LONG-TERM TREND OF GROUNDWATER LEVELS IN NORTH-WEST REGION OF BANGLADESH

MS THESIS MD. FERDOUS PARVEZ

DEPARTMENT OF IRRIGATION AND WATER MANAGEMENT BANGLADESH AGRICULTURAL UNIVERSITY MYMENSINGH

JUNE 2018

LONG-TERM TREND OF GROUNDWATER LEVELS IN NORTH-WEST REGION OF BANGLADESH

A THESIS

BY

MD. FERDOUS PARVEZ

Examination Roll No.: 16 IWM JD 07 M Registration No.: 39159 Session: 2011 – 2012

Submitted to the Department of Irrigation and Water Management Bangladesh Agricultural University, Mymensingh in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE (MS)

IN

IRRIGATION AND WATER MANAGEMENT

DEPARTMENT OF IRRIGATION AND WATER MANAGEMENT BANGLADESH AGRICULTURAL UNIVERSITY MYMENSINGH

JUNE 2018

LONG-TERM TREND OF GROUNDWATER LEVELS IN NORTH-WEST REGION OF BANGLADESH

A THESIS

BY

MD. FERDOUS PARVEZ

Examination Roll No.: 16 IWM JD 07 M Registration No.: 39159 Session: 2011 – 2012

Approved as to style and contents by

(Professor Dr. M A Mojid) Supervisor

(Professor Dr. Md. Atikur Rahman)

Chairman, Examination Committee and Head Department of Irrigation and Water Management Bangladesh Agricultural University Mymensingh

JUNE 2018

MY BELOVED PARENTS

ACKNOWLEDGEMENT

All praises are for Almighty Allah, the creator and sustainer of all, Who has blessed the author with the opportunity and ability to complete the research work and writing up of this thesis.

The author would like to express his profound appreciation, sincere and heartfelt gratitude and indebtedness to his reverend research supervisor Dr. M A Mojid, Professor, Department of Irrigation and Water Management (IWM), Bangladesh Agricultural University (BAU), Mymensingh, for his constant and untiring supervision, immense guidance, precious advice, valuable suggestions, constructive criticism and painstaking corrections throughout the report for completion of the research work and finalizing this thesis.

The author feels proud to express his deepest sense of gratitude and heartfelt thanks to his parents and sister for their great sacrifices and encouragement during the student life of the author.

This thesis was undertaken in collaboration with CSIRO and contributes to the South Asia Sustainable Development Investment Portfolio and is supported by the Australian aid program.

The Author

LONG-TERM TREND OF GROUNDWATER LEVELS IN NORTH-WEST REGION OF BANGLADESH

ABSTRACT

Groundwater is a renewable and dynamic natural resource in Bangladesh. The fluctuation of groundwater level/water table over the prevailing hydrologic cycle (one year) controls the dynamic nature of groundwater resources. The long-term trend of the annual highest and lowest depths of groundwater levels reflects sustainability issues of the resource in a region. To ensure sustainable use of groundwater, it is important to know the long-term trend of groundwater levels. So, this study determined and evaluated the long-term trend of groundwater levels in the north-west hydrological region of Bangladesh. The trends of the yearly highest and lowest depths of groundwater levels for 350 monitoring wells over the past 32 years (1985–2016) were determined by using MAKESENS trend analysis model. The dry season (March - April) lowest groundwater levels in 65.71% of the monitoring wells and the wet season (August - September) highest groundwater levels in 69.71% of the monitoring wells show significantly (p<0.05) decreasing/lowering trend over the study years. Majority (59.72%) of the wells had their dry season water levels below 6 m from the ground surface for 3 to 6 months in each year, keeping suction-mode pumps out of operation; 6 m is considered as the effective suction lift after subtracting 2 m dynamic drawdown during pumping from the actual suction lift of 8 m. The locations of a large number (15.14%) of monitoring wells, stationed in Bogra, Rajshahi, Naogaon, Joypurhat and Chapai Nawabgonj, reveal having severe water scarcity, especially for domestic supply, for whole year over the study period; the water levels in these wells remained below 6 m throughout the year. Therefore, extraction of groundwater for various usages needs to be kept in check, especially for sustainable domestic and irrigation water supply. Water saving technologies and judicious water usages need to be in practice to achieve water supply sustainability.

CONTENTS

ITEMS		PAGE
ACKNOWLEDGEMENT		
ABSTRACT		ii
CONTENTS		iii
LIST OF TABLES		v
LIST OF FIGURES		vi
CHAPTER 1: INTRODUCTION		
1.1	Importance of groundwater	1
1.2	Dynamic and renewable nature of groundwater	1
1.3	Present state of groundwater level in north-west Bangladesh	2
1.4	Importance of trend of historical groundwater level	3
1.5	Critical depth (suction limit) of groundwater	4
1.6	Objectives of the study	4
CHAPTER 2: REVIEW OF LITERATURE		5-12
2.1	Importance of groundwater	5
2.2	Recharge-depletion characteristics of aquifers	6
2.3	Present state of groundwater in the study area	8
2.4	Methods of trend analysis	9
2.5	Critical water level depth for suction mode pumps	10
2.6	Justification of the study	11
CHAPTER 3: METHODOLOGY		13-21
3.1	Study area	13
3.2	Data collection	17
3.3	Data preparation	18
3.4	Trend analysis	20
3.5	Water scarcity identification	21

ITEMS	PAGE	
CHAPTER 4: RESULTS AND DISCUSSION	22-37	
4.1 Long-term trend of groundwater level	22	
4.1.1 Trend of annual maximum groundwater level	23	
4.1.1.1 Direction of groundwater level trend	23	
4.1.1.2 Magnitude of groundwater level trend	26	
4.1.2 Trend of annual minimum groundwater level	29	
4.1.2.1 Direction of groundwater level trend	29	
4.1.2.2 Magnitude of groundwater level trend	32	
4.2 Locations with critical depth of groundwater level	35	
4.3 Domestic water scarcity	36	
CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS		
5.1 Conclusions	38	
5.2 Recommendations	39	
REFERENCES	40-44	
APPENDICES	44-66	

LIST OF TABLES

TABLE NO.	TITLE	PAGE
4.1	Number of monitoring wells in different districts with	23
	different trends of the annual maximum depth of water	
	level	
4.2	Distribution of the monitoring wells based on statistical	27
	significance of their annual maximum water level trends	
	in different districts	
4.3	Number of monitoring wells in different districts with	29
	different trends of the annual minimum water level	
4.4	Distribution of the monitoring wells based on statistical	33
	significance of their annual minimum water level trends	
	in different districts	
4.5	Distribution of the monitoring wells over different	35
	districts based on critical depth (suction limit) of	
	groundwater level	
	groundwater level	

LIST OF FIGURES

FIG. NO.	TITLE	PAGE
2.1	Groundwater levels during pre-development (1974) and	7
	post-development conditions in monitoring well GT1918006	
	(previous ID CM004) located in Burichang upazila of Comilla	
	district (PWD: Public Works Datum) (after Shamsudduha et	
	<i>al.,</i> 2011)	
3.1	Hydrological regions of Bangladesh	13
3.2	Map of Rajshahi division showing its 8 districts	14
3.3	Map of Rangpur division showing its 8 districts	15
3.4	Seven climatic sub-regions of Bangladesh	16
3.5	Hydrological regions of Bangladesh and distribution of	17
	groundwater level monitoring wells	
3.6	A typical variation of groundwater level of monitoring Well	18
	ID GT6915004 (first category) over time	
3.7	A discontinuous groundwater level of monitoring Well ID	19
	GT7088502 (second category) over time	
3.8	An irrational/absurd variation of groundwater level of	19
	monitoring Well ID GT6475035 over time	
4.1	Increasing trend of the annual maximum groundwater level	24
	in monitoring Well ID GT7605003 (Z = 4.72 and slope =	
	0.133)	
4.2	Decreasing trend of the annual maximum groundwater level	25
	in monitoring Well ID GT7616012 (Z = -3.39 and slope =	
	-0.031)	

FIG. NO.	TITLE	PAGE
4.3	Constant annual maximum groundwater level in monitoring	25
	Well ID GT7066014 (Z = 0.0 and slope = 0.0)	
4.4	An example of significant and insignificant trend types of the	28
	annual maximum groundwater level in four monitoring	
	wells	
4.5	Increasing trend of the annual minimum groundwater level	30
	in monitoring Well ID GT1054014 (Z = 5.4 and slope = 0.234)	
4.6	Decreasing trend of the annual minimum groundwater level	31
	in monitoring Well ID GT5233001 (Z = -1.22 and slope = $-$	
	0.005)	
4.7	Constant annual minimum groundwater level in monitoring	31
	Well ID GT9494016 (Z = -0.18 and slope = 0.0)	
4.8	An example of significant and insignificant trend types of the	34
	annual minimum groundwater level in four monitoring wells	
4.9	Distribution of the monitoring well-types based on suction	37
	limit in different districts in the north-west region of	
	Bangladesh	

INTRODUCTION

Chapter 1

INTRODUCTION

1.1 Importance of groundwater

An excerpt from Razzaq (1980) – the character of Bangladesh and its people is dominated today, as it has always been dominated, by the river system and the water it carries or helps to carry - properly describes the importance of water in Bangladesh. Of course, the contribution of groundwater is to be added with it, as it supplies 79% of the water demand for irrigation, livestock, household and industrial usages (FAO, 2010). Bangladesh is in the downstream of Ganges-Brahmaputra-Meghna (GBM) catchment/basin. These rivers, accompanied by a monsoon, bring enough water for five months (June -October) of the year and act as an abundant source of surface water in the country for this period. But, many of the rivers flowing into Bangladesh from upstream countries carry less water in dry season (November - May). Consequently, in the dry season, surface water is inadequate in most parts of the country, especially in the drier north-west region, where there is very limited storage of surface water. The scarcity of surface water makes groundwater the inevitable source to supplement dry season water demand, as the country is underlain by a good aquifer system, including both deep and shallow groundwater resources (Alam et al., 2003; Michael and Voss, 2009).

