significant P-values (following Benjamini-Hochberg correction) are shown in bold.

	A	В	C	D	E	F	G
A		0.850	0.740	0.740	0.850	0.630	0.870

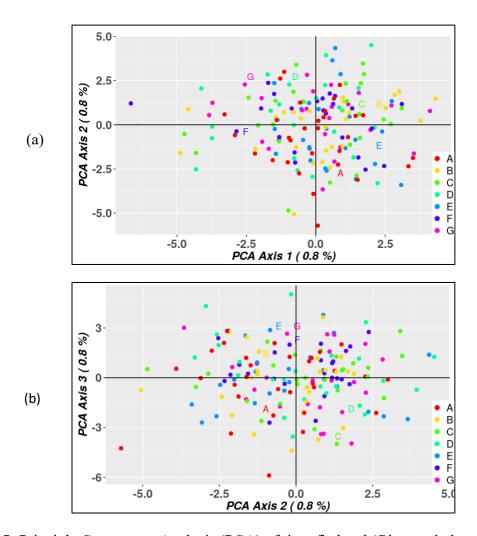
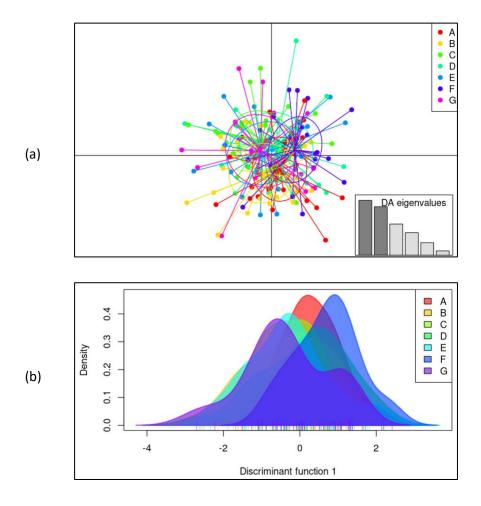

В	0.000		0.630	0.630	0.850	0.000	0.740
C	0.000	0.000		0.650	0.650	0.420	0.920
D	0.000	0.000	0.000		0.650	0.630	0.850
E	0.000	0.000	0.000	0.000		0.210	0.740
F	0.000	0.001	0.001	0.000	0.001		0.630
G	0.000	0.000	0.000	0.000	0.000	0.000	

Table 7: Analysis of Molecular Variance (AMOVA) indicating genetic variance among populations, among individuals within populations and within individuals.


Source of Variation	Sum of squares	Variance components	% of Variation
Among populations	0.4320	$0.0003(F_{ST})$	0.03%
Among individuals within populations	157.2347	0.0948 (F _{IS})	9.48%
Within individuals	1504.6638	-	90.49%
Total	1662.3310	0.0951	100.00%

Population structuring

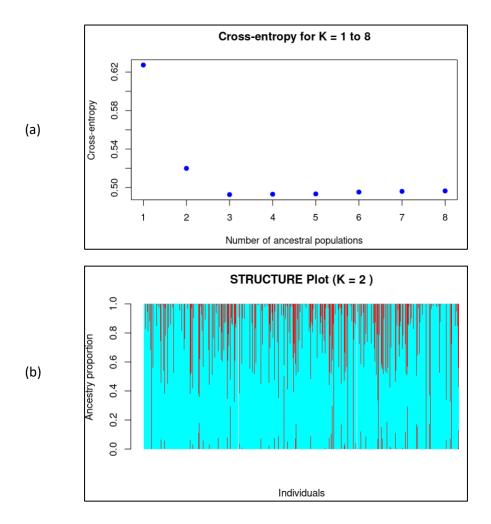

Population structuring among the seven tiger flathead arbitrary groupings was not evident from a PCA, with no clustering of individuals or populations (Figure 5). In the PCA Axis 1, 2 and 3 accounted for 0.8% of genetic variation, indicating weak structuring. This was further supported with a DAPC, showing significant overlap between locations and individuals in each population were not spatially structured, thereby reinforcing the acceptance of the null hypothesis and assumed panmixia (Figure 6). The optimal number of ancestral populations (K) based on the cross-entropy criterion was two (K = 2). However, the STRUCTURE plot indicated no population structuring between locations as despite the optimal number of ancestral populations being 2, all individuals were assigned with a high probability to a single ancestral population (Figure 7). All analyses support the acceptance of the null hypothesis of no genomic differentiation among tiger flathead samples in the SESSF during 2023 to 2024.

Figure 5: Principle Component Analysis (PCA) of tiger flathead (*Platycephalus richardsoni*)) using neutral loci across axis 1 and 2 (a) and axis 2 and 3 (b). The variance explained by each axis is found in parentheses next to the axis label.

Figure 6: (a) Discriminant Analysis of Principle Components (DAPC) performed with neutral SNP genotypes of tiger flathead (*Platycephalus richardsoni*). Clustering was performed using Bayesian Information, with populations (n = 7) specified as priors. Insets show eigenvalues for the first 6 axes (b) Density distributions of locations along the first discriminant function.

Figure 7: (a) Values of the cross-entropy criterion to determine the optimum number of ancestral clusters (b) Ancestry populations and clustering for tiger flathead (*Platycephalus richardsoni*) based on STRUCTURE outputs for SNPs. Colours represent different ancestry populations based on K values. Each vertical bar represents and individual.

Discussion

Here we present the first comprehensive genomic population analysis of tiger flathead. Results indicate that tiger flathead in southeast Australia consists of a single, panmictic population, supporting the acceptance of the null hypothesis. Based on next-generation sequencing of SNPs, these results contribute to the previously limited knowledge on population structuring for the species and these findings can be used to support the management of tiger flathead, supporting long term sustainability of the species.

