PAKISTAN

WATER AND DEVELOPMENT AUTHORITY

DFAT-CSIRO Indus Sustainable Development Investment Portfolio (SDIP)-Australia

FOR ANALYSIS OF CLIMATE DATA

SWHP-WAPDA

April 2019

CONTRIBUTOR

CSIRO

Dr. Mobin-ud-Din Ahmad, Team Leader

Dr. Muhammad Ashraf, Collaborator

KISTERS

Peter Heweston

Contents

1. Int	troduction	1
2. Ex SWH	kisting methodology used for analysis of climate data and its reportin	g at 2
3. Lii Point	mitations of the above methodology used to calculate the R.H and De t Temperature manually	• w 6
4. Me	ethodology used to calculate R.H and D.P Temperature in Hydstra	7
a)	Calculation of Pressure	7
b)	Relative Humidity Calculation	8
c)	Dew point is calculated using the following formula	8
5. St	eps in Hydstra	9
a)	Climate data entry sheet	9
b)	Creating/ Updating the information for Header Page of Climate Rep 13	ort
c) Ge	enerating climate Report for the year	15
6. Cr	eating Binder for all Climate sites (Volume 2 of SWHP Report)	17
7. Vi	ew Time Series Data in Hydstra	19
8. Sc	ome Additional Options in HYDSTRA	20
Anne	exure 1	21

List of Figures

Figure 1: Performa for recording daily climatological data	2
Figure 2: Manual calculations of Dew point, Relative humidity and wind in last 24	4
hrs	3
Figure 3: Table used to see the Dew point and Relative humidity values	4
Figure 4: Print screen of final report.	5
Figure 5: Relationship between pressure and elevation	7
Figure 6: Editing path option for the climate data entry sheet	9
Figure 7: Path to open the climate data entry template	10
Figure 8: Climate data entry sheet	10
Figure 9: Graphical sheet appears automatically after successful import and	
calculations in hydstra	12
Figure 10: Option for creating climate report for a year in Hydstra	16
Figure 11: Creating report in html format	16

Some important Codes used in Hydstra

- 400.00 Dry Bulb Temperature [degree Celsius]
- 410.00 Wet Bulb Temperature [degree Celsius]
- 420.00 Dew Point [degree Celsius]
- 430.00 Humidity [percentage]
- 460.00 Maximum Air Temperature [degree Celsius]
- 470.00 Maximum Air Temperature [degree Celsius]
- 520.00 Wind Run [kilometres]
- 700.00 Evaporation [millimetres]
- 151 Missing data for gauge

1. Introduction

The Commonwealth Scientific and Industrial Research Organisation (CSIRO) and, its subcontractor, KISTERS, of Australia have been supporting SWHP-WAPDA through the capacity building of the staff in the implementation of the HYDSTRA software since 2016 to improve time series hydrological and climate data processing and management.

The CSIRO of Australia, is helping Pakistan to build modern water management and assessment tools for the Indus Basin (<u>https://research.csiro.au/sdip/projects/indus/</u>) under Sustainable Development Investment Portfolio (SDIP) of Australian Government. This work was undertaken in the context of a Subsidiary Arrangement (established in 2016) and a Memorandum of Understanding (established in 2018) between the Government of Australia and the Government of Pakistan (<u>http://mowr.gov.pk/index.php/press-release/</u>).

Because the software has capability to process, archive and distribution of flow, climate, water quality and groundwater data sets (<u>http://kisters.com.au/hydstra.html</u>). Therefore, Software was modified to analyse and reporting the discharge and climate data according to the requirement of SWHP WAPDA. The computed climate data were also compared with the manual calculations (the procedure already being used in SWHP-WAPDA). HYDSTRA reproduced the same results for the Tarbela Dam climate stations when compared with the manual calculations.

Mr. Arif Shah, climate data analyst at SWHP-WAPDA got training sessions at SWHP office to use hydstra for climate data processing. Software, may be helpful for Research Directorate (H&R) because they also analyse the climate data manually.

The purpose of this manual is to provide the users sufficient details about the procedures to carry out climate data processing using HYDSTRA.

2. Existing methodology used for analysis of climate data and its reporting at SWHP-WAPDA

a) Precipitation (inches), evaporation (inches), anemo meter reading (Miles), Max., min, dry and Wet temperatures (Degree F) are measured at the site and recorded in the following Performa (Figure 1): Dry and wet bulb temperatures are observed at 8:00 am and 5:00 pm, whereas, all other data is measured at 8:00 am.