1.2 Dynamic and renewable nature of groundwater

The quantity of groundwater stored in an aquifer of a given size depends on recharge into and abstraction from the aquifers. Prior to widespread groundwater abstraction from the mid-1980s and onwards, water tables (upper level of the zone of saturation) in the largely unconfined aquifers in Bangladesh were generally shallow with a weak seasonal fluctuating trend. After the monsoon period, water tables were near or, in some places, at the surface. At the end of the dry season (April-May), the water tables would have receded, mainly, due to evapotranspiration and inter-basin flow out of the aquifer. Much of the potential recharge from rainfall and flooding in the monsoon period was rejected due to limited storage capacity of the aquifers. But, with increasing utilization of groundwater, water tables fall during the dry season, when pumping for various usages and discharge to the rivers (which are at low levels in the dry season) depletes the aquifers. The deepest groundwater conditions are found from April to mid-May, whereas the shallowest water tables are found in November (CSIRO, WARPO, BWDB, IWM, BIDS & CEGIS, 2014). Thus, pumping of groundwater from the aquifers in dry season increases the storage space available to accommodate recharge during monsoon (Shamsudduha et al., 2011). More than 90% of the annual recharge to the unconfined aquifers occurs during the monsoon, between May and September (MPO, 1987; WARPO, 2000). During this season, water table rises across Bangladesh since high rainfall and an associated inundation recharge the aquifers. Thus, groundwater in Bangladeshis a renewable and dynamic natural resource.

1.3 Present state of groundwater level in north-west Bangladesh

The use of shallow aquifers for irrigation in Barind area of north-west Bangladesh is unsustainable (Shamsudduha *et al.*, 2009; Shahid and Hazarika, 2010; Dey *et al.*, 2013; Kirby *et al.*, 2013). The area is now facing water scarcity problems in both agriculture and secured livelihood (Alice, 2010). The topography and climatic condition of the north-west Bangladesh is accountable for this situation. Groundwater recharge in Bangladesh is mainly occurred by monsoon rainfall and flooding in addition to the contribution from irrigated crop fields. Due to high elevation of the north-west Bangladesh, most part of it is in flood-free zone. So, the main source of groundwater recharge in this area is rainfall, which is also the lowest in this part of the country. Consequently, the area has become considerably drought prone. Moreover, a thick sticky clay surface (6.10–21.34 m) of Barind Tract acts as aquitard and hinders groundwater recharge by increasing surface runoff. As a result, groundwater level in the north-west Bangladesh is successively falling over the years with increasing withdrawal of water for irrigation (Rahman and Mahbub, 2012). Changes in a spatial-time series (1990–2010) of pre-monsoon and post-monsoon groundwater depths in the north-west region suggest that if the current level of groundwater use continues, resulting groundwater level will decline continuously and may pose a long-term threat to the sustainability of irrigated agriculture (Ahmad *et al.*, 2014).

1.4 Importance of trend of historical groundwater level

Trend is a general direction in which something is developing or changing, and analysis of trend reveals the pattern of change. According to Kivikunnas (1998), trends have meaning to experts and its field of application is in process monitoring, diagnosis and control. Trend of groundwater level over considerable time reveals the condition of groundwater resources in terms of sustainability. Trend analysis of both meteorological and hydrological data is often needed to explain the dynamic behavior of the groundwater level (Hasanuzzaman et al., 2017). These investigators employed both parametric (linear regression) and non-parametric approaches to find the state of groundwater resource in Bogra district of north-west Bangladesh. In determining the trend of time-series data, MAKESENS statistics is a wellrecognized and adopted method. This statistics is based on non-parametric Mann-Kendall test for identifying the trend and non-parametric Sen's method for quantifying the trend. Among the advantages of this trend statistics, the most prominent one is that, it is applicable for both monotonic and nonmonotonic trends.

1.5 Critical depth (suction limit) of groundwater

Groundwater is extracted in Bangladesh, mostly, by shallow tubewell (STW) and deep tubewell (DTW). The number of shallow tubewells (STW) is much more than deep tubewell (DTW); there are 1.77 million irrigation pumps in Bangladesh of which STW numbers 1.56 million (SPIS, 2015; BADC, 2016). In addition to irrigation, most STWs also supply water for domestic usage. As STW uses atmospheric pressure to lift water, the depth from where this tubewell can abstract water is limited. STWs cannot extract water from below 8.0 m, but practically they cannot extract water from below 6.0 m when drawdown (≈ 2.0 m) created during pumping is taken into account. This depth is known as suction limit (we call this as critical depth in relation to STW operation). However, other low-capacity suction-mode pumps, such as Hand Tube Well (HTW), do not create considerable drawdown during pumping and they can operate up to 8.0 m suction. If groundwater level resides below the suction limit, it makes the suction-mode pumps inoperative, thus leading to water supply scarcity, especially for domestic water supply.

1.6 Objectives of the study

The goal of the study is to know the long-term trend of the yearly maximum (highest) and minimum (lowest) groundwater levels of north-west region of Bangladesh over the past 32 years (1985–2016). The specific objectives of the study are:

- (a) to identify and quantify the trends of groundwater levels over the years 1985 to 2016,
- (b) to classify the trends of groundwater levels into groups based on direction of change, and
- (c) to identify locations where groundwater level drops below critical suction limit of suction-mode pumps.

CHAPTER 2

REVIEW OF LITERTURE

Chapter 2

REVIEW OF LITERATURE

Groundwater abstraction has remarkably increased since the 1980s for various usages, including irrigation and drinking water supply in Bangladesh. Due to the increasing use of water with time and the limitations of the other water sources like lack of availability, adequate quantity and desired quality, the consumption of groundwater is increasing day by day. Thus, the abstraction of groundwater has also increased with a consequent possibility of mining of groundwater level. This reality compels researchers doing research on the topic related to sustainable groundwater use. Several researchers have done research on this topic and their findings pertinent to the present study are presented in this chapter.

2.1 Importance of groundwater

The importance of water in general and groundwater in particular can be easily realized by the water consumption data put together in this section. Between the two major sources of water, surface water is mainly used for irrigation. The estimated yearly surface water use is 6.2 km³ in the north-west region, while the north central, north-east and south-east regions each consumes a little over 1 km³, and the south-west region consumes about 2.5 km³ (CSIRO, WARPO, BWDB, IWM, BIDS & CEGIS, 2014). Groundwater is used intensively in Bangladesh to meet urban, industrial and irrigation requirements; the largest use of groundwater is for irrigation. In recent decades, the development of agriculture in the dry season has relied, particularly, on the use of groundwater from shallow tube wells. In the north-west region, about 95% of irrigation water comes from groundwater, extracted mainly with STWs, and the proportion from groundwater has increased greatly in the recent years.

Groundwater use for dry season irrigation is one of the major factors in achieving rice grain food self-sufficiency. The north-west region has the most intensive use of groundwater; over 97% of the irrigated area (during 2009-2010) was covered by groundwater followed by the central (84%), south-west (76%), north-east (45%) and south-east (45%) regions. The volumes of groundwater use for irrigation was estimated from the regional water balances to be about 11.0, 2.5, 0.6, 3.6 and 1.0 km³ in the north-west, north-central, north-east, southwest and south-east regions, respectively (CSIRO, WARPO, BWDB, IWM, BIDS & CEGIS, 2014; Kirby et al., 2014), or about 25 km³ in total. Mainuddin et al. (2014) estimated the total irrigation water demand of Bangladesh as 33 km³. The regional water balances give estimates of average (average from 1986 to 2010; eastern hills excluded) irrigation water use of 25 km³, of which 19 km³ (80%) is supplied by groundwater and 6 km³ (20%) by surface water. The proportion supplied by groundwater varies from nearly 100% in the north-west region to about 40% in the south-west region (CSIRO, WARPO, BWDB, IWM, BIDS & CEGIS, 2014; Kirby *et al.*, 2013). The Food and Agriculture Organization (FAO) of the United Nations estimated that the total water withdrawal in Bangladesh in 2008 was 36 km³, of which 31.5 km³ was for irrigation, 3.6 km³ for domestic water use and 0.8 km³ for industry; 79% was sourced from groundwater and 21% from surface water (FAO, 2010).