Genetic diversity and population structure

999

1031

Results indicate no evidence of genetic structuring for tiger flathead along the southeast coast of 1000 1001 Australia. The F_{ST} values (mean = 0.0002) were low, indicating high gene flow between locations 1002 and weak structuring. This is further supported by the Jost's D and Hedrick's G_{ST} values (0.0001 and 1003 0.0003). With values close to zero, this indicates that populations are genetically similar with close 1004 to no genetic variation among populations and similar allele frequencies (Hedrick 2005; Jost 2008). 1005 Furthermore, the AMOVA shows that over 90% of genetic variation occurs within individuals rather than being at a population level, supporting panmixia. A similar study was conducted by van 1006 Herwerden et al 2009 on Red Emperor (Lutjanus sebae) across the west and east coast of Australia. 1007 Results were comparable, showing a panmictic population, with an overall F_{ST} of -0.006 and majority 1008 of genetic variation occurring within individuals rather than populations. Tiger flathead display 1009 modest genetic diversity ($H_O = 0.156$), which is consistent across all arbitrary populations ($H_O =$ 1010 0.156 - 0.160). Although this is on the lower scale of genetic diversity (0-1), this is consistent with 1011 1012 other marine teleosts and there is no sufficient evidence to suggest this is of concern. For example, 1013 snapper (Chrysophrys auratus) from southeastern Australia displays similar genetic diversity, with observed heterozygosity (H_O) ranging from 0.181 to 0.203 (Bertram et al. 2023). 1014 Although there was one significant pairwise difference between locations B and F ($F_{ST} = 0.001$, P-1015 value < 0.01), the overall F_{ST} value (0.002) coupled with the other population homogeneity 1016 1017 parameters suggest no genetic differentiation. This is important to consider in population genomics as Waples (1998) notes that 'not all statistically significant test results indicate biologically important 1018 differences.' If management decisions are based exclusively on statistically significant differences 1019 1020 without considering the biological factors, this can result in the loss of economic, social and cultural benefits associated with the harvest and consumption of a stock. Additionally, if we restrict human 1021 activities (e.g. harvesting) without considering biological validity, it can increase the difficulty in 1022 achieving sustainable resource management in the future (Waples 1998). For example, studies using 1023 1024 discrete genetic data assume that sampling is multinominal and a violation of this assumption can result in a significant test result despite there being no differences in populations. When conducting 1025 genetic studies such as this, sampling protocols almost always violate this assumption (Waples 1998). 1026 Therefore, despite the significant statistical pairwise difference between locations B and F; 1027 biologically, it can be assumed that there is minimal to no genetic differentiation between the 1028 1029 locations. These findings are further supported by the STRUCTURE plot, with almost all individuals primarily 1030

belonging to one cluster (cyan). Despite the optimal number of clusters from the cross-entropy being

K = 2; looking at these results against the PCA, DAPC and F_{ST} values, it can be concluded that there 1032 is minimal to no population structuring for tiger flathead. This is a common limitation of the delta K 1033 method for identifying optimal cluster numbers in a STRUCTURE analysis. This method can often 1034 result in the over or underestimation of population structure. For example, delta K does not allow the 1035 1036 optimal number of clusters to be K = 1, therefore, conducting STRUCTURE analysis alongside other methods such as PCA and DAPC is key in ensuring findings are not misinterpreted (Janes et al. 2017). 1037 1038 These genetic findings suggest that population connectivity is being maintained despite adult tiger 1039 flathead being relatively sedentary (Australian Fisheries Management Authority n.d.) This potential for population connectivity aligns with the hypotheses that eggs and larvae are well distributed by the 1040 currents and counter currents of the east Australian coast (Fairbridge 1951). Despite limited 1041 knowledge on the pelagic larval duration of tiger flathead; other platycephalid species such as the 1042 dusky flathead (P. fuscus) and sand flathead (P. bassensis) have pelagic larval durations that range 1043 from around 20 days to 2 months (Hamer et al. 2010, Hirst et al. 2014, Pecl et al. 2011). This suggests 1044 that the pelagic larval duration of tiger flathead is long enough to support passive movement and 1045 mixing along the southeast coast of Australia. 1046 1047 This pattern of dispersal has been widely observed and is the primary dispersal mechanism supporting connectivity of marine populations (Booth et al. 2007; van Herwerden et al 2009). One of the main 1048 1049 oceanographic drivers of gene flow for tiger flathead would be the East Australian Current (EAC). The EAC is a western boundary current, running along the east coast of Australia from ~ 22° S to 1050 43°S latitude, reaching velocities up to ~90 cm/s (Ridgway & Dunn 2003). The EAC has powerful 1051 dispersal mechanisms for marine fish, transporting tropical larval fish down into temperate waters 1052 (Booth et al. 2007). The EAC strengthens in the austral summer (December to February), bringing 1053 high eddy kinetic energy and southward extension which in turn, promotes the transportation and 1054 connectivity of fish populations (Xu et al. 2022). The strengthening of the EAC over the austral 1055 summer also coincides with tiger flathead spawning season, thus promoting gene flow between 1056 locations. Other *platycephalid* species also experience larval dispersal and connectivity through ocean 1057 1058 currents. For example, a newly recognised *platycephalus* species in China has population connectivity 1059 driven by the Taiwan Warm Current and Yellow Sea Warm Current as well as winter monsoon winds. 1060 Conversely, a genetically distinct population of the same species in Tokyo Bay is more genetically isolated due to barriers created by the Japanese landmass and Kuroshio and Tsushima Warm Current 1061

1062

(Cheng et al. 2019).

Phenotypic plasticity and environmental factors

Given tiger flathead form a single, panmictic population, the observed regional differences, such as differences in growth rates, appearance and spawning seasons, suggest that this is the result of phenotypic plasticity, or epigenetic differences rather than having any underlying population structuring (West-Eberhard 2005). Tiger flathead may adapt to their local environmental conditions such as habitat, temperature and food availability, resulting in varying morphological differences. This has been observed in other marine species, for example, the european anchovy (*Engraulis encrasicolus*) comprises of a single panmictic population in the north-western Mediterranean. However, fish from various locations within this area exhibit morphological differences driven by environmental factors (Tudela 1999). Investigating the epigenetic differences of tiger flathead would provide further understanding behind these observed morphological differences and may provide insight in the species' adaptive capability and resilience. This can be particularly relevant to better understand how the species may adapt to climate change (Mattoo et al. 2025). It is important to note that this type of analysis requires a deeper understanding of the whole genome, however, to support this, a reference genome for the genus *Platycephalus* has recently been sequenced and is currently undergoing assembly (Green, M, personal communication, September 11, 2025).

Differences in size and age of fish observed off Tasmania may also be due to differences in fishing pressure. Through the use of different gear types and more intensive harvesting, fisheries pressure can impact populations by disproportionately removing larger fish from populations. This can result in an evolutionary response, with more heavily fished individuals maturing earlier and at a smaller size (Mishra 2025). Therefore, this would mean that fish off Tasmania are more lightly fished than those off Victoria and New South Wales. Stock assessments for tiger flathead currently account for differences in length compositions in Tasmania through the use of an areas-as-fleets approach (Bessell-Browne 2022). This involves treating different spatial areas as 'fleets' to account varying fishing intensities across a single stock, rather than conducting separate stock assessments (Cope & Punt 2011).

Limitations

It is important to note that due to time and sampling constraints, this study only focusses on eastern individuals across the distribution of the species. Future research should incorporate samples from western Tasmania and the western Bass Strait to strengthen the understanding of tiger flathead population structure across the entire range. Additionally, only five samples were able to be collected from 35° S, therefore these were incorporated into population alongside samples from 36° S. More

samples from 35° S and further north should be collected and incorporated into the analysis in future studies.

Cross-contamination between samples is a risk when conducting bottom trawling and processing. Although all efforts to avoid cross contamination were implemented, this remains a limitation to conducting studies on this scale. Furthermore, multiple technicians conducted sampling of muscle tissue. A standard protocol was used for subsampling; however, multiple handlers can introduce uncertainty and risk of sampling error. Sex specific data was only obtained for a small portion of samples. Given acceptance of the null hypothesis, further sex specific and temporal analyses were not conducted, however this may limit further analysis should it be undertaken in the future.