Figure 1: Proforma for recording daily climatological data

b) Then the other proforma is used to record the daily values as shown in Figure 2. Max., min. and dry Air temperatures are written as it is. Whereas, the fourth column

with heading 'Dep' contains the difference of Dry and Wet bulb temperatures. Same procedure is done for column '5:00 pm'.

- c) The values of Dry and Dep in columns 8:00 am and 5:00 pm are used to calculate the Dew point and Relative Humidity from the tables (Figure 3). There are about 40 pages of R.H and Dew point readings. Wind is calculated by subtracting the value of previous day.
- d) Data entry and final report printing is done using Excel sheets as shown in figure
 4.

1 2 3	Max 79 74	Min	Dry	08:00 am		Dew Point		05:00 pm		1	(k.m /mile)	orat ion (In)	
1 2 3	79 74	11		Dep	08:00	05:00	Dry	Dep	08:00	05:00		-	
2 3	74		71	1/	am	pm	72	17	am 20	20	3	./2	
3	14	00	11	10	90	1.0	12	10	22	47	5	011	
3		64	68	15	30	90	17	0	22	IT	8	.07	
	11	48	60	6	99	55	0/	0 7	19	61	6	- 26	
4	70	57	64	6	54	53	05	1	07	65	05	00	
5	68	54	60	6	49	48	63	8	67	54	5	0	
6	67	52	60	6	49	33	62	20	67	13	5	1.0	
7	63	45	55	2	51	47	62	0	87	50	10	.02	
8	68	51	60	7	47	53	0/	8	62	61	E	100	
9	68	54	61	3	56	55	67		83	65	5	1.00	
10	74	59	65	6	55	55	13	11	67	52	9	1.00	
11	75	63	71	10	54	56	19	11	SS	53	2	0	
12	75	66	70	10	53	52	11	11	55	SI	3	100	
13	73	60	66	8	52	51	61	17	61	57	0	.00	
14	70	52	60	6	49	51	62	6	61	68	5	.0	
15	63	48	56	5	47	49	62	6	70	63	8	.0.	
16	65	52	60	6	49	49	64	8	67	59	0	.06	
17	66	53	60	7	47	97	64	17	62	SS	8	1.00	
18	85	154	62	- 8	47	49	64	8	58	54	6	.0.	
19	66	54	60	6	49	46	65	10	67	SI	5	.0.	
20	70	55	63	9	46	46	68	12	54	45	3		
21	72	- 53	65	11	44	47	67	12	41	46	7	101	
22	74	57	66	11	45	44	10	14	47	34	L	.0	
23	73	60	68	15	38	44	12	10	33	37	7	0	
24	74	63	70	14	44	. 45	13	15	39	37	0	0	
25	78	60	71	14	45	44	12	15	39	37		e)	
26	74	57	69	14	42	40	73	17	38	30	5	00	
27	76	59	77	> 15	41	42	74	17	35	5	4	-/	
28	78	62	71	15	42	49	27	16	56	37	4	*/	
29	80	6.6	75	15	48	50	18	16	39	38	3	- 7	
30	82	- 70	73	3/2	53	59	80	13	48	149	5	/.	

Figure 2: Manual calculations of Dew point, Relative humidity and wind in last 24 hrs.

100 M

EP (OF W	/ET	16 ⁰	- 24F	D										90	0MB		
RH				and developing the		Ē	EPR	ESSI	ON O	FTH	WE	TBU	LB					
UL.	1	6.0	1	7.0	1	8.0	1	9.0	1 2	0.0	2	1.0	2	2.0	2	3.0	1 2	4.0
F	R	D	R	D	R	D	R	D	R	D	R	D	R	D	R	D	R	D
19	1								Ι		T		T					
50	3						1											
51	5	-21		Í.			1											
52	6	-13	1															
53	8	-7	3				1				1							
54	9	-2	5	17														
55	11	2	7	9	2													
56	13	6	9	-4	4	-21												
207	15	9	10	1	5	-12	1											
58	17	12	11	5	7	-5	3	-26				1.73						
53	18	15	13	9	• 9	0	5	-14	1									1
60	19	18	15	12	11	5	7	-6	3									
10	21	20	16	15	12	9	8	-1	4	-17	1			0				
12	22	23	17	18	13	12	9	4	5	-7	2							
13	23	25	19	20	15	15	11	8	7	-1	3	-18	1					
54	25	27	21	23	17	18	13	11	9	3	5	-9	2					
10	26	29	22	25	18	20	14	15	10	7	7	-2	3.	-20	1			
66	27	31	23	27	19	23	15	17	11	11	8	3	4	-9	2			
57	28	33	24	29	20	25	17	20	13	15	9	7	5	-3	3	-21	1	
-	29	35	25	. 31	21	27	18	23	14	18	11	11	7	3	4	-11	2	
	30	36	26	33	23	29	19	25	15	20	12	15	9	7	5	-3	3	
	31	38	27	35	24	31	20	27	17	23	13	1.8	10	11	7	3	4	-11
	32	40	28	37	25	33	21	30	18	25	15	21	11	15	8	8	5	-3
12	33	41	29	38	26	35	23	32	19	28	16	23	13	18	9	11	7	3
13	34	43	30	40	27	37	24	34	20	30	17	26	14	21	11	15	8	7
4	35	44	31	42	28	39	25	36	21	32	18	28	15	24	12	18	9	12
5	35	46	32	43	29	41	26	37	- 23	.34	19.	31	16	26	13	21	10	15
15	36	47	33	45	30	42	27	. 39	24	36	20	33	17	29	15	24	11	19
	37	49	34	47	31	44	28	41	25	38	21	35	19	31	16	27	13	22
1	38	50	35	48	32	45	29	43	25	40	22	37	20	33	17	29	14	25
H	39	52	35	49	33	47	29	44	26	42	23	39	21	35	18	31	15	27
0	39	53	36	51	33	49	30	46	27	43	24	40	22	3,7	19	34	16	30
	R	D	R	D	R	Di j	R	D	R	D	R	D	R	·D	R	D	P	D