2.2 Recharge-depletion characteristics of aquifers

Groundwater aquifer maintains its dynamism by recharging in wet season and emptying itself in dry season. Abstraction by pumping with tubewell is the major component of groundwater discharge from the aquifers. If there is no pumping from the aquifer, only a part of water loss occurs through evapotranspiration, inter-basin movement and affluent-contributing river flow in dry season. Then, a part of the potential recharge from rainfall and flooding in the monsoon period would be rejected due to aquifer's limited storage capacity. In reality, groundwater abstraction in dry season increases the storage capacity available to accommodate recharge during the monsoon period; this is an induced recharge. Shamsudduha *et al.* (2011) used an example of monitoring well GT1918006 located in Burichang upazila of Comilla district in eastern Bangladesh to demonstrate induced recharge from groundwater pumping. In that region, 82% cultivable lands are under groundwater-fed irrigation schemes. As illustrated in Fig.2.1, prior to large-scale abstraction, much of the potential recharge was rejected due to 'aquifer full' condition. However, groundwater abstraction has augmented the storage capacity, leading to a longer recharge opportunity period to the aquifer and increased recharge volumes.

Figure 2.1: Groundwater levels during pre-development (1974) and postdevelopment conditions in monitoring well GT1918006 (previous ID CM004) located in Burichang upazila of Comilla district (PWD: Public Works Datum) (after Shamsudduha *et al.*, 2011)

2.3 Present state of groundwater in the study area

Dey *et al.* (2013), by analyzing groundwater level data of 30 years (1981–2011) in five districts (Rajshahi, Pabna, Bogra, Dinajpur and Rangpur) of north-west region, found a declining trend of groundwater table. They identified Rajshahi, Pabna, Bogra, Dinajpur and Rangpur as severely depleted areas, with depletion of groundwater table between 2.3 m and 11.5 m. Shahid and Hazarika (2010) worked on groundwater drought in north-west region by analyzing groundwater hydrographs and rainfall time-series. They concluded that everincreasing groundwater extraction for irrigation in the dry season and recurrent droughts are the causes of declining groundwater level in the region. Hodgson *et al.* (2014) studied water table trends of 709 monitoring wells out of 1256 all around Bangladesh that monitored weekly groundwater level over the period 1985–2010. Based on both the maximum and minimum water-level trends, they categorized the wells into four types as:

- Type 1 wells: both the minimum and maximum groundwater levels are declining with little recovery,
- Type 2 wells: both the minimum and maximum water levels are declining with some recovery,
- Type 3 wells: dry season maximum water level is declining but monsoon minimum water level remains steady, and
- Type 4 wells: both the dry season maximum and monsoon minimum water levels are steady.

Hodgson *et al.* (2014) reported most prevalent groundwater irrigation in the north-west hydrographic region. There are two distinct sub-regions where trends of groundwater level are regionally characteristic. In the northern sub-region, which is north of Joypurhat and Bogra, water tables remain relatively stable with large number of type 3 and type 4 wells; there are only a few type 2 wells and no type 1 well in this sub-region. In the southern sub-region, trend types 1 and 2 dominate most wells. The hydrogeological setting of the sub-regions appears to play some role in the differences in water-level trend types. The northern sub-region is more elevated and dominated by alluvial fan

deposits with thin upper silt and clay layers. In contrast, the southern subregion includes the Barind Tract and areas of thicker clay layers associated with type 1 and type 2 water-level trends. There is some spatial correlation between thickness of the upper silt and clay layers and declining water tables. Wells in the northern sub-region are relatively stable in comparison to those in the southern sub-region. Water tables are generally closer to the surface in the north, with few wells exceeding the 8-m critical depth for suction mode pumps. In the south, the declining water table reflects the topographic and hydrogeological setting with the Barind Tract having generally deeper groundwater levels, leading to many more wells exceeding 8 m depth of their water levels. Naogaon, Joypurhat, Nawabganj and Rajshahi districts have a high proportion of monitoring wells with strongly declining trends of water level, indicating that groundwater resources in this region are at risk if abstraction continues to grow further and preventive measures are not implemented. Shahid and Hazarika (2010) investigated groundwater scarcity and drought in the Barind area by using monthly groundwater level fluctuation data of 85 sites. Their study reveals that groundwater scarcity in 42% area is an every-year phenomenon in that region.

2.4 Methods of trend analysis

Trend analysis of time-series of groundwater table data reveals the pattern of change of groundwater table over the time period; it reveals both direction and magnitude of the changes. Several methods are available for trend analysis, of which the commonly used ones are highlighted below.

- i. **Regression-analysis-based methods:** Linear regression, when applied to time-series data, fits the data to a model of form y = mx + c, where *m* represents the rate of change and *c* represents the *y*-intercept of the line.
- ii. Triangular episodic presentation and qualitative scaling: Cheung (1992) developed a formal framework for extraction and representation of process trends. They formulated a language called 'triangular episodic representation' for the extraction of trend.

- iii. Dynamic time-warping: Dynamic time-warping uses dynamic programming to align a time-series under study and a given template so that some measure of total distance is minimized (Rainer and Juang, 1993).
- iv. **Wavelets:** Recently, wavelet-based signal processing methods have gained popularity, for example in de-noising, data compression and feature extraction. Wavelet analysis preserves both the time-domain and frequency-domain information of the signal.
- v. **Qualitative temporal shape analysis:** Konstantinov and Yoshida (1992) have proposed a generic methodology for qualitative analysis of temporal shapes of process variables. Their procedure consists of three phases: analytical approximation of the process variable, its transformation into symbolic form based on signs of the first and second derivatives of an analytical approximation function, and calculation of degree of certainty.
- vi. **Mann-Kendall-Sens (MAKESENS) analysis:** MAKESENS statistics is based on non-parametric Mann-Kendall test for determining the trend and non-parametric Sen's method for determining the magnitude of the trend (Salmi *et al.,* 2002).

2.5 Critical water level depth for suction-mode pumps

All suction-mode pumps, including shallow tubewell, STW, utilize atmospheric pressure to lift water. Standard atmospheric pressure is 1.03 kg/cm², which is equivalent to 8 m of water column/head. This implies that the maximum limit for suction-mode tubewells for abstraction of groundwater is 8 m. This is the theoretical critical depth or suction limit. But, due to friction losses in the piping system, the limit is less than 8 m. In addition to the friction loss, a drawdown of 1–2 m occurs depending on the aquifer properties while pumping. Thus, practically 6 m is taken as the standard critical depth (maximum suction lift) for pumping groundwater by STW and other suction-mode pumps.

2.6 Justification of the study

In addition to the falling groundwater levels, there are evidences that the recharge to the aquifers in many areas is less than the volume of groundwater withdrawn for irrigation. Several studies show evidence of over-extraction of groundwater, thus revealing the threat to groundwater sustainability. For example, Adham et al. (2010) showed that the recharge potential of a small area within Barindarea is quite low, and actual recharge (roughly equivalent to 100 mm per year) is insufficient to replenish the water withdrawn for irrigation. Rahman and Roehrig (2006) showed that recharge is insufficient in some parts of the area, but were just sufficient in other parts prior to 2006, generally in the range of 350–500 mm per year. Shamsudduha et al. (2009) and Kirby et al. (2013) concluded that the use of shallow aquifers for irrigation in the Barind area is unsustainable. The groundwater use in the Barind area exceeds recharge, the water tables are falling, and the use is unsustainable (Rahman et al., 2013; Hossain and Bahauddin, 2013). But, the situation is less clear elsewhere. Groundwater use may be sustainable in some parts of the country in the sense of not leading to a continuing and ultimately catastrophic decrease. However, even where use is sustainable in that sense, there may be problems with shallow drinking water wells or shallow tubewells providing irrigation running dry in late dry season when the groundwater table is at its greatest depth (Shahid and Hazarika, 2010). Many monitoring wells show water levels that fall below 8 m during March, April and May (Hodgsonet al., 2014), thus hindering sustainability, especially in domestic water supply (CSIRO, WARPO, BWDB, IWM, BIDS & CEGIS, 2014). To ensure sustainability, the pre-requisite is to know the condition of the groundwater resources. This brings the necessity of trend analysis, which provides good pictures of the condition of the resources. The water scarcity identification based on critical depth can identify the places with water scarcity for irrigation and domestic needs. This can reveal the actual problems created by groundwater scarcity that local people face. Also, this can guide for necessary social studies.

Dey *et al.* (2013) did trend analysis of groundwater level as a part of their study to check sustainability of groundwater in Barind area and selected only five districts (Rajshahi, Dinajpur, Pabna, Rangpur and Bogra) out of sixteen in north-west region for this. Hodgson *et al.* (2014) did trend analysis of groundwater levels of 709 wells all around Bangladesh, but that study did not evaluate the significance level of the observed trends. Also, trend analysis needs to be done and kept up-to-date by using the latest data sets. Again, trends are so far determined by using empirical formulae/methods. So, determining trend of the same data set by using different methods opens ways for verification of those methods and observed trends. Therefore, the present study is intended to determine the trend of groundwater level over 1985–2016 of the entire north-west part of Bangladesh.