Although SNPs are a powerful tool for population genomic studies, they also come with a range of limitations which are important to understand. To generate comprehensive SNP datasets, they require large portions of high-quality DNA. This was able to be obtained in this study as tiger flathead are not a species of concern, allowing invasive techniques to be used to obtain DNA. However, this can be difficult to obtain for other species such as those that are protected due conservation concern (Zimmerman et al. 2020). SNPs are only biallelic, which provide less information than polymorphic markers such as microsatellites. However, SNPs are much more abundant and accessible than their microsatellites counterparts, making them a preferred alternative for many studies (Xiong & Jin 1999). Finally, ascertainment bias is a limitation to using SNPs in population genomic studies. This is the result of non-random sampling of individuals and / or biased SNP discovery methods which can skew results (Lachance & Tishkoff 2013). Ascertainment bias can only be removed if the whole genome is sequenced for every individual within a population, which was not able to be undertaken in this study. However, ascertainment bias is less of a concern in population genomics studies as it still allows sufficient detection of individual clustering (Morin et al. 2004).

Management implications and future research

This study is a positive step towards understanding key knowledge gaps for the sustainable management of tiger flathead, an important commercial species within Australia. The findings are congruent with current management strategies, supporting the assumption used in stock assessments that tiger flathead form a single panmictic population (Bessell-Browne 2022). Further research should focus on updating outdated biological parameters such as maturity and weight-length relationship to increase the robustness and reliability of stock assessments for the species. Epigenetic studies on tiger flathead adaptability and resilience, particularly in a warming climate may also be useful in determining how climate change may impact abundance and distribution of tiger flathead. This will

1127	provide insight into the morphological differences observed across the geographic range and the
1128	drivers behind those differences.
1129	Ensuring up to date biological data for wild catch fisheries is essential to ensure sustainable fisheries
1130	management. Although population structure for tiger flathead is now better understood, ongoing
1131	monitoring and population genomic studies still need to be undertaken in the future to ensure we are
1132	capturing any genetic structuring that may arise. Should the status of the fishery change, this may
1133	need to be conducted on a more regular basis to understand impacts on the genetic diversity and
1134	structural changes of the species.
1135	The datasets and raw data analysed in the study are available in the CSIRO and University of
1136	Tasmania SharePoint.
1137	

1138 References

- Andersson, L., Bekkevold, D., Berg, F., Farrell, E. D., Felkel, S., Ferreira, M. S., Fuentes-Pardo, A.
- P., Goodall, J., & Pettersson, M. (2024). How fish population genomics can promote sustainable
- fisheries: A road map. Annual Review of Animal Biosciences, 12, 1–20.
- 1143 Australian Fisheries Management Authority. (2025). Southern and Eastern Scalefish and Shark
- 1144 Fishery (SESSF): Species summaries 2025.
- 1145 Australian Fisheries Management Authority. (n.d.). Southern and Eastern Scalefish and Shark
- 1146 *Fishery*. https://www.afma.gov.au/fisheries/southern-and-eastern-scalefish-and-shark-fishery
- Australian National Fish Collection, CSIRO, & Bray, D. J. (2021). Tiger flathead, Platycephalus
- 1148 richardsoni. https://fishesofaustralia.net.au/Home/species/3363
- Barnes, L. M., Gray, C. A., & Williamson, J. E. (2011). Divergence of the growth characteristics and
- longevity of coexisting Platycephalidae (Pisces). Marine and Freshwater Research, 62(11), 1308–
- 1151 1318.
- Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful
- approach to multiple testing. Journal of the Royal Statistical Society Series B: Statistical
- 1154 *Methodology*, 57(1), 289–300.
- Bertram, A., Bell, J., Brauer, C. J., Fowler, A., Hamer, P., Sandoval-Castillo, J., Stewart, J.,
- Wellenreuther, M., & Beheregaray, L. B. (2023). Biogeographic provinces and genomically
- delineated stocks are congruent in snapper (*Chrysophrys auratus*) from southeastern Australia. *ICES*
- 1158 *Journal of Marine Science*, 80(5), 1422–1430.
- Bessell-Browne, P. (2022). Tiger flathead (Neoplatycephalus richardsoni) stock assessment based
- on data up to 2021. Department of Agriculture, Fisheries and Forestry.
- Bogard, J. R., Farmery, A. K., Baird, D. L., Hendrie, G. A., & Zhou, S. (2019). Linking production
- and consumption: The role for fish and seafood in a healthy and sustainable Australian diet. *Nutrients*,
- 1163 *11*(8), Article 1766.
- Booth, D. J., Figueira, W. F., Gregson, M. A., Brown, L., & Beretta, G. (2007). Occurrence of tropical
- fishes in temperate southeastern Australia: Role of the East Australian Current. Estuarine, Coastal
- and Shelf Science, 72(1–2), 102–114.

- Bruce, B. D., Bradford, R., Daley, R., Green, M., & Phillips, K. (2002). Targeted review of biological
- and ecological information from fisheries research in the South East Marine Region (Final report).
- 1169 CSIRO Marine Research.
- Bulman, C., Althaus, F., He, X., Bax, N. J., & Williams, A. (2001). Diets and trophic guilds of
- demersal fishes of the south-eastern Australian shelf. Marine and Freshwater Research, 52(4), 537–
- 1172 548.
- Butler, I., Garrett, R., Hobsbawn, P., Thorpe, R., & Young, A. (2023). Fisheries status reports 2023.
- 1174 Department of Agriculture, Fisheries and Forestry.
- https://daff.ent.sirsidynix.net.au/client/en_AU/ABARES/search/detailnonmodal/ent:\$002f\$002f\$D
- 1176 ASSET\$002f0\$002fSD ASSET:1035183/one
- 1177 Cadrin, S. X. (2020). Defining spatial structure for fishery stock assessment. *Fisheries Research*, 221,
- 1178 Article 105397.
- 1179 Cheng, J., Wang, Z., Song, N., Yin, J., Yang, R., Gao, T., & Han, Z. (2019). Phylogeographic analysis
- of the genus *Platycephalus* along the coastline of the northwestern Pacific inferred by mitochondrial
- 1181 DNA. BMC Evolutionary Biology, 19, Article 159.
- 1182 Colefax, A. (1934). A preliminary investigation of the natural history of the tiger flathead
- 1183 (Neoplatycephalus macrodon) on the SE Australian coast.
- 1184 Cope, J. M., & Punt, A. E. (2011). Reconciling stock assessment and management scales under
- 1185 conditions of spatially varying catch histories. Fisheries Research, 107(1–3), 22–38.
- Cuéllar-Pinzón, J., Presa, P., Hawkins, S. J., & Pita, A. (2016). Genetic markers in marine fisheries:
- Types, tasks and trends. Fisheries Research, 173(Part 3), 194–205.
- 1188 DCCEEW. (2025). Assessment of the Commonwealth Southern and Eastern Scalefish and Shark
- 1189 Fishery. Australian Government Department of Climate Change, Energy, the Environment and
- 1190 Water.
- Diversity Arrays Technology Pty Ltd. (n.d.). DArTseq services. Retrieved October 8, 2025, from
- 1192 https://www.diversityarrays.com/services/dartseq/
- Edgar, G. (2008). Australian marine life. Reed New Holland.
- Evans, K., Fulton, B., Bulman, C., Day, J., Appleyard, S., Farley, J., Williams, A., & Zhou, S. (2022).
- Revising biological parameters and information used in the assessment of Commonwealth fisheries:
- 1196 A reality check and work plan for future proofing. CSIRO Oceans and Atmosphere.