Figure 3: Table used to see the Dew point and Relative humidity values

Implementation of HYDSTRA at SWHP-WAPDA using latest data management software (SDIP-Indus Basin project)

X∎	5	- @ ·	- r⊗ + - :	Ŧ						fir	nal_vol-III_2018.xls
FIL	н	DME	INSERT	PAG	E LAYOU	T FC	RMULAS	DA	TA F	EVIEW VIE	W TEAM
				1	Ruler	✓ For	mula Bar	Q	>		
Norm	al Page Bi	reak Pa	ge Cust	om 🕅	Gridlines	✓ Hea	dinas	Zoom	100%	Zoom to N	New Arrange Fi
	Previe	ew Lay	out Viev	VS		Show			700m	Selection Wi	ndow All Pa
	WUR	JOOK VIE	VV 5			511010			20011		
S410)2	*	×	√ <u>f</u> :	e l						
201	Α	В	С	D	E	F	G	Н	I	J	К
291											
292											
294											
295											
296			TE	MPERA	TURE	F ⁰		Rela	ative		
297	Data			D		- D/		Humi	dity in	Wind	Evapo-
298	Date	Α	ir Pan Water		ter	Po	int	Perce	ntage	in	in
300		Max	Min.	Max	Min	8 A.M	5 P.M	67	5 P.M	Miles	Inches
301	(1)	(2)	(3)	(4)	(5)	(6)	(7)	68	(9)	(10)	(11)
302			~~					~~	~~	•	0.40
303	1	79	66			40	40	32	30	3	0.13
304	2	74 74	64			38	48	33	47	5	0.11
305	3	71	48			49	53	67	61	8	0.07
306	4	70	57			54 40	53 40	67	60 50	0	0.06
307	5	67	54 52			49	40 52	67	29	5	0.04
308	7	63	15			49 51	17	87	58	10	0.04
210	8	68	51			47	53	62	61	7	0.02
310	ğ	68	54			56	55	83	65	5	0.00
1327	20	10	60			40	44	- 39	37	3	0.11
1328	26	74	57			42	40	38	30	5	0.08
1329	27	76	59			41	42	35	31	4	0.10
+330 1224	28	10	62			42	49	30	3/	4	0.11
+331 1322	29	82	70			40	50	18	10	5	0.14
+552 1333	31	84	71			60	56	58	45	3	0.12
4334									-11		0.10
4335	Total										2.25
4336											
4337	Ave:	72	57								
4338											
4339											
4340											
	E		Shee	t1	Sheet	2 9	Sheet3	S	neet4	(+)	
					Sheet	- `		1 01			_

Figure 4: Print screen of final report.

3. Limitations of the above methodology used to calculate the R.H and Dew Point Temperature manually

Tables used to calculate R.H and D.P temperature are based on two pressure values only i.e., 900 mb and 1000 mb. Therefore, the calculations of R.H and D.P temperature are based on these two pressure values. Whereas, the pressure of the stations varies from 682 mb to 1010 mb for the SWHP climate sites (Annex. 1).

4. Methodology used to calculate R.H and D.P Temperature in Hydstraa) Calculation of Pressure

Saturation vapour pressure at wet bulb dew point temperature and relative humidity requires the calculation of air pressure at meteorological stations. Moreover, pressure is a function of weather station height w.r.t sea level.