METHODOLOGY

Chapter 3

METHODOLOGY

3.1 Study area

Bangladesh has eight hydrological regions. These regions, as shown in Fig.3.1, are: North West (NW), North Central (NC), North East (NE), South East (SE), South Central (SC), South West (SW), Eastern Hills (EH), and the active floodplains and charlands of the main rivers and estuaries (WARPO, 2000). The study area was the NW hydrological region.

Figure 3.1: Hydrological regions of Bangladesh

The study area covers two administrative divisions: Rajshahi and Rangpur. Rajshahi division (Fig.3.2) has an area of 18,174.4 square kilometers (7,017.2 sq. mile) (Wikipedia) and a population of 18,484,858 (Population Census, 2011). It consists of 8 districts, which comprise 70 upazillas (the next lower administrative tier) and 1,092 Unions (the lowest administrative tier). Rangpur division (Fig.3.3) also consists of 8 districts. There are 58 upazillas under these districts. Rangpur is the northern-most division of Bangladesh and has a population of 15,665,000 (Population Census, 2011).

Figure 3.2: Map of Rajshahi division showing its 8 districts

Figure 3.3: Map of Rangpur division showing its 8 districts

The study area includes the northern zone of north region, north-western zone and western zone of the seven climatic sub-regions of Bangladesh (Fig.3.4). These three zones are identical in climatic parameters except the humidity. The north-western zone is drier and western zone is the driest. The region has maximum temperature above 32°C in summer and mean minimum below 10°C in winter. The annual average rainfall is 1927 mm in the NW hydrological region and potential evapotranspiration is 1309 mm (CSIRO, WARPO, BWDB, IWM, BIDS & CEGIS, 2014).

Figure 3.4: Seven climatic sub-regions of Bangladesh (Source: http://www.agrislide.com/climatic-sub-regions-of-bangladesh/)

3.2 Data collection

Bangladesh Water Development Board (BWDB) maintains an extensive groundwater monitoring database, which contains time series of water table depth recordings of about 1200 monitoring wells across the country (Fig.3.5) (Hodgson *et al.*, 2014). Many wells have water level data from the mid-1960s onwards. However, most wells have weekly data from 1985. The study area (NW hydrological region) has total 437 monitoring wells, the water level data of which from year 1985 to 2016 were utilized in this study.

Figure 3.5: Hydrological regions of Bangladesh and distribution of groundwater level monitoring wells

3.3 Data preparation

The first step in analyzing a time series is to plot the observed data against time. This shows up important features of the data such as trend, seasonality, discontinuities and outliers (Chatfield, 1980). The data of groundwater level were first arranged and sorted according to the wells. The wells were divided into four categories. The first category consists of wells having data of typical distribution like, for example, Well ID GT6915004 (Fig.3.6).

Figure 3.6: A typical variation of groundwater level of monitoring Well ID GT6915004 (first category) over time

The second category wells have missing data of 5 to 7 years or more. An example for this category wells is Well ID GT7088502, which does not have water level record from 2009 to 2015. This well shows a discontinuous distribution of water level (Fig.3.7). The third category wells include those providing irrational/absurd distribution of water level over time. Well ID GT6475035 is an example of this category (Fig.3.8). In this well, after 29 February 1988, the water level distribution pattern abruptly changed and the whole cycle lifted itself up and then continues. Also, the water levels on 11 July 2011, 19 September 2011 and 23 December 2013 are found out of water cycle.

Figure 3.7: A discontinuous groundwater level of monitoring Well ID GT7088502 (second category) over time

Figure 3.8: An irrational/absurd variation of groundwater level of monitoring Well ID GT6475035 (third category) over time

The fourth category wells have identification limitations. These well could not be located precisely. A total number of seven wells are within this category.

After categorizing, the wells showing discontinuous and irrational distribution of water levels were discarded. Also the wells having identification limitations were rejected. Among the 437 wells of the study area, 350 wells with good data set were selected for trend analysis in this study. A list of these wells along with their locations is given in Appendix-1. The annual maximum and minimum depths of water levels of the wells with typical water level distributions and with known locations were identified and listed separately for each well.

3.4 Trend analysis

The trends of the annual maximum and minimum depths of water levels were determined by using MAKESENS trend statistics. MAKESENS utilizes Gilbert's (1987) S-statistics and Z-statistics. For time series with less than 10 data points, S-statistics is used. For time series with \geq 10 data points, Z-statistics is used. If $x_1, x_2, x_3...x_j$ represent n data points where x_j represents the data point at time j then Mann-Kendall statistics "S" is given by

$$S = \sum_{k=1}^{n-1} \sum_{j=k+1}^{n} \operatorname{sigh}(x_j - x_k)$$
(1)

where

 $sigh(x_j - x_k) = 1$, if $x_j - x_k > 0$ $sigh(x_j - x_k) = 0$, if $x_j - x_k = 0$ $sigh(x_j - x_k) = -1$, if $x_j - x_k < 0$

The normalized Z-statistics is given by,

$$Z = \frac{S-1}{[VAR(S)]^{\frac{1}{2}}} \quad \text{if } S > 0 \tag{2}$$
$$Z = \frac{S+1}{[VAR(S)]^{\frac{1}{2}}} \quad \text{if } S < 0$$

 $Z = 0 \qquad \text{if } S = 0$

3.5 Water scarcity identification

Based on the suction limit of STW and other suction-mode pumps, the critical depth was set to be 6 meters considering the suction limitation and dynamic drawdown during pumping. The monitoring wells were categorized into three groups based on their water level positions:

- i. wells having water levels below critical depth during whole year over the study period (1985–2016),
- ii. wells having water levels below critical depth for certain months in the year over the study period, and
- iii. wells having water level above critical during whole year over the study period.

After categorizing the wells, their locations (up to village level) were identified to reveal the condition of groundwater availability of the places, especially for domestic water supply.

CHAPTER 4

RESULTS AND DISCUSSION
Chapter 4

RESULTS AND DISCUSSION

This study determined and evaluated the trends of historical groundwater tables/levels of the north-west Bangladesh to reveal the long-term dynamic nature of groundwater resource in the region. The findings of the study are presented in this chapter in compliance to the objectives of the study.

Data on both the annual maximum and minimum depth of groundwater levels, measured in 350 monitoring wells, were analyzed. Three possible features of groundwater-level trend (increasing, decreasing and constant/unchanged trends) reveal the present sustainability conditions of the groundwater resource. In this chapter, the first two sections present the condition of water level dynamics in all the monitoring wells. The third section categorizes the wells along with their locations based on critical depth of groundwater level. The fourth section focuses on areas exposed to domestic water scarcity.

4.1 Long-term trend of groundwater level

The MAKESENS model provides trends of groundwater levels in terms of Zstatistics (Eq.2), slope, intercept and statistical significance (Appendix-2 and Appendix-3). The Z-statistics is a deterministic index of the trend. The slope of the trend lines reveals if the trend is increasing or decreasing. Also, the slope determines the magnitude of the trend, that is, the amount of change per year. The intercept and slope together provide the trend line. Based on data type, especially the sensitivity of change, statistical significance of the trend is determined and presented by the model for significant levels p= 0.1, 0.05, 0.01or ≤ 0.1 . For this study, p= 0.05 was taken as base for determining statistical significance of the water-level trends, i.e. trends having $p \ge 0.05$ are considered significant; otherwise they are insignificant.

4.1.1 Trend of annual maximum groundwater level

4.1.1.1 Direction of groundwater-level trend

Among the 350 monitoring wells under study, 300 wells show increasing trend of the annual maximum depth of groundwater level. Forty-eight (48) wells show decreasing trend of the water levels. The remaining 2 wells show constant/unchanged trend of the water level. Table 4.1 provides distribution of the three trend types of the annual maximum depth of groundwater levels of 350 wells over sixteen districts of the north-west region. This table has been arranged focusing on the number of monitoring wells in every district with the possible three trends of the groundwater level.

Table 4.1: Number of monitoring wells in different districts with different trends of the annual maximum depth of water level

District	No. of wells	No. of wells	No. of wells	Total
	with	with	with	number
	increasing	decreasing	constant	of wells
	water-level	water-level	water-level	
	trend	trend	trend	
Rajshahi	35	1	0	36
Bogra	20	7	0	27
Dinajpur	38	0	0	38
Gaibandha	12	5	0	17
Joypurhat	8	0	0	8
Kurigram	6	1	0	7
Lalmonirhat	13	1	0	14
Naogaon	32	1	0	33
Natore	9	4	0	13
Chapai Nawabganj	18	1	2	21
Nilphamari	16	8	0	24
Pabna	21	6	0	27
Panchagarh	18	4	0	22
Rangpur	8	4	0	12
Shirajganj	22	2	0	24
Thakurgaon	24	3	0	27
	Total number of	of wells		350

The majority of the monitoring wells (Table 4.1) shows increasing trend of the annual maximum depth of groundwater level, implying that the depletion of groundwater level has been increasing in dry seasons over the years (1985 -2016). The decreasing trend of annual groundwater level, on the other hand, indicates complete replenishment of the aquifer after abstraction for various usages. The constant trend suggests no permanent change of water level over the years. This trend also implies that the aquifers are completely replenished during monsoon after depletion in dry season, with a possibility of recharge rejection when the aquifer is replenished before the end of rainy season. Dinajpur and Joypurhat districts have the highest proportion (100%) of monitoring wells showing increasing trends of the annual maximum depth of groundwater level. Nilphamari has the highest number (8 out of 24) of wells showing decreasing trend of the water level. Only Chapai Nawabganj has 2 wells showing constant trend of groundwater level. The increasing, decreasing and constant trends of groundwater levels in three monitoring wells are shown, for example, in Figs.4.1, 4.2 and 4.3, respectively.