- Fairbridge, W. (1951). The New South Wales tiger flathead, *Neoplatycephalus macrodon* (Ogilby).
- 1198 I. Biology and age determination. *Marine and Freshwater Research*, 2(2), 117–130.
- 1199 Frichot, E., & François, O. (2015). LEA: An R package for landscape and ecological association
- studies. *Methods in Ecology and Evolution*, 6(8), 925–929.
- 1201 Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G., & François, O. (2014). Fast and efficient
- estimation of individual ancestry coefficients. *Genetics*, 196(4), 973–983.
- Goudet, J. (2005). HIERFSTAT, a package for R to compute and test hierarchical F-statistics.
- 1204 *Molecular Ecology Notes*, *5*(1), 184–186.
- 1205 Gray, C. A., & Miskiewicz, A. G. (2000). Larval fish assemblages in south-east Australian coastal
- waters: Seasonal and spatial structure. Estuarine, Coastal and Shelf Science, 50(4), 549–570.
- Gruber, B., Unmack, P. J., Berry, O. F., & Georges, A. (2018). dartr: An r package to facilitate
- analysis of SNP data generated from reduced representation genome sequencing. *Molecular Ecology*
- 1209 Resources, 18(3), 691–699.
- Grummer, J. A., Beheregaray, L. B., Bernatchez, L., Hand, B. K., Luikart, G., Narum, S. R., & Taylor,
- E. B. (2019). Aquatic landscape genomics and environmental effects on genetic variation. *Trends in*
- 1212 *Ecology & Evolution*, *34*(7), 641–654.
- Guillén, J., Natale, F., Carvalho, N., Casey, J., Hofherr, J., Druon, J.-N., Fiore, G., Gibin, M., Zanzi,
- A., & Martinsohn, J. T. (2019). Global seafood consumption footprint. *Ambio*, 48(2), 111–122.
- Hamer, P., Kemp, J., & Kent, J. (2010). *Analysis of existing data on sand flathead larval and juvenile*
- 1216 recruitment in Port Phillip Bay.
- Hedrick, P. W. (2005). A standardized genetic differentiation measure. *Evolution*, 59(8), 1633–1638.
- Hirst, A., Rees, C., Hamer, P., Conron, S., & Kemp, J. (2014). The decline of sand flathead stocks in
- 1219 Port Phillip Bay: Magnitude, causes and future prospects (Recreational Fishing Grant Program
- 1220 Research Report). Fisheries Victoria.
- Hobday, A. J., & Pecl, G. T. (2014). Identification of global marine hotspots: Sentinels for change
- and vanguards for adaptation action. *Reviews in Fish Biology and Fisheries*, 24(2), 415–425.
- Holbrook, N. J., & Johnson, J. E. (2014). Climate change impacts and adaptation of commercial
- marine fisheries in Australia: A review of the science. Climatic Change, 124(4), 703–715.
- Janes, J. K., Miller, J. M., Dupuis, J. R., Malenfant, R. M., Gorrell, J. C., Cullingham, C. I., & Andrew,
- 1226 R. L. (2017). The K = 2 conundrum. *Molecular Ecology*, 26(14), 3594-3602.

- Jombart, T. (2008). adegenet: A R package for the multivariate analysis of genetic markers.
- 1228 Bioinformatics, 24(11), 1403–1405.
- Jost, L. (2008). GST and its relatives do not measure differentiation. *Molecular Ecology*, 17(18),
- 1230 4015–4026.
- Kailola, P., Williams, M., Stewart, P., Reichelt, R., McNee, A., & Grieve, C. (1993). Australian
- 1232 fisheries resources. Bureau of Resource Sciences.
- Kilian, A., Wenzl, P., Huttner, E., Carling, J., Xia, L., Blois, H., Caig, V., Heller-Uszynska, K.,
- Jaccoud, D., Hopper, C., Aschenbrenner-Kilian, M., Evers, M., Peng, K., Cayla, C., Hok, P., &
- 1235 Uszynski, G. (2012). Diversity arrays technology: A generic genome profiling technology on open
- platforms. *Methods in Molecular Biology*, 888, 67–89.
- Lachance, J., & Tishkoff, S. A. (2013). SNP ascertainment bias in population genetic analyses: Why
- it is important, and how to correct it. *BioEssays*, 35(9), 780–786.
- Mattoo, A. I., Wasim, M., Bhat, F. A., & Iqbal, D. S. (2025). Epigenetic mechanisms in fish: Insights
- into adaptation, resilience, and conservation. In I. Ahmed & I. Ahmad (Eds.), Aquaculture:
- 1241 Enhancing food security and nutrition. Springer.
- Meirmans, P. G., & Hedrick, P. W. (2011). Assessing population structure: FST and related measures.
- 1243 *Molecular Ecology Resources*, 11(1), 5–18.
- Mishra, A. (2025). Fishery-induced evolution: Implications for long-term resource sustainability.
- 1245 *Journal of Fish Research*, *9*(3), 269.
- Montgomery, S. S. (1985). Aspects of the biology of the tiger flathead P. richardsoni and the
- associated fishery [Doctoral dissertation, UNSW Sydney]. http://hdl.handle.net/1959.4/67721
- Morin, P. A., Luikart, G., Wayne, R. K., & the SNP workshop group. (2004). SNPs in ecology,
- evolution and conservation. Trends in Ecology & Evolution, 19(4), 208–216.
- Ovenden, J. R. (2013). Crinkles in connectivity: Combining genetics and other types of biological
- data to estimate movement and interbreeding between populations. *Marine and Freshwater Research*,
- 1252 *64*(3), 201–207.
- Payet, S. D., Underwood, J., Berry, O., Williamson, J., Macbeth, M., Travers, M., Wedd, D.,
- Saunders, T., & Wellenreuther, M. (2024). Population genomics informs the management of
- harvested snappers across north-western Australia. Scientific Reports, 14, Article 26598.