Figure 5: Relationship between pressure and elevation

Therefore, first pressure is calculated. Following formula is used to calculate the pressure at the weather station:

$$P = P_b \cdot \left[rac{T_b}{T_b + L_b \cdot (h - h_b)}
ight]^{rac{g_0 \cdot M}{R^* \cdot L_b}}$$

 P_b , Static pressure = 1013.25 Pa or mb

 T_b , standard temperature = 273.16 K

 L_b , standard temperature lapse rate = -0.0065 K/m

h, height above sea level in meters

- h_b , height at bottom of layer b = 0 m
- R*, universal gas constant = 8.3144589 J/mol/K
- g_0 , gravitational acceleration = 9.80665 m/s²

M, molar mass of Earth's air = 0.028964 kg/mol

Calculated pressures for each site are given in Annexure 1.

b) Relative Humidity Calculation

Sprung Formula is used to calculate the relative humidity

$$RH = 100 \cdot \frac{e_s(t_w) - A \cdot p \cdot (t_d - t_w)}{e_s(t_d)}$$

 $e_s(t_w)$ is the saturation vapour pressure of the wet bulb; $e_s(t_d)$ is the saturation vapour pressure of the dry bulb; p is the pressure of the air; t_d is the temperature of the dry bulb; t_w is the temperature of the wet bulb; A is the psychrometer coefficient A = 0.0008, used by PMD as mentioned in their booklets

Saturated vapour pressures at dry and wet bulb temperatures are used to calculate using Magnus Formula which is adopted by WMO

$$6.112 * e^{\frac{17.62 * tw}{243.12 + tw}}$$
$$6.112 * e^{\frac{17.62 * td}{243.12 + td}}$$

es(tw) is saturation vapour pressure at wet bulb temperature

es(td) is saturation vapour pressure of air at dry bulb Temp.

c) Dew point is calculated using the following formula

$$\frac{243.12 * \ln(\frac{e_{(d)}}{6.112})^{\Box}}{17.62 - \ln(\frac{e_{(d)}}{6.112})^{\Box}}$$

ed is saturation vapour pressure at wet dew point

5. Steps in Hydstra

a) Climate data entry sheet

• **Open** the excel file of climate data entry placed at the following location:

E:\Climate data entry\

Note: Ensure the path given in the validation sheet is correct. The box of Read only should be uncheck before correcting the path.

Figure 6: Editing path option for the climate data entry sheet

Although data can be directly entered in the sheet already available in the folder. However, the template can also be used to create a new sheet for the data manually in it and then import the file into hydstra.

 Double Click on the following option available in Hydstra to open the climate data entry template
 Company Fourities (Dec Function (Importing (Open Climate Data Template

Company Favourities/ By Function/ Importing/ Open Climate Data Template

Figure 7: Path to open the climate data entry template

Enter the following information in the sheet

- Enter the station's information like Site code, data source, year, month and the units of parameters.
- Enter the climate data in the sheet i.e, Max, Minimum air temperatures, Dry and Wet Bulb temperatures, wind speed and pan evaporation (Figure 8).

	ਜ਼ 5 • ੇ-	÷					Climate~347	20701~2018~03~	K - Excel			
F	ile Home	Insert Pa	ige Layout Fo	ormulas Data	a Review	View Help	🔉 Tell me	what you want to	o do			
Pa	Aste Vilipboard	Painter	ri v [I ∐ v ⊡ v Font	I1 ▼ А́ А́	= = =	≫ - 20 Wra 트 프 È Mer Alignment	np Text rge & Center 👻	Number \$ - % * Number	▼ ←0,000 00 →.00 For	onditional Forma rmatting ← Table Styles	t as Cell • Styles •	Insert Delete
~												
	.3 *		Jx 58									
	A	В	С	D	E	F	G	н	I.	J	K	L
1				(Climate	Data Ent	try Shee	t				V1
2	Site	Save sheet after data entry, select entire sheet with Ctrl/A, Ctrl/C, then run HYCLIPIN										
3	Datasource	к										
4	Year	2018										
5	Month	03										
6	Temp units	DegF		Sa	ve							
7	Wind units	Mile										
8	Evap units	Inch						Wind Start				
9								1925				
10				Air Tem	perature			Wind Run	Evaporation	Pan Wat	er Temp	Wind Run
11		Max	Min	Dry 8am	Wet 8am	Dry 5pm	Wet 5pm	Cumulative		Max	Min	Decum
12	Day	DegF	DegF	DegF	DegF	DegF	DegF	Mile	Inch	DegF	DegF	Mile
13	1	78	58	62	59	75	68	1930	0.14	Ļ		5
14	2	79	56	59	58	60	56	1938	0.10			8
15	3	64	56	58	55	53	51	1993	0.05			55
10			50		54	70		2027	0.03			

Figure 8: Climate data entry sheet

• **Save** the sheet by clicking the Save button and click **OK**. A message will be shown that the workbook is saved at the given location. The file shows the station, year, month and code.