Figure 4.1: Increasing trend of the annual maximum groundwater level in monitoring Well ID GT7605003 (Z = 4.72 and slope = 0.133)

Figure 4.2: Decreasing trend of the annual maximum groundwater level in monitoring Well ID GT7616012 (Z = -3.39 and slope = -0.031)

Figure 4.3: Constant annual maximum groundwater level in monitoring Well ID GT7066014 (Z = 0.0 and slope = 0.0)

The increasing water-level trend outnumbers the other two trend categories (decreasing and constant trends) for maximum depths of groundwater levels

(Table 4.1). The situation presented by trend analysis implies unsustainable use of groundwater in the north-west region; the groundwater level is declining in the dry season with successive years for most of the wells. This is mostly due to increased cultivation of irrigated crops and unwise use of water for other purposes. According to Shamsudduha *et al.* (2009), these areas are of intensive Boro cultivation. Given the necessity of increasing crop production, increased water requirement in irrigated agriculture is inevitable. However, introducing water saving techniques and increasing irrigation efficiency in the areas can ensure sustainability of groundwater use. Also, municipal use of water needs to be kept in check. Extravagant use of water for domestic purpose is also responsible for ever-declining groundwater level.

4.1.1.2 Magnitude of groundwater-level trend

Among the 300 monitoring wells (Table 4.1) with increasing trend of the maximum depths of annual groundwater level, the trends of water levels in 244 wells are significant (p = 0.05) and that of the remaining 56 wells are insignificant. Of the 48 wells with decreasing trends of groundwater level, 17 wells show significant trend and 31 wells show insignificant trend in groundwater levels. The monitoring wells are listed in Table 4.2 based on the significance level of their water-level trends. For comparison, four monitoring wells with different categories of water-level trend are shown, for example, in Fig.4.4.

Table 4.2 reveals that 81.33% monitoring wells with increasing trend and 35.42% monitoring wells with decreasing trend of the annual maximum depths of groundwater levels are significant (p = 0.05). Statistical significance indicates the importance of the trend for planned management of the groundwater resources. If the trend is not significant then the estimated change is not worth worrying. As the increasing trend for maximum depths of groundwater levels covers majority portion of the monitoring wells considering significance level, it suggests that, the declining groundwater level in the dry season is statistically true, on which basis, it can be said emphatically that water use

policy in those areas need to be revised to ensure sustainability of groundwater use.

District	No. c	No. of wells		No. of wells		No. of wells		
	with ir	with increasing		creasing	with c	onstant		
	tr	end	trend		trend			
	Sig.	Insig.	Sig.	Insig.	Sig.	Insig.		
Rajshahi	33	2	0	1	0	0	36	
Bogra	16	4	4	3	0	0	27	
Dinajpur	38	0	0	0	0	0	38	
Gaibandha	10	2	2	3	0	0	17	
Joypurhat	8	0	0	0	0	0	8	
Kurigram	3	3	0	1	0	0	7	
Lalmonirhat	9	4	0	1	0	0	14	
Naogaon	30	2	0	1	0	0	33	
Natore	6	3	0	4	0	0	13	
Chapai Nawabganj	15	3	0	1	0	2	21	
Nilphamari	14	2	7	1	0	0	24	
Pabna	14	7	1	5	0	0	27	
Panchagarh	9	9	1	3	0	0	22	
Rangpur	5	3	0	4	0	0	12	
Shirajganj	13	9	2	0	0	0	24	
Thakurgaon	21	3	0	3	0	0	27	
		Tot	tal wells				350	

Table 4.2: Distribution of the monitoring wells based on statistical significance of their annual maximum water-level trends in different districts

GT8172035: Z = 6.04, slope = 0.30; significantly increasing GT1020005: Z = 0.5, slope = 0.006; insignificantly increasing

GT1067015: Z=-3.45, slope= -0.081; significantly decreasing GT1040011 Z = -1.85, slope = -0.0175; insignificantly decreasing

Figure 4.4: An example of significant and insignificant trend types of the annual maximum groundwater level in four monitoring wells

4.1.2 Trend of annual minimum groundwater level

4.1.2.1 Direction of groundwater-level trend

Among the 350 monitoring wells under study, 315 wells show increasing trend of the annual minimum depths of groundwater levels. Thirty-one (31) of them show decreasing trend of the water levels. The remaining 4 wells show constant/unchanged trend of the water level. Table 4.3 provides a list of different trend types of the annual minimum groundwater levels of 350 wells. This table has been arranged focusing on the number of monitoring wells in every district with the possible three trend-types of the groundwater levels.

Table 4.3: Number of monitoring wells in different districts with different trends of the annual minimum groundwater level

District	No. of wells	No. of wells	No. of wells	Total
	with increasing	with	with constant	
	trend	decreasing	trend	
		trend		
Rajshahi	36	0	0	36
Bogra	27	0	0	27
Dinajpur	37	1	0	38
Gaibandha	13	2	2	17
Joypurhat	8	0	0	8
Kurigram	6	1	0	7
Lalmonirhat	10	4	0	14
Naogaon	33	0	0	33
Natore	13	0	0	13
Chapai Nawabganj	20	1	0	21
Nilphamari	15	9	0	24
Pabna	25	1	1	27
Panchagarh	20	2	0	22
Rangpur	9	3	0	12
Shirajganj	22	2	0	24
Thakurgaon	21	5	1	27
	Total we	lls		350

The majority of the monitoring wells (Table 4.3) show an increasing trend of the annual minimum depths of groundwater levels, implying that the depletion of groundwater level has been increasing in the wet seasons over the years (1985–2016). The decreasing trend of the annual minimum groundwater level indicates proper replenishment of the aquifers. Rajshahi district has the highest proportion (100%) of the monitoring wells with increasing trends of groundwater levels. Nilphamari has the highest number (9 out of 15) of the monitoring wells with decreasing trends of groundwater levels. Four of the wells show constant trend of the groundwater levels, indicating no change of groundwater levels over time. Gaibandha had the highest number (2) of wells with constant trends of groundwater levels. The increasing, decreasing and constant trends of groundwater levels in three monitoring wells are shown, for example, in Figs. 4.5, 4.6 and 4.7, respectively.

Figure 4.5: Increasing trend of the annual minimum depth of groundwater level in monitoring Well ID GT1054014 (Z = 5.4 and slope = 0.234)

Figure 4.6: Decreasing trend of the annual minimum depth of groundwater level in monitoring Well ID GT5233001(Z = -1.22 and slope = -0.005)

Figure 4.7: Constant annual minimum depth of groundwater level in monitoring Well ID GT9494016 (Z = -0.18 and slope = 0.0)

The increasing water-level trend outnumbers the decreasing and constant water-level trends for the minimum annual depths of groundwater levels (Table 4.3). This fact implies the lack of adequate recharge to the aquifers in wet season. The north-west region of Bangladesh has the lowest amount of annual rainfall, and the region has a layer of thick (6.10-21.34 m) aquitard (Rahman and Mahbub, 2012). Both these factors hinder adequate recharge to the aquifers and, consequently, cause declining water-level trend in the wet season. Also, the monsoon rainfall as well as annual rainfall in the northern part of Bangladesh has a decreasing trend for most of the districts (Bari et al., 2016), making the available water for recharge limiting. Therefore, recharge to the aquifers needs to be augmented to ensure groundwater availability in the dry season. Also, if groundwater is not replenished properly, the possibility of mining increases, which opens up the path of land subsidence. To make sure that the aquifers are replenished properly, artificial recharge can be introduced into those areas. Rainwater harvesting in the existing ponds can also contribute to groundwater recharge.

4.1.2.2 Magnitude of groundwater-level trend

Among the 315 monitoring wells (Table 4.3) with increasing trend of the minimum annual groundwater level, the trends of water levels in 230 wells are significant (p=0.05) and that of the remaining 85 wells are insignificant. Of the 31 wells with decreasing trends in groundwater levels, 6 wells show significant trend and 25 wells show insignificant trend in their water levels. Only four wells show constant trend in their water levels. The monitoring wells are distributed in Table 4.4 based on the significance level of their water-level trends. For comparison, four monitoring wells with different categories of water-level trends are shown, for example, in Fig.4.4.

In Table 4.4, the trends of the majority of increasing annual minimum groundwater levels are significant, implying that the declining groundwater level in the wet season is remarkable and needs attention. On the other hand, majority of the decreasing trend is insignificant, implying that the increment in

the groundwater level in the wet season is statistically worthless to be taken into consideration. These findings emphasize the necessity of taking corrective decision on the declining groundwater levels in wet season and suggest implementing techniques to augment groundwater recharge.