- Pecl, G. T., Doubleday, Z., Ward, T., Clarke, S., Day, J., Dixon, C., Frusher, S., Gibbs, P., Hobday,
- A., Hutchinson, N., Jennings, S., Jones, K., Li, X., Spooner, D., & Stoklosa, R. (2011). Risk
- assessment of impacts of climate change for key marine species in South Eastern Australia. Part 2:
- Species profiles (Fisheries and Aquaculture Risk Assessment, FRDC Project 2009/070). Fisheries
- 1260 Research and Development Corporation.
- Ridgway, K. R., & Dunn, J. R. (2003). Mesoscale structure of the mean East Australian Current
- 1262 System and its relationship with topography. *Progress in Oceanography*, 56(2), 189–222.
- Smith, A. D. M., & Smith, D. C. (2001). A complex quota-managed fishery: Science and management
- in Australia's South East Fishery. Introduction and overview. Marine and Freshwater Research,
- 1265 *52*(4), 353–359.
- Smith, K., Watson, A. W., Lonnie, M., Peeters, W. M., Oonincx, D., Tsoutsoura, N., Simon-Miquel,
- 1267 G., Szepe, K., Cochetel, N., Pearson, A. G., Witard, O. C., Salter, A. M., Bennett, M., & Corfe, B.
- 1268 M. (2024). Meeting the global protein supply requirements of a growing and ageing population.
- 1269 European Journal of Nutrition, 63(5), 1425–1433.
- 1270 Tilzey, R. D. J., & Australia. Bureau of Rural Resources. (1990). The South east trawl fishery:
- Biological synopses and catch distributions for seven major commercial fish species. Australian
- 1272 Government Publishing Service.
- 1273 Tudela, S. (1999). Morphological variability in a Mediterranean, genetically homogeneous
- population of the European anchovy, *Engraulis encrasicolus*. *Fisheries Research*, 42(3), 229–243.
- van Herwerden, L., Aspden, W. J., Newman, S. J., Pegg, G. G., Briskey, L., & Sinclair, W. (2009).
- 1276 A comparison of the population genetics of *Lethrinus miniatus* and *Lutjanus sebae* from the east and
- west coasts of Australia: Evidence for panmixia and isolation. Fisheries Research, 100(2), 148–155.
- Walton, A., Aylward, A., Thomas, M. G., & Rutherford, A. (2025). The history of the panmictic
- population concept and its legacy in contemporary population genetics. Annals of Human Genetics,
- 1280 *89*(5), 274–284.
- Waples, R. S. (1998). Separating the wheat from the chaff: Patterns of genetic differentiation in high
- gene flow species. *Journal of Heredity*, 89(5), 438–450.
- Waples, R. S., & Gaggiotti, O. (2006). What is a population? An empirical evaluation of some genetic
- methods for identifying the number of gene pools and their degree of connectivity. *Molecular*
- 1285 *Ecology*, *15*(6), 1419–1439.

- Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population
- 1287 structure. *Evolution*, 38(6), 1358–1370.
- 1288 West-Eberhard, M. J. (2005). Phenotypic accommodation: Adaptive innovation due to developmental
- 1289 plasticity. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution,
- 1290 *304B*(6), 610–618.
- Wright, D., Emery, T., & Dylewski, M. (2024). Chapter 7 Southern and Eastern Scalefish and Shark
- Fishery. https://daff.ent.sirsidynix.net.au/client/en AU/search/asset/1036261/7
- 1293 Xiong, M., & Jin, L. (1999). Comparison of the power and accuracy of biallelic and microsatellite
- markers in population-based gene-mapping methods. American Journal of Human Genetics, 64(2),
- 1295 629-640.
- 1296 Xu, Z., Yang, C., Chen, X., & Qi, Y. (2022). Seasonal variation of intra-seasonal eddy kinetic energy
- along the East Australian Current. *Water*, 14(22), Article 3725.
- Zemeckis, D. R., Martins, D., Kerr, L. A., & Cadrin, S. X. (2014). Stock identification of Atlantic
- 1299 cod (Gadus morhua) in US waters: An interdisciplinary approach. ICES Journal of Marine Science,
- 1300 *71*(6), 1490–1506.
- Zimmerman, S. J., Aldridge, C. L., & Oyler-McCance, S. J. (2020). An empirical comparison of
- population genetic analyses using microsatellite and SNP data for a species of conservation concern.
- 1303 *BMC Genomics, 21,* 382.

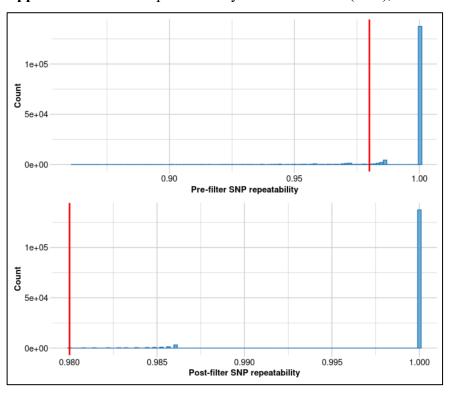
1304 Appendix

1305

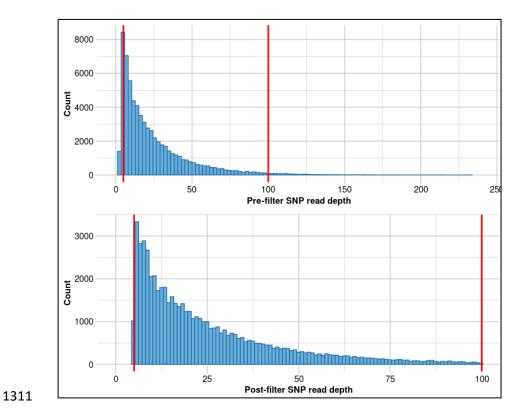
1306

Appendix A: Metadata for 188 tissue samples of tiger flathead (Platycephalus richardsoni).

Voyage	Sample ID	Sampling Date	Latitude	Longitude	Length (mm)	Weight (g)	Sex
IN2024_V05	10098937	14/11/2024	-42.16909	148.525897	370	356	M
IN2024_V05	10098877	14/11/2024	-42.16909	148.525897	418	516	M
IN2024_V05	10098882	14/11/2024	-42.16909	148.525897	411	486	F
IN2024_V05	10098906	14/11/2024	-42.16909	148.525897	442	651	M
IN2024_V05	10098903	14/11/2024	-42.16909	148.525897	472	768	M
IN2023_V05	10084740	28/07/2023	-42.11222	148.526193	411	532	NA
IN2023_V05	10084761	28/07/2023	-42.11222	148.526193	449	650	NA
IN2023_V05	10084770	28/07/2023	-42.11222	148.526193	435	570	NA
IN2023_V05	10084808	28/07/2023	-42.11222	148.526193	379	424	NA
IN2023_V05	10084810	28/07/2023	-42.11222	148.526193	477	720	NA
IN2023_V05	10085824	28/07/2023	-42.11222	148.526193	461	636	NA
IN2023_V05	10085923	28/07/2023	-42.094049	148.615655	414	566	NA
IN2023_V05	10084804	28/07/2023	-42.087384	148.565009	408	483	NA
IN2023_V05	10084837	28/07/2023	-42.087384	148.565009	525	1106	NA
IN2023_V05	10084841	28/07/2023	-42.087384	148.565009	382	378	NA
IN2023_V05	10084881	28/07/2023	-42.087384	148.565009	366	367	NA
IN2023_V05	10084916	28/07/2023	-42.087384	148.565009	367	377	NA
IN2023_V05	10084938	28/07/2023	-42.087384	148.565009	340	297	NA
IN2023_V05	10084940	28/07/2023	-42.087384	148.565009	434	670	NA
IN2023_V05	10084968	28/07/2023	-42.087384	148.565009	502	1015	NA
IN2023_V05	10084970	28/07/2023	-42.087384	148.565009	440	587	NA
IN2024_V05	10099047	14/11/2024	-42.075914	148.482196	362	360	F
IN2024_V05	10098989	14/11/2024	-42.075914	148.482196	317	247	F
IN2024_V05	10099049	14/11/2024	-42.075914	148.482196	274	153	F
IN2024_V05	10098986	14/11/2024	-42.075914	148.482196	396	513	F
IN2024_V05	10099035	14/11/2024	-42.075914	148.482196	301	210	M
IN2024_V05	10099315	15/11/2024	-41.86854	148.584459	391	433	M
IN2024_V05	10098850	15/11/2024	-41.781094	148.540289	495	930	M
IN2024_V05	10109862	11/12/2024	-41.723795	148.444162	353	336	M
IN2024_V05	10109811	11/12/2024	-41.723795	148.444162	310	242	F
IN2024_V05	10106769	8/12/2024	-41.410511	148.586604	300	188	M
IN2024_V05	10106875	8/12/2024	-41.385663	148.568725	427	516	F
IN2024_V03	10086172	5/05/2024	-41.227653	148.439928	183	37	NA
IN2024_V03	10086368	5/05/2024	-41.227653	148.439928	238	83	NA
IN2024_V03	10089455	5/05/2024	-41.227653	148.439928	228	79	NA