Microsoft Excel	×
Workbook saved to E:\hydstra\Climate data entry\Climate~34720701~2018~03~K.xlsm	
ОК	

Note: after successful save, the path with site ID, Year, month and data source is written in the message box

• Select entire sheet with Cltr A. Copy the entire sheet with Cltr C.

1	₽ 5- ¢-	÷						Climate~3472	20701~2018~03~	K - Excel				Sign
F	ile Home	Insert	Page Layo	ut Fo	ormulas Data	Review	View Help	🔉 Tell me	what you want to	o do				
Pa	Cut Copy aste Format	Painter	Calibri B I <u>U</u> ·	• 🖽 •	1 • A A		Image: Second secon	p Text ge & Center →	Number	▼ €.0 .00 .00 →.0 For	onditional Format rmatting ▼ Table •	as Cell • Styles •	nsert Delete	Format
	Clipboard	5		Font	Fail		Alignment	Fa	Number	E.	Styles		Cells	
C	L4 ·	: ×	$\sqrt{-f_x}$	56										
	А	В		С	D	E	F	G	Н	I.	J	К	L	м
1		Climate Data Entry Sheet												
2	Site	34720701				Save sheet aft	er data entry, s	elect entire sh	eet with Ctrl/	A, Ctrl/C, then	run HYCLIPIN			
3	Datasource	К												
4	Year	2018												
5	Month	03			Sa	-								
6	Temp units	DegF	_											
7	Wind units	Mile	_											
8	Evap units	Inch	_						Wind Start					
9					Air Tom	oraturo			1925	Evaporation	Dan Wate	Tomp	Wind Run	
11		N	lax	Min	Dry 8am	Wet 8am	Dry 5nm	Wet 5nm	Cumulative	старогастоп	Max	Min	Decum	
12	Dav	De	egF	DegF	DegF	DegF	DegF	DegF	Mile	Inch	DegF	DegF	Mile	
13	1		78	58	62	59	75	68	1930	0.14		0	5	
14	2		79	56	59	58	60	56	1938	0.10			8	
15	3		64	56	58	55	53	51	1993	0.05			55	
16	4		56	52	55	51	72	66	2037	0.03			44	
17	5		77	53	57	54	76	68	2057	0.08			20	
18	6		80	56	59	54	75	68	2075	0.12			18	
19	7		80	56	58	54	80	72	2093	0.15			18	
20	8		84	58	65	56	79	70	2110	0.20			17	
21	9		83	58	60	57	76	68	2140	0.15			30	
22	10		80	59	63	56	80	72	2175	0.20			35	
	• • • •	Entry Va	alidation	Calcul	lation (+)					•			
Sel	ect destination a	nd press ENTE	R or choose	Paste						A	verage: 111217 C	ount: 356 Sur	n: 34810910	

- **Open** the Hydstra Explorer
- **Run** the hyclipin (A window of HYCLIPIN will be open)
- Click the **Run** button to import the data into hydstra.

Two sheets will be created in hydstra; first will show the information/data imported from the data entry file and the calculated values of R.H and D.P for each day and; the second sheet will show the graphs of each parameter (Figure ?).

Figure 9: Graphical sheet appears automatically after successful import and calculations in hydstra

Note: If any wrong entry is added then edit the data entry sheet, save it and repeat the above procedure.

b) Creating/ Updating the information for Header Page of Climate Report

The sample for header sheet is placed at the location

hyd\dat\site\

- copy it and rename as per site ID
- Open Hydstra and double click on 'Sites, Gauging and Ratings Metadata'

• Select the sites and click on the folder that shows the data exists for this record

실 Hydstra Database Manage - SITE Manage											
File Manage Edit View Tools Filter Date	a Help										
[ARCHIVE]	23012 rows	SITE (34	4720701)								
SITE - Sites	Short Name	Site	Site Name								
STATION - Stations	TANK	32702302	TANK								
STNINI - Site Specific Data	TARBELA_DAM	34720701	TARBELA_DAM								
BENCH - Benchmark Location	TAUNSA	29707502	TAUNSA								
	TAUNSA U/S	36842001	TAUNSA U/S								
	TAUNSA(U/S)	29707503	TAUNSA(U/S)								
PERIOD - Penod of Record	TELUS	34728202	TELUS								
PEAKTIME - Time of Peak Series	TERBELA OUT FLOW	36741213	TERBELA OUT FLOW								
SERIES - Peak Series	TERBELA OUTFLOW	36741226	TERBELA OUTFLOW								
RATEPER - Rating Tables Period	dry	123456	test dry river								
RATEHED - Rating Table	TEST2	0000012	TEST2								
	JALL NEW RCC BR.	37741292	THAK NALLAH NEAR JALL NEW RCC BRIDG								
O BATEFON - Bating	THAL	33703501	THAL								