Table 4.4: Distribution of the monitoring wells based on statistical significance of their annual minimum water-level trends in different districts

District	No. o with in tre	No. of wells with increasing trend		No. of wells with decreasing trend		No. of wells with constant trend	
	Sig.	Insig.	Sig.	Insig.	Sig.	Insig.	
Rajshahi	35	1	0	0	0	0	36
Bogra	24	3	0	0	0	0	27
Dinajpur	22	15	0	1	0	0	38
Gaibandha	7	6	1	1	0	2	17
Joypurhat	7	1	0	0	0	0	8
Kurigram	2	4	0	1	0	0	7
Lalmonirhat	4	6	0	4	0	0	14
Naogaon	31	2	0	0	0	0	33
Natore	11	2	0	0	0	0	13
Chapai Nawabganj	17	3	0	1	0	0	21
Nilphamari	6	9	3	6	0	0	24
Pabna	20	5	0	1	0	1	27
Panchagarh	11	9	0	2	0	0	22
Rangpur	4	5	0	3	0	0	12
Shirajganj	10	12	0	2	0	0	24
Thakurgaon	19	2	2	3	0 1		27
		Total w	ells				350

33

GT7066018: Z = 1.74, slope = 0.042; insignificantly increasing GT9494022: Z = 4.35, slope = 0.03; significantly increasing

GT7088020: Z = -0.28, slope = -0.01; insignificantly decreasing GT7312007: Z = -3.45, slope = -0.081; significantly decreasing

Figure 4.8: An example of significant and insignificant trend-types of the annual minimum groundwater level in four monitoring wells

4.2 Locations with critical depth of groundwater level

The annual groundwater levels (minimum and maximum) in some monitoring wells never dropped below 6 meters (critical depth for suction-mode pumps) during the year 1985–2016, while the water levels in some monitoring wells were always below 6 meters. But, some wells had water levels below 6 m during 3–6 months in most of the years during 1985–2016. Based on the critical depth of groundwater level (6 m), the monitoring wells, regardless of their water-level trend categories, were divided into three groups (Appendix-4). The list of monitoring wells, focusing on the numbers in each districts, having their water levels always greater than critical depth, those maintain critical depth in 3–6 months in most of the years, and those having water levels always above the critical depth are given in Table 4.5.

Table 4.5: Distribution of the monitoring wells over different districts based on
critical depth (suction limit) of groundwater level

District	No. of wells	No. of wells having	No. of wells	Total
	having GWL	GWL below	having GWL	
	always	suction limit	always above	
	below	maintaining a cycle	suction limit	
	suction limit			
Rajshahi	11	25	0	36
Bogra	6	20	1	27
Dinajpur	0	27	11	38
Gaibandha	12	5	0	17
Joypurhat	2	6	0	8
Kurigram	0	4	3	7
Lalmonirhat	0	0	14	14
Naogaon	16	17	0	33
Natore	0	13	0	13
ChapaiNawabganj	6	15	0	21
Nilphamari	0	2	22	24
Pabna	0	27	0	27
Panchagarh	0	5	17	22
Rangpur	0	5	7	12
Shirajganj	0	24	0	24

Thakurgaon	0	14	13	27
	Tota	l wells		350

The large proportions (209 out of 350) of the monitoring wells have their water levels below suction limit for several months of the year. These types of wells maintain a water-level cycle throughout the year, with the water level staying below critical depth (6 m) in the dry season. The groundwater levels in 88 monitoring wells stay above suction limit/critical depth, making shallow tubewell (STW), and other suction-mode pumps operational throughout the whole year. Fifty-three (53) wells always have their water levels below critical depth. This information raise questions about technical feasibility of the STWs in the region. The STWs, which dominate over other tube wells, lead to water scarcity when fail to operate because of suction lift limitation. A total of 74.86% monitoring wells (both category 1 and 2) become unworkable in the dry season. Currently, installation of DTWs in the Barind area is prohibited by the government due to groundwater sustainability issue, adequate replenishment of aquifer, proper operation of the existing DTWs, and efficient distribution and utilization of water in the dry season is suggested as solutions for water scarcity.

4.3 Domestic water scarcity

In the north-west region of Bangladesh, household water supply is mostly covered by groundwater, the abstraction of which is done by both STWs and DTWs. The shortcoming of STW, due to limited suction lift (practically 6 m, including dynamic drawdown during pumping), restricts water supply. Figure 4.9 illustrates the regional distribution of the monitoring wells based on critical depth of their water levels. The yellow dots in the figure denote the wells having water levels below suction limit in the dry season (3–6 months). The red dots show the wells having water levels always below suction limit. It is revealed that Bogra, Rajshahi, Naogaon, Joypurhat and Chapai Nowabgonj, forming the Barind track, have all the red-colored wells, showing severity of

water scarcity due to failure of STWs. As Barind track has low rainfall and high runoff due to a thick aquitard starting from the ground surface, the reason of this distribution is easily comprehensible. The green wells (groundwater levels reside above suction limit) amass in the northern part (Rangpur, Gaibandha, Kurigram, Dinajpur, Nilphamari, Panchagor and Thakurgaon) of the study area, showing good condition of the groundwater resource for some areas. The wells having water levels below suction limit are found distributed all around the north-west region, indicating areas of dry season water scarcity.

Figure 4.9: Distribution of the monitoring well-types based on suction limit in different districts in the north-west region of Bangladesh

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

From the trend analysis of the annual maximum and minimum depths of groundwater levels in 350 monitoring wells over the period 1985–2016, the following conclusions were drawn:

- i. For the annual maximum/highest depths of groundwater levels:
 - a. 85.71% of the monitoring wells show increasing/upward trend of their groundwater levels; 81.33% of these wells show significantly (p = 0.05) increasing trends of their groundwater levels.
 - b. 13.72% of the monitoring wells have decreasing trend of their water levels; the trends of 35.42% of these wells are significant.
 - c. 0.57% of the monitoring wells show unchanged groundwater levels.
- ii. For the annual minimum/lowest depths of groundwater levels:
 - a. 90% of the monitoring wells show increasing trend of their water levels; the trends of 73.02% of this category wells are significant (p = 0.05).
 - b. 8.86% of the monitoring wells show decreasing trend of their water levels; the trends of 19.35% of this category wells are significant.
 - c. only 1.14% of the monitoring wells show unchanged groundwater levels.
- iii. For grouping of the monitoring wells based on suction limit:
 - a. 15.14% of the monitoring wells have their water levels always below suction limit (6 m) of suction-mode pumps.
 - b. 59.72% of the monitoring wells maintain a cycle of water level below suction limit in 3–6 months during dry season throughout the study period.

- c. the water levels of 25.14% monitoring wells never fall below critical depth/suction limit.
- iv. For domestic water scarcity
 - a. In some parts of Bogra, Rajshahi, Naogaon, Joypurhat and Chapai Nowabgonj districts that form the Barind track, have severe water scarcity, especially for domestic supply, due to failure of shallow tubewells.
 - b. In most parts of the north-west region, there remains water scarcity during 3–6 months in the dry season of the years.

5.2 Recommendations

In light of the findings of this study, the following recommendations were made:

- i. Based on the findings of this study, groundwater development policy of the north-west region of Bangladesh needs to be adjusted.
- ii. Special attention needs to be given in areas where groundwater levels drop below critical suction limit of suction-mode pumps. Alternate technology for pumping groundwater needs be made available to provide household water.
- iii. Different trend-analysis methods may yield different results. So, for reliable results, more than one trend-analysis method needs to be used to reliably determine trends/trend of the groundwater levels.
- iv. In this study, identification of well locations with water scarcity based on suction limitation was done, but the social impact of water scarcity was not investigated in detail. Further study needs be done to find the clear image of those wells and social impacts of water scarcity in the concerned locations.

REFERENCES

- Adham MI, Jahan CS, Mazumder QH, Hossain MMA, Haque AM 2010: Study on groundwater recharge potential of Barind Tract, Rajshahi District, Bangladesh, using GIS and remote sensing technique. *Journal of the Geological Society of India* 75 432-438.
- Agrislide 2018: Climatic sub regions of Bangladesh, URL: http://www.agrislide.com/climatic-sub-regions-of-Bangladesh/.
- Ahmad MU, Kirby M, Islam MS, Hossain MJ, Islam MM 2014: Groundwater use for irrigation and its productivity: status and opportunities for crop intensification for food security in Bangladesh. *Water Resources Management* 28(5) 1415-1429.
- Alam M, Alam MM, Curray JR, Chowdhury MLR, Gani MR 2003: An overview of the sedimentary geology of the Bengal Basin in relation to the regional tectonic framework and basin-fill history. *Sedimentary Geology* **155** 179– 208.
- Alice M 2010: Research Report on: Water Scarcity in Northern Bangladesh. Prepared for Voluntary Service Overseas.
- BADC 2016: Summary of Irrigation Equipment Used, Area Irrigated and Benefited Farmers: 2010–2011. Bangladesh Agricultural Development Corporation, Shech Bhavan, Dhaka.
- Bari SH, Rahman MT, Hoque MA, Hussain MM 2016: Analysis of seasonal and annual rainfall trends in the northern region of Bangladesh. *Atmospheric Research* 176 148-158.
- Chatfield C, Colins AJ 1980. *Introduction to Multivariate Analysis*. Springer, USA. pp. 3–17.