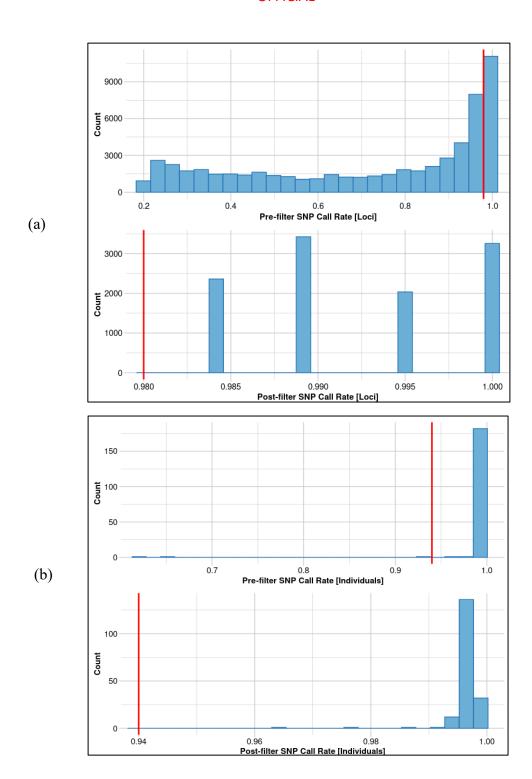

IN2024_V03	10089482	5/05/2024	-41.227653	148.439928	240	93	NA
IN2024_V03	10089495	5/05/2024	-41.227653	148.439928	264	136	NA
IN2024_V03	10089543	5/05/2024	-41.227653	148.439928	230	76	NA
IN2024_V03	10089569	5/05/2024	-41.227653	148.439928	403	441	NA
IN2024_V03	10089442	5/05/2024	-41.215342	148.517978	346	322	NA
IN2024_V03	10089475	5/05/2024	-41.215342	148.517978	285	172	NA
IN2024_V05	10098800	16/11/2024	-41.176812	148.371173	274	140	M
IN2024_V03	10089843	5/05/2024	-41.175434	148.481131	233	78	NA
IN2024_V05	10099171	16/11/2024	-41.124056	148.405518	286	152	M
IN2023_V05	10085056	24/07/2023	-41.110295	148.473097	373	403	NA
IN2023_V05	10085132	24/07/2023	-41.110295	148.473097	393	736	NA
IN2023_V05	10085135	24/07/2023	-41.110295	148.473097	330	327	NA
IN2023_V05	10085161	24/07/2023	-41.110295	148.473097	430	726	NA
IN2023_V05	10085197	24/07/2023	-41.110295	148.473097	297	209	NA
IN2024_V05	10101568	16/11/2024	-41.107141	148.385994	378	393	F
IN2023_V05	10085208	24/07/2023	-41.060924	148.474113	271	152	NA
IN2023_V05	10085213	24/07/2023	-41.060924	148.474113	354	311	NA
IN2024_V05	10106441	9/12/2024	-40.827154	148.685474	329	300	M
IN2024_V05	10105369	9/12/2024	-40.827154	148.685474	294	230	M
IN2024_V05	10108664	9/12/2024	-40.753485	148.628509	284	171	M
IN2024_V05	10109504	10/12/2024	-40.699212	148.75471	403	567	F
IN2024_V05	10109480	10/12/2024	-40.699212	148.75471	475	906	F
IN2024_V03	10086129	6/05/2024	-40.680163	148.739391	286	183	M
IN2024_V03	10086150	6/05/2024	-40.680163	148.739391	275	143	M
IN2024_V03	10086189	6/05/2024	-40.680163	148.739391	405	544	M
IN2024_V03	10089144	6/05/2024	-40.628374	148.679936	440	532	NA
IN2024_V03	10090638	7/05/2024	-40.594909	148.714739	329	211	NA
IN2024_V03	10090377	6/05/2024	-40.57104	148.795779	363	336	F
IN2023_V05	10083704	25/07/2023	-40.505644	148.825067	384	401	NA
IN2023_V05	10085206	25/07/2023	-40.505644	148.825067	453	775	NA
IN2024_V05	10107676	7/12/2024	-40.358497	148.774063	330	317	M
IN2024_V05	10108818	7/12/2024	-40.358497	148.774063	377	454	M
IN2024_V05	10107500	7/12/2024	-40.340575	148.756774	367	392	M
IN2024_V03	10091161	8/05/2024	-40.333214	148.761691	372	432	M
IN2024_V03	10091162	8/05/2024	-40.333214	148.761691	469	750	F
IN2023_V05	10080179	1/07/2023	-40.323211	148.768471	492	945	F
IN2024_V05	10108390	7/12/2024	-40.274876	148.70242	439	739	F
IN2024_V03	10091074	8/05/2024	-40.274316	148.702581	229	80	NA
IN2024_V03	10091075	8/05/2024	-40.274316	148.702581	354	400	M
IN2023_V05	10080352	2/07/2023	-40.096587	148.752493	414	622	F