* · SITE	SITE\34720701\
	0°0' 🛃 🙀 🕞
	climate_heade

- Open the excel file by double clicking
- A file will be open that can be edited and updated. Annual figures can be taken from the time series file.
- After entering required information **save** the file.

	ਜ਼ ਙਾ ੇ - ∓								climat	te			
I	File Home Inse	t Page Layout	Formulas	Data	Review	View	Help	Q	Tell me w	/h			
P	Cut	Calibri B I U -	- 11 - A	A v	= = =	≫ 	eb Wrap	Text	enter 👻				
	 Format Painter 								_				
	Clipboard	FC	ont	E I		Aligni	nent		1 21				
B	3 • : >	<th>From January</th> <td>/ 1961 t</td> <td>o datae. Sta</td> <td>tion has</td> <td>been est</td> <td>ablish</td> <td>ed by Sur</td> <td>rfa</td>	From January	/ 1961 t	o datae. Sta	tion has	been est	ablish	ed by Sur	rfa			
	А				В								
		Latitude 34° 04´.	Longitude 72	2° 43′. L	eft bank of I	River Ind	us in Tark	oela D	am				
1	Location	Project Colony											
2	Elevation								2000				
3	Period of Record	From January 19 Hydrology proje	61 to datae. S ct WAPDA	Station	has been es	tablishe	d by Surf	ace W	ater				
		5" Non Recordin	ng Rain Gaaug	eList o	f instrumen	ts			Ī				
		Universal Weighing type recording rain gauge											
		Max. and Min. air Temperature											
		Max. and Min. Pan temperature thermometer											
		Wet and Dry Bulb thermometers											
		U.S Weather Bu	reau standaro	d evapo	oration Pan								
4	Instruments	Anemometer											
5	Annual Figures	Evaporation (pa	n) 68	3.0"									
6		Maximum air te	mperature	122 %									
/		Minimum air tei	mperature	38 °F									
		Observations of	pan evapora	tion									
		etc etc	iko										
•	Notos	Blank space indi	inte	ard									
9	Notes	biank space mu	cates no rect	//u									
10													
10		I											

- In time series, Open the files of selected site
- **Select** the blocks and click the Summary tab

Implementation of HYDSTRA at SWHP-WAPDA using latest data management software (SDIP-Indus Basin project)

Mariable 34720701.K	(/ 460.00 - TAF	RBELA_DAM / Maximum Air Ter	mperature (degrees Ce	elsius)		
File Edit View Mo	de Blocks	Points Selection Filter Win	ndow Options He	lp		
Read Only Current	t Blocks : 1 - 2 /	2 11		io a E	b (2)	
Site ID 34720701	D,	atasource K Variable	460.00 Maximum Air Ter	nperature (Degre	es Celsius)	
		Blocks		<u>S</u> ummary		<u>I</u> ext
Start	End	Modified Status				
00:00:00_01/03/2018	00:00:00_01/05	/2018				
📖 Variable 3472	20701.K/4	60.00 - TARBELA_DAM	/ Maximum Ai	r Temperat	ure (degree	es Celsius)
File Edit Viev	v Mode	Blocks Points Sel	ection Filter	Window	Options	Help
	C	-11-0.10	E		9	
Bead Unly	Current Blo	CKS:1-272	4		DPI	
Site ID 34720701		Datasource K	Variat	ole 460.00	Maximum Ai	r Temperature (Degrees Celsius)
		<u>B</u> locks				<u>S</u> ummary
o	05 550	00.00.01.01.00.0				
Start	25.556	00:00:00_01/03/2	.UI8 QI	uality Lodes	1,151	
End	0.000	00:00:00_01/05/2		otal	N/A	
Max	36.667		<u>.018 Ii</u>	me Base	· ·	
Min	0.000	00:00:00_01/04/2	.018 D-	ata I rans	8: Mean in	following interval
Created						
Last Modified						
Archived						
Last Written						
Blocks	2	Points 63				
2.5000	-	Selected 1	0	omments	n	
		0000000		Shinter Ke	Ŭ.	

c) Generating climate Report for the year

Report of a selected station(s) can be generated in '.html' format using the following procedure.