- Cheung, Tat-Yin J 1992: Representation and Extraction of Trends from Process Data, PhD Thesis, Massachusetts Institute of Technology, Cambridge/MA, USA.
- CSIRO, WARPO, BWDB, IWM, BIDS, CEGIS 2014: Bangladesh Integrated Water Resources Assessment: final report. CSIRO, Australia.
- Dey NC, Bala SK, Islam AKMS, Rashid MA,Hossain M 2013: Sustainability of groundwater use for irrigation in northwest Bangladesh. Policy Report prepared under the National Food Policy Capacity Strengthening Programme (NFPCSP). Dhaka, Bangladesh.
- FAO 2010: AQUASTAT: Bangladesh, URL: http://www.fao.org/nr/water /aquastat/countries_regions/Bangladesh/index.stm
- Gilbert RO 1987: Statistical Methods for Environmental Pollution Monitoring. John Wiley & Sons.
- Hasanuzzaman M, Song X, Han D, Zhang Y, Hussain S 2017: Prediction of groundwater dynamics for sustainable water resource management in Bogra district, Northwest Bangladesh. *Water* **9(4)** 238.
- Hodgson G, Ali R, Turner J, Ahmed M, Dawes W, Masud MS, Hossain MJ, Alam S, Islam MM, Saha GK, Barman TD 2014: Bangladesh Integrated Water Resources Assessment Supplementary Report: Water table trends and associated vertical water balance in Bangladesh. CSIRO, Australia.
- Hossain N, Bahauddin KM 2013: Integrated water resource management for mega city: a case study of Dhaka City, Bangladesh. *European Journal of Earth and Environment* **10** 82-89.
- Kirby M, Ahmad MD, Poulton P, Zhu Z, Lee G, Mainuddin M 2013: Review of water, crop production and system modelling approaches for food security studies in the Eastern Gangetic Plains. CSIRO Report, AusAID -CSIRO Alliance.
- Kirby M, Ahmed M., Mainuddin M, Palash W, Qadir E, Shah-Newaz SM 2014: Bangladesh Integrated Water Resources Assessment, supplementary

report: approximate regional water balances. A report for the DFAT Australian Aid – CSIRO Research for Development Alliance.

- Konstantinov, Konstantin B, Yoshida, Toshiomi 1992: Real-time qualitative analysis of the temporal shapes of (bio) process variables. *AIChE Journal* **38** 1703–1715.
- Mainuddin M, Kirby M, Chowdhury RAR, Sanjida L, Sarker MH, Shah-Newaz SM 2014: Bangladesh integrated water resources assessment: supplementary report on land use, crop production and irrigation demand. CSIRO: Water for a Healthy Country Flagship.
- Michael HA, Voss CI 2009: Estimation of regional-scale groundwater flow properties in the Bengal Basin of India and Bangladesh. *Hydrogeology Journal* **17(6)** 1329-1346.
- MPO (Master Plan Organization) 1987: Groundwater Resources of Bangladesh.
 Technical Report no 5. Master Plan Organization, Dhaka. Hazra, USA;
 Sir M MacDonald, UK; Meta, USA; EPC, Bangladesh.
- Population Census 2011: National Volume-1: Analytical Report, Bangladesh Bureau of Statistics 199.
- Rabiner, Juang L, Biing-Hwang 1993: Fundamentals of Speech Recognition, Englewood Cliffs/NJ, USA.
- Rahman MA, Roehrig J 2006: Estimation of potential recharge and groundwater resources assessment: a case study in low Barind area Bangladesh. In: Conference on International Agricultural Research for Development, University of Bonn, 11–13 October 2006.
- Rahman MA, Wiegand BA, Badruzzaman ABM, Ptak T 2013: Hydrogeological analysis of the upper Dupi Tila Aquifer, towards the implementation of a managed aquifer recharge project in Dhaka City, Bangladesh. *Hydrogeology Journal* **21** 1071-1089.

- Rahman MM,Mahbub AQM 2012: Lithological study and mapping of Barind Tract using borehole log data with GIS: in the context of Tanore upazila. *Journal of Geographic Information System* **4** 349-357.
- Razzaq A 1980: What makes us a nation? Muzaffar Ahmed Choudhury memorial lecture, University of Dhaka. Reprinted in The Bangladesh Reader: history, culture, politics. Meghna Guhathakurta and Willem van Schendel, eds. *Duke University Press* **2013** 295-302.
- Salmi T 2002: Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen's slope estimates-the Excel template application MAKESENS. Ilmatieteen laitos.
- Shahid S, Hazarika MK 2010: Groundwater drought in the north-western districts of Bangladesh. *Water Resources Management* **24** 1989-2006.
- Shamsudduha M, Chandler RE, Taylor RG, Ahmed KM 2009: Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges-Brahmaputra-Meghna Delta. *Hydrology and Earth System Sciences* 13 2373–2385.
- Shamsudduha M, Taylor RG, Ahmed KM , Zahid A 2011: The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: evidence from Bangladesh. *Hydrogeology Journal* **19** 901– 916.
- SPIS 2015: Prospects for solar-powered irrigation systems (spis) in developing countries. Final workshop report. International workshop jointly organized by the Food and Agriculture Organization (FAO) and the German Agency for International Cooperation (GIZ), FAO HQ, Rome, Italy, 7–29 May 2015.
- WARPO (Water Resources Planning Organization) 2000: National Water Management Plan Project: draft development strategy, Ministry of Water Resources, Government of the People's Republic of Bangladesh, Dhaka.

- Wikipedia 2018: Rajshahi division, URL: https://en.wikipedia.org/wiki/ Rajshahi_Division.
- Wikipedia 2018: Rangpur division, URL: https://en.wikipedia.org/wiki/ Rangpur_Division.

APPENDICES

WELL ID	DISTRICT	UPAZILA	VILLAGE	WELL ID	DISTRICT	UPAZILA	VILLAGE
GT8112001	Rajshahi	Baghmara	Tahirpur	GT8172033	Rajshahi	Paba	Bagdhanihat
GT8112002	Rajshahi	Baghmara	Bhabaniganj	GT8172035	Rajshahi	Paba	Hatgodagari
GT8112003	Rajshahi	Baghmara	Birkutsha	GT8172036	Rajshahi	Paba	Paba
GT8122005	Rajshahi	Boalia	Master para	GT8172037	Rajshahi	Paba	Namobhadra
GT8125006	Rajshahi	Charghat	Mullikbagha	GT8172038	Rajshahi	Paba	Bhodra
GT8125008	Rajshahi	Charghat	Holidagachi	GT8172039	Rajshahi	Paba	Talaimari
GT8125009	Rajshahi	Charghat	Moktarpur	GT8172040	Rajshahi	Paba	Haripur
GT8125010	Rajshahi	Charghat	Gorshohurpur	GT8182041	Rajshahi	Puthia	Puthia
GT8125011	Rajshahi	Charghat	Yousufpur	GT8182042	Rajshahi	Puthia	Jhokrakul
GT8125012	Rajshahi	Charghat	Moshidpur	GT8194046	Rajshahi	Tanore	Shamashpur
GT8131015	Rajshahi	Durgapur	Alipur	GT8194048	Rajshahi	Tanore	Gollapara
GT8134016	Rajshahi	Godagari	Kazipara	GT8194049	Rajshahi	Tanore	Tanore
GT8134017	Rajshahi	Godagari	Godagari	GT8194047	Rajshahi	Tanore	Mundumalahat
GT8134018	Rajshahi	Godagari	Rajapurhat	GT1006001	Bogra	Adamdighi	Talshoes
GT8134019	Rajshahi	Godagari	Poshunda	GT1006002	Bogra	Adamdighi	Sontehar
GT8134020	Rajshahi	Godagari	Gorermath	GT1006003	Bogra	Adamdighi	Sontehar
GT8134021	Rajshahi	Godagari	Madarpur	GT1020004	Bogra	Bogra sadar	Sutrapur
GT8134022	Rajshahi	Godagari	Dumuria	GT1020005	Bogra	Bogra sadar	Gukul
GT8134027	Rajshahi	Godagari	Bhogobontapur	GT1020006	Bogra	Bogra sadar	Sonaidighi
GT8134028	Rajshahi	Godagari	Sreemontapur	GT1020007	Bogra	Bogra sadar	Malotinagar
GT8153030	Rajshahi	Mohanpur	Lalich	GT1027008	Bogra	Dhunat	Dhunut
GT8153031	Rajshahi	Mohanpur	Mohanpur	GT1033009	Bogra	Dhupsanchia	Barogram
GT8172032	Rajshahi	Paba	Damkurahat	GT1040010	Bogra	Gabtali	Baladighi