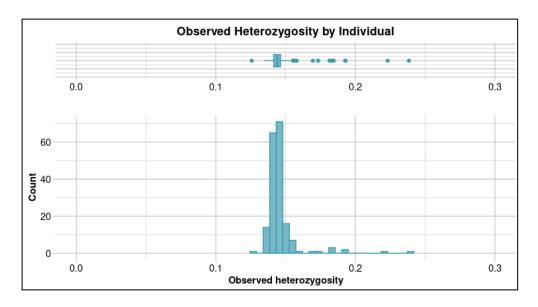
IN2023_V05	10080520	2/07/2023	-40.053854	148.719825	339	266	M
IN2023_V05	10080617	2/07/2023	-40.053854	148.719825	397	445	M
IN2023_V05	10080622	2/07/2023	-40.053854	148.719825	424	563	F
IN2023_V05	10080594	2/07/2023	-40.044098	148.714092	304	184	M
IN2024_V05	10101682	18/11/2024	-39.948054	148.739887	361	334	F
IN2024_V05	10101869	18/11/2024	-39.948054	148.739887	468	788	F
IN2024_V05	10101300	18/11/2024	-39.894756	148.75802	344	284	M
IN2024_V03	10091179	9/05/2024	-39.537952	148.678491	299	190	NA
IN2024_V03	10091182	9/05/2024	-39.537952	148.678491	408	573	NA
IN2024_V03	10091190	9/05/2024	-39.537952	148.678491	328	295	NA
IN2024_V03	10091192	9/05/2024	-39.537952	148.678491	478	904	NA
IN2024_V05	10101303	19/11/2024	-39.537573	148.677762	398	459	M
IN2023_V05	10080845	3/07/2023	-39.535029	148.676298	368	329	F
IN2023_V05	10080905	3/07/2023	-39.535029	148.676298	379	406	F
IN2024_V03	10091236	9/05/2024	-39.487866	148.568563	467	748	NA
IN2024_V03	10091267	9/05/2024	-39.487866	148.568563	368	351	NA
IN2024_V03	10091364	9/05/2024	-39.487866	148.568563	292	168	NA
IN2024_V05	10099932	19/11/2024	-39.475514	148.572277	311	196	F
IN2024_V05	10100053	19/11/2024	-39.475514	148.572277	328	274	M
IN2023_V05	10081271	3/07/2023	-39.471432	148.553257	222	74	F
IN2023_V05	10081305	3/07/2023	-39.471432	148.553257	267	124	F
IN2023_V05	10081306	3/07/2023	-39.471432	148.553257	248	99	F
IN2024_V03	10091165	9/05/2024	-39.469257	148.552751	397	506	F
IN2024_V05	10102073	19/11/2024	-39.452368	148.544117	228	85	F
IN2024_V05	10101916	19/11/2024	-39.452368	148.544117	346	337	F
IN2023_V05	10081089	4/07/2023	-39.342528	148.599113	387	458	F
IN2023_V05	10081804	4/07/2023	-39.342528	148.599113	428	587	F
IN2023_V05	10081819	4/07/2023	-39.31761	148.624692	415	508	F
IN2024_V05	10108274	6/12/2024	-39.315066	148.605753	350	345	F
IN2023_V05	10081718	4/07/2023	-39.29805	148.65133	537	1184	F
IN2024_V03	10092835	11/05/2024	-38.879973	148.294572	365	376	M
IN2024_V03	10092862	11/05/2024	-38.879973	148.294572	399	522	F
IN2024_V03	10092869	11/05/2024	-38.879973	148.294572	312	264	F
IN2023_V05	10084715	23/07/2023	-38.216301	149.154564	442	631	NA
IN2023_V05	10084900	23/07/2023	-38.216301	149.154564	497	878	NA
IN2023_V05	10084920	23/07/2023	-38.216301	149.154564	449	652	NA
IN2023_V05	10084924	23/07/2023	-38.216301	149.154564	428	573	NA
IN2024_V05	10108601	4/12/2024	-38.211337	149.154044	529	1376	F
IN2024_V05	10108617	4/12/2024	-38.211337	149.154044	580	1583	F
IN2023_V05	10084510	22/07/2023	-38.204931	149.304733	550	1326	NA


IN2023_V05	10084592	22/07/2023	-38.204931	149.304733	580	1620	NA
IN2023_V05	10084596	22/07/2023	-38.204931	149.304733	558	1474	NA
IN2023_V05	10084650	22/07/2023	-38.204931	149.304733	513	1030	NA
IN2023_V05	10084706	22/07/2023	-38.204931	149.304733	582	1782	NA
IN2024_V03	10093223	15/05/2024	-38.199809	149.307747	577	1596	F
IN2024_V03	10093303	15/05/2024	-38.199809	149.307747	567	1570	F
IN2024_V05	10107047	3/12/2024	-38.19259	149.232267	595	1908	F
IN2024_V03	10094863	20/05/2024	-38.165202	149.652505	571	1476	NA
IN2024_V05	10108880	2/12/2024	-38.127051	149.604202	436	714	M
IN2024_V05	10108877	2/12/2024	-38.127051	149.604202	395	536	F
IN2024_V03	10092526	15/05/2024	-38.109721	149.321603	415	499	NA
IN2024_V03	10094841	20/05/2024	-38.102355	149.540298	453	846	NA
IN2024_V03	10094496	20/05/2024	-38.093468	149.693281	418	590	NA
IN2024_V03	10094570	20/05/2024	-38.093468	149.693281	392	512	NA
IN2024_V05	10107298	30/11/2024	-38.071416	149.87468	394	498	M
IN2024_V05	10108498	3/12/2024	-38.044246	149.130094	385	463	F
IN2024_V05	10107057	1/12/2024	-37.978227	149.300338	528	1200	F
IN2024_V05	10106921	1/12/2024	-37.978227	149.300338	378	491	M
IN2024_V05	10106422	1/12/2024	-37.97331	149.358791	455	618	F
IN2023_V05	10083806	17/07/2023	-37.911535	150.049456	501	1013	NA
IN2024_V05	10104676	29/11/2024	-37.836893	149.860365	351	406	F
IN2024_V03	10096102	22/05/2024	-37.733376	150.066029	402	513	M
IN2023_V05	10081867	15/07/2023	-37.733183	150.068486	485	800	NA
IN2023_V05	10083386	15/07/2023	-37.733183	150.068486	461	774	NA
IN2024_V05	10103064	22/11/2024	-37.717444	149.924109	363	364	M
IN2023_V05	10082373	15/07/2023	-37.700167	150.128705	478	878	NA
IN2023_V05	10083645	16/07/2023	-37.670804	149.962068	406	516	NA
IN2024_V05	10102772	22/11/2024	-37.624079	149.848454	328	250	F
IN2023_V05	10083522	16/07/2023	-37.617319	149.908929	229	75	NA
IN2024_V03	10096806	23/05/2024	-37.593918	150.204906	488	873	NA
IN2024_V03	10096900	23/05/2024	-37.593918	150.204906	436	667	NA
IN2024_V03	10093262	19/05/2024	-37.447453	150.261019	389	519	F
IN2024_V05	10102171	23/11/2024	-37.395047	150.04169	317	226	M
IN2024_V05	10101935	23/11/2024	-37.351707	150.110871	364	388	M
IN2023_V05	10083276	8/07/2023	-37.329757	150.077422	144	18	NA
IN2024_V05	10101653	23/11/2024	-37.319282	150.086646	321	248	M
IN2024_V03	10093822	17/05/2024	-37.313615	150.19154	328	232	NA
IN2024_V03	10093935	17/05/2024	-37.313615	150.19154	288	146	NA
IN2024_V03	10093541	17/05/2024	-37.291586	150.290646	426	624	NA
IN2024_V03	10097888	24/05/2024	-37.163332	150.351226	470	820	F