• Double click on 'Report Climate data for a year'

HYXPLORE - Hydstra Explorer
<u>File Edit Menus Options H</u> elp
🞧 🔍 🔤 💯 🦿 🔤 🛛 Profile
> 🐨 My Favourites
Y 💮 Company Favourites
Mapping Interface
Common Time-Series Data
Sites, Gaugings and Ratings Metadata
Water Quality Data
🛃 Modelling
> 💼 By Data Type
Y 💼 By Function
> ·· 🛅 Importing
Reporting & Data Extracts
🛃 Mapping Interface
HYCSV - Comma Separated Values for S
HYPLOT - Plot Hydstra Data
🚼 Report Climate Data for a Year
Plot Shifted Discharge vs Unshifted Disch
Plot Gauge Height (Hourly vs Discharge I

Figure 10: Option for creating climate report for a year in Hydstra

- Select the site and data source, year and other parameters
- Write the name of file at a selected path with extension .html. File will be saved in html format at the given path that can be inserted in Microsoft word, if required.

👪 Report of Cl	_		×					
Program Optio								
Site	B4720701			?				
Data Source	К							
Year	2018 🌲							
Metric?								
Output File	E:\hydstra\Climate Reports\2018v							
	✓ Run X Close							
WAP.REPORT.CLIMATE previous run parameters loaded								

Figure 11: Creating report in html format

Note: If the yearly report is required in metric units then Check the box in front of Metric otherwise report will be generated in Imperial units.

Climate report of each station can be saved in a particular folder e.g., E:\Climate Reports\2018\Tarbela Dam.html

6. Creating Binder for all Climate sites (Volume 2 of SWHP Report)

When Climate data for all the stations are calculated and saved in .html format in the selected folder then all the files should be inserted in the word file.

- For this, **Open a new word file**. (Select the A4 Page size)
- Adjust margins as given below

:	Tab	le Tools								
Insert Design Layo	out References	Mailings	Review	View	Help	Design	Layout	Q	Tell me wha	at you war
Size Columns	Indent Indent Indent Indent Indent Indent Indent	it: 0 cm	Page Setur	Paper	Lavout				?	×
Page Setup		Para	Margins Margins	2	cm	_	Bottom		2 cm	
	* X		Left:	2.	54 cm	• •	<u>R</u> ight:		2.54 cm	÷
	- م		<u>G</u> utter:	0	cm	-	G <u>u</u> tter positio	n:	Left	\sim
Results			Orientati	on T						
outline of your document.			Portra	it Land	d <u>s</u> cape					
ep track of where you are or q	quickly		Pages		r					

• Go to Insert tab of word file and click on Object and select Text from File.

5-	${}^{\bullet}e^{x}$ = Document1 - Word (Product Activation Failed)										?					
HOM	INS	SERT	DESIGN	PAGE LAYO	UT F	REFERENCES	MAILIN	IGS F	EVIEW VIEW							
ge∓ ge ak	Table	Pictures	Online Pictures	Shapes SmartA	t Chart	Creenshot	Apps for Office *	Online Video	Hyperlink Bookmark Cross-reference	Comment	Header Footer Pa	# A Text	Quick Word Parts • •	Art Drop Cap *	Signature Line Date & Time Object	π Ω :
əti	Tables	L		Illustrations		2 1	Apps	Media	Links	Comments	Header & Footer	r 10 1	1 · · · 12 · · · 1	Text	 Object Text from File 	

• Select all the .html files in the selected folder and click *Insert* button. All the files will be added in the new word file.

Note: Files should be arranged in the same order as we required to be in printed form

💵 🗄 🕤 🖱 $e^{x} + =$			Document1 - Word (Pro
FILE HOME INSER	DESIGN PAGE LAYOUT	REFERENCES MAILINGS	REVIEW VIEW
W	Insert Fi	le	×
🛞 🌛 🔻 🕈 퉬 « Fina	al Reports → hydstra → 2016	✓ C Search 2016	م
Organize 🔻 New folder			i → 🔟 🔞
^	Name	Date modified	Туре ^
🌉 This PC	💽 Karimabad.html	22/10/2018 15:20	Avast HTML Doc
hesktop	💽 Kel.html	22/10/2018 15:21	Avast HTML Doc
Documents	💿 Khairabad.html	07/11/2018 16:30	Avast HTML Doc
L Downloads	💽 Kharmong.html	25/10/2018 15:02	Avast HTML Doc
Music	💽 Kotli.html	22/10/2018 15:24	Avast HTML Doc
Pictures	💽 Massan.html	25/10/2018 15:02	Avast HTML Doc
Videos	Muzaffarabad.html	26/11/2018 18:25	Avast HTML Doc
Elocal Disk (C:)	💽 Nosheri.html	Avast HTML Doc	
D (D:)	Palote.html	22/10/2018 15:07	Avast HTML Doc
Local Disk (E:)	💽 Talhatta.htm	22/10/2018 14:44	Avast HTML Doc
Docal Disk (P:)	💽 Taubat.html	22/10/2018 14:45	Avast HTML Doc
E Kemovable Disk (Thalichy.html	14/11/2018 12:46	Avast HTML Doc 🗸
× .	<		>
Ra	inge:		
	Range		
File na	me: "Alam Bridge.html" "Besham_0	Qila.html" "Bur 🗸 🛛 All Word Doc	uments (*.docx;*.c ∨
		Tools 🔻 Insert	▼ Cancel