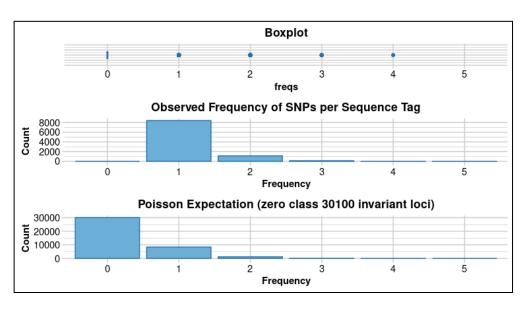
IN2024_V03 10093625 16/05/2024 -37.121335 150.233585 369 386 IN2024_V03 10093850 16/05/2024 -37.121335 150.233585 319 234 IN2024_V03 10096368 25/05/2024 -36.95673 150.056586 308 196 IN2023_V05 10082761 13/07/2023 -36.944279 150.098437 285 172 IN2023_V05 10082805 13/07/2023 -36.944279 150.098437 347 314	NA NA NA
IN2024_V03 10096368 25/05/2024 -36.95673 150.056586 308 196 IN2023_V05 10082761 13/07/2023 -36.944279 150.098437 285 172	NA
IN2023_V05	
	NT A
IN2023_V05 10082805 13/07/2023 -36.944279 150.098437 347 314	NA.
	NA
IN2023_V05 10082906 13/07/2023 -36.944279 150.098437 278 149	NA
IN2023_V05 10082909 13/07/2023 -36.944279 150.098437 299 192	NA
IN2024_V03 10096433 25/05/2024 -36.92105 150.105046 338 331	F
IN2024_V03 10096469 25/05/2024 -36.92105 150.105046 332 271	F
IN2023_V05 10082646 13/07/2023 -36.917546 150.127732 366 424	NA
IN2023_V05 10082780 13/07/2023 -36.917546 150.127732 316 230	NA
IN2023_V05 10082801 13/07/2023 -36.917546 150.127732 354 348	NA
IN2024_V03 10095171 26/05/2024 -36.895624 150.161149 380 354	NA
IN2024_V03 10095219 26/05/2024 -36.860557 150.295874 542 1200	NA
IN2024_V03 10096750 26/05/2024 -36.860351 150.123467 344 300	NA
IN2024_V05 10104319 27/11/2024 -36.756202 150.278648 355 352	M
IN2024_V05 10104317 27/11/2024 -36.756202 150.278648 471 1128	F
IN2024_V05 10104285 27/11/2024 -36.756202 150.278648 426 692	M
IN2024_V05 10104278 27/11/2024 -36.742185 150.276154 471 1098	F
IN2024_V03 10097909 27/05/2024 -36.593615 150.084005 370 363	F
IN2024_V03 10098029 27/05/2024 -36.593615 150.084005 343 312	F
IN2024_V03 10097810 27/05/2024 -36.555778 150.153926 400 579	M
IN2024_V03 10097573 27/05/2024 -36.52339 150.282853 514 1270	F
IN2024_V05 10106030 26/11/2024 -36.38998 150.184347 335 299	M
IN2024_V05 10105988 26/11/2024 -36.38998 150.184347 334 270	F
IN2023_V05 10082957 10/07/2023 -36.365783 150.31969 471 884	NA
IN2023_V05 10083059 10/07/2023 -36.365783 150.31969 272 168	NA
IN2024_V05 10105081 24/11/2024 -36.262097 150.33187 361 360	F
IN2024_V03 10098224 29/05/2024 -35.980148 150.299991 329 244	NA
IN2024_V03 10098518 29/05/2024 -35.980148 150.299991 386 438	NA
IN2024_V03 10098548 29/05/2024 -35.980148 150.299991 305 222	NA
IN2024_V03 10098679 29/05/2024 -35.980148 150.299991 316 228	NA
IN2024_V03 10098778 29/05/2024 -35.980148 150.299991 390 478	NA

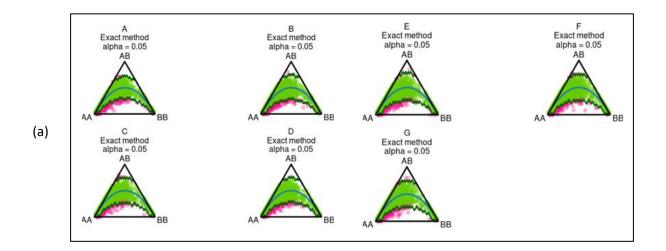
1308 Appendix B: Reproducibility threshold (0.98), filtering out 12,118 SNPs.

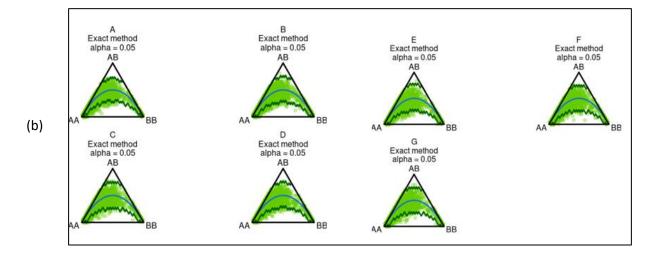

1310 **Appendix C:** Read depth (lower threshold of 5 and upper threshold of 100) filtering out 7,790 SNPs.


1312

1313


Appendix D: Call rate per SNP (a) and per individual (b) using thresholds of 0.98 and 0.94 respectively, filtering out 47,271 SNPs and 3 individuals.


1315 **Appendix E:** Observed heterozygosity (lower threshold 0.1 and upper threshold 0.2) filtering out 2 individuals.



Appendix F: Linked loci removing 1,408 SNPs with short distance linkage

Appendix G: SNPs significantly deviating for Hardy-Weinberg equilibrium (pink) before (a) and after (b) the Benjamini-Hochberg correction.

Title of the research output: Using population genomics to understand stock structure of tiger flathead (*Platycephalus richardsoni*) in the Southern and Eastern Scalefish and Shark Fishery

Submitted

1326

1327

1328

Declaration of Authorship

All authors agree that they have met the criteria for authorship and are accountable for the content

of the research output.

Author order	Name of author	Affiliation(s)	Contribution(s)
Author 1	Amelia Jensen	University of	Conducted field work
		Tasmania	and lab work,
			conducted analyses,
			wrote code, wrote
			manuscript.
Author 2	Karen Evans	UNESCO	Project design,
			supported lab work,
			edited manuscript.
Author 3	Sharon Appleyard	CSIRO	Project design,
			supported lab work,
			edited manuscript.
Author 4	Madeline Green	University of	Project design, wrote
		Tasmania	code, supported lab
			work, edited
			manuscript.

1330

I consent to having my name listed in the acknowledgements section of the above research output:

Name of person being acknowledged	Affiliation (s)
Karen Evans	UNESCO
Sharon Appleyard	CSIRO
Madeline Green	University of Tasmania