• Click on line spacing option under the Home tab

• Select the zero spacing and single line spacing as given in figure below.

Indents and Spa	cing Line and P			
General		age Breaks		
Alignment:	¥	1		
Outline level:	~	Collapsed by d	lefault	
Indentation				
Insid <u>e</u> :	-	<u>Special</u> :	By	
O <u>u</u> tside:	-		~	-
Mirror inde	ents			
Spacing				
Before	0 nt	Line spacing:	Δt-	
After:	0 pt 🜩	Single		÷
Don't add	spa <u>c</u> e between pa	ragraphs of the sam	e style	
Preview				
Prevíous Paragra Prevíous Paragra	ph Previous Paragraph Previous ph Previous Paragraph Previous	Paragraph Previous Paragraph Previ Paragraph Previous Paragraph Previ	ous Paragraph ous Paragraph	
GILGIT RIVER AT	ALAM BRIDGE aph Following Paragraph Follow			
Following Paragr Following Paragr	aph Following Paragraph Follow aph Following Paragraph Follow	ing Paragraph Following Paragraph ing Paragraph Following Paragraph	Following Paragraph Following Paragraph	
Following Parage	aph Following Paragraph Follow	ing Paragraph Following Paragraph	Following Paragraph	
Tabs	Sat As Dafau			Cancel

7. View Time Series Data in Hydstra

Climate data stores in a work file that can be access in hydstra by using the following procedure:

• **Double click** the Time-Series Data

- Select File and click on Open, a window will be shown
- Enter the site ID, all the files will be loaded

• Open the K work file. You can see all the parameters and calculated values

• Double click on the any parameter and see the graphical representation.

8. Some Additional Options in HYDSTRA

Please see the Manual of Discharge Data analysis for the following additional features and capabilities of Hydstra software:

- To add new site in a map window
- Copying time series data from one system to other system
- Changing the site ID
- Software Installation Guide

Annexure 1

Codes, Elevations and Pressure Calculations of SWHP Sites

Sites	Codes	Elevation (ft)	Elevation (m)	Pressure	
BAGH	33739701	3500	1067	885	
BANNU	32709402	1260	384	966	
BESHAM QILA	34729801	1902	580	942	
DAGGAR	34725401	2400	732	924	
DAINYOR	35749300	5749	1752	810	
DOMEL (MUZAFFAR ABAD)	34733402	2250	686	929	
FORT LOCK HART	33709501	6500	1981	786	
GUJAR KHAN	33732301	1500	457	957	
GUNJI BRIDGE	35749999		1560	831	approx. location from Google earth
HUB DAM	25672002	270	82	1003	
KACHURA	35754401	7678	2340	750	
KAGHAN	34739602	7750	2362	748	
KALA BAGH	32719501	700	213	987	
KALAM	35724501	7500	2286	755	
KALLAR SYEDAN	32719501	1700	518	949	
KANDIA	35739998	2815	858	909	
KARIMABAD	36743701	10000	3048	682	
MANGLA DAM	33731601	1000	305	975	
MARDAN	34721001	1000	305	975	
MASSAN	33710601	997	304	975	
MIANI FOREST	25684402		35	1009	approx. location from Google earth
NABISAR ROAD	25690501		25	1010	approx. location from Google earth
OGHI	34735002	3700	1128	878	
PALANDRI	33737601	4600	1402	848	
PHULRA	34733001	3001	915	903	
REHMAN BRIDGE (KOTLI)	33734801_1	2000	610	938	
SAKRAND	26689991		40	1008	approx. location from Google earth
SEHWAN	26674802	121	37	1009	
SHINKIARI	34734201	3250	991	894	
TANK	32702302	800	244	983	
TARBELA	34720701	2000	610	938	
THANO BULA KHAN	25673801	500	152	994	
YUGO	35761101	8098	2468	737	