WELL ID	DISTRICT	UPAZILA	VILLAGE	WELL ID	DISTRICT	UPAZILA	VILLAGE
GT1040011	Bogra	Gabtali	Gabtali	GT2721011	Dinajpur	Bochaganj	Jinore
GT1040012	Bogra	Gabtali	Saudabari	GT2721502	Dinajpur	Bochaganj	Bajnia
GT1054013	Bogra	Kahaloo	Kazipur	GT2721503	Dinajpur	Bochaganj	Bairkuri
GT1054014	Bogra	Kahaloo	Mohespur	GT2730012	Dinajpur	Chirirbandar	Bhushirbandar
GT1067015	Bogra	Nandigram	Nandigram	GT2730013	Dinajpur	Chirirbandar	Ranirbandar
GT1081016	Bogra	Sariakandi	Ramnagar	GT2730014	Dinajpur	Chirirbandar	Kishmotfaizan
GT1081017	Bogra	Sariakandi	Gossaibari	GT2730015	Dinajpur	Chirirbandar	Saskandar
GT1081018	Bogra	Sariakandi	Ramsandrapur	GT2730016	Dinajpur	Chirirbandar	Chirirbandar
GT1081019	Bogra	Sariakandi	Fulbari	GT2738017	Dinajpur	Fulbari	Phulbari
GT1081020	Bogra	Sariakandi	Boraikandi	GT2738018	Dinajpur	Fulbari	Rangamati
GT1088021	Bogra	Sherpur	Sherpurshospa	GT2743019	Dinajpur	Ghoraghat	Lalbag
GT1088022	Bogra	Sherpur	Laximkone	GT2747021	Dinajpur	Hakimpur	Hakimpur
GT1088023	Bogra	Sherpur	Kalshimati	GT2756023	Dinajpur	Kaharole	Mukundapur
GT1094024	Bogra	Shibganj	Shibgonj	GT2756024	Dinajpur	Kaharole	Purbasadipur
GT1094025	Bogra	Shibganj	Alladipur	GT2756026	Dinajpur	Kaharole	Kashipur
GT1095026	Bogra	Sonatola	Sukkanpukur	GT2760029	Dinajpur	Khansama	Jahangirpur
GT1095027	Bogra	Sonatola	Sonatala	GT2764030	Dinajpur	Sadar	Dinajpur town
GT2710001	Dinajpur	Birampur	East jaganathp	GT2764031	Dinajpur	Sadar	Uttar gobindap
GT2712002	Dinajpur	Birganj	Bishnupur	GT2764033	Dinajpur	Sadar	Nasipur
GT2712003	Dinajpur	Birganj	Birganj	GT2764034	Dinajpur	Sadar	Goaldhihi
GT2712004	Dinajpur	Birganj	Kabirajhat	GT2764035	Dinajpur	Sadar	Tajpur
GT2712005	Dinajpur	Birganj	Dolua	GT2764036	Dinajpur	Sadar	Mohanpur
GT2712006	Dinajpur	Birganj	Daulatpur	GT2764037	Dinajpur	Sadar	Panchbari
GT2717008	Dinajpur	Biral	Mangalpur	GT2764038	Dinajpur	Sadar	Nimnagar
GT2717009	Dinajpur	Biral	Biral	GT2764039	Dinajpur	Sadar	Madhabpur
GT2717501	Dinajpur	Biral	Kazipara	GT2769040	Dinajpur	Nawabganj	Tapanghat
GT2721010	Dinajpur	Bochaganj	Setabganj	GT2777042	Dinajpur	Parbatipur	Madhya para

WELL ID	DISTRICT	UPAZILA	VILLAGE	WELL ID	DISTRICT	UPAZILA	VILLAGE
GT2777043	Dinajpur	Parbatipur	Parbatipur	GT4952003	Kurigram	sadar	Kurigram
GT3224001	Gaibandha	Sadar	Station road	GT4952004	Kurigram	sadar	Sora
GT3224002	Gaibandha	Sadar	Mohimagonj	GT4952005	Kurigram	sadar	Pateshani
GT3224003	Gaibandha	Sadar	Tulshighat	GT4961007	Kurigram	Nageshwari	Sreepur
GT3230005	Gaibandha	Gobindaganj	Sinjani	GT4994008	Kurigram	Ulipur	Ulipur
GT3230006	Gaibandha	Gobindaganj	Pargayra	GT4994009	Kurigram	Ulipur	Durgapur
GT3267008	Gaibandha	Palashbari	Nuniagari	GT5233001	Lalmonirh. ¹	Hatibandha	Barakhata
GT3267009	Gaibandha	Palashbari	Jhalingi	GT5233002	Lalmonirh.	Hatibandha	Hatibanda
GT3282010	Gaibandha	Sadullapur	Dhaperhat	GT5233004	Lalmonirh.	Hatibandha	Daikhawa
GT3282011	Gaibandha	Sadullapur	Sadullapur	GT5239005	Lalmonirh.	Kaliganj	Ttarmusratmo
GT3288014	Gaibandha	Saghatta	Ullah(gazaria)	GT5239006	Lalmonirh.	Kaliganj	Aditmari
GT3288015	Gaibandha	Saghatta	Bonarpara	GT5239007	Lalmonirh.	Kaliganj	Bairati
GT3291017	Gaibandha	Sundarganj	Bamandanga	GT5239008	Lalmonirh.	Kaliganj	Baninagar
GT3291018	Gaibandha	Sundarganj	Chachiamirja	GT5255009	Lalmonirh.	Sadar	Lalmonirhat
GT3282012	Gaibandha	Sadullapur	Hasanpara	GT5255010	Lalmonirh.	Sadar	Tiestakutubkh
GT3230004	Gaibandha	Gobindaganj	Gobindagonj	GT5255011	Lalmonirh.	Sadar	Gokunda
GT3230007	Gaibandha	Gobindaganj	Gobindagonj	GT5255012	Lalmonirh.	Sadar	Khodrasaptana
GT3282013	Gaibandha	Sadullapur	Hasanpara	GT5270013	Lalmonirh.	Patgram	Ufarmara
GT3847001	Joypurhat	Sadar	Joypurhat w.d.	GT5270015	Lalmonirh.	Patgram	Islam nagar
GT3847002	Joypurhat	Sadar	Chakbarket	GT5233003	Lalmonirh.	Hatibandha	Archimbichad
GT3847003	Joypurhat	Sadar	Parbatipur	GT6403001	Naogaon	Atrai	Singsara
GT3861004	Joypurhat	Khetlal	Nischintapur	GT6403002	Naogaon	Atrai	Palsha
GT3861005	Joypurhat	Khetlal	Khetlal	GT6403003	Naogaon	Atrai	Bhaproboalia
GT3874006	Joypurhat	Panchbibi	Panchabibi	GT6406004	Naogaon	Badalgachhi	Badalgachhi
GT3874007	Joypurhat	Panchbibi	Dowypur	GT6406005	Naogaon	Badalgachhi	Gopalpur
GT3874008	Joypurhat	Panchbibi		GT6406006	Naogaon	Badalgachhi	Jagadishpur
GT4909002	Kurigram	Chilmari	Ramna	GT6428007	Naogaon	Dhamoirhat	Kashipur

WELL ID	DISTRICT	UPAZILA	VILLAGE	WELL ID	DISTRICT	UPAZILA	VILLAGE
GT6428008	Naogaon	Dhamoirhat	Kharampur	GT6915004	Natore	Baraigram	Jalsuka
GT6428009	Naogaon	Dhamoirhat	Jotsrirampur	GT6941001	Natore	Gurudaspur	Patharia
GT6428010	Naogaon	Dhamoirhat	Fatepur	GT6941005	Natore	Gurudaspur	Gurudaspur
GT6428011	Naogaon	Dhamoirhat	Debipur	GT6944006	Natore	Lalpur	Lalpur
GT6447021	Naogaon	Manda	Baddapur	GT6944007	Natore	Lalpur	Bilmaria
GT6450015	Naogaon	Mahadebpur	Kumrail	GT6944009	Natore	Lalpur	Lalpur
GT6450016	Naogaon	Mahadebpur	Enayetpur	GT6944010	Natore	Lalpur	Lalpur
GT6450017	Naogaon	Mahadebpur	Khajur	GT6963012	Natore	Natore sadar	Gobindapur
GT6450018	Naogaon	Mahadebpur	Joanpur	GT6991013	Natore	Singra	Karacmaria
GT6450019	Naogaon	Mahadebpur	Binodpur	GT6991014	Natore	Singra	Pakuria
GT6460025	Naogaon	Sadar	Dubulhati	GT6991015	Natore	Singra	Singra
GT6460026	Naogaon	Sadar	Kirtipur	GT6991016	Natore	Singra	Parsinaga
GT6460027	Naogaon	Sadar	Par naogaon	GT7037001	Nawabg. ²	Gomastapur	Parbatipur
GT6475036	Naogaon	Patnitala	Madhyanagar	GT7037003	Nawabg.	Gomastapur	Khorkadanga
GT6475037	Naogaon	Patnitala	Gaganpur	GT7037004	Nawabg.	Gomastapur	Sahebgram
GT6475038	Naogaon	Patnitala	Shibpurhat	GT7037005	Nawabg.	Gomastapur	Rahanpur
GT6475039	Naogaon	Patnitala	Jamalpur	GT7056006	Nawabg.	Nachole	Nizampur
GT6475040	Naogaon	Patnitala	Nazirpur	GT7056007	Nawabg.	Nachole	Nachole
GT6475041	Naogaon	Patnitala	Nadhuni	GT7056009	Nawabg.	Nachole	Fazilpur
GT6479044	Naogaon	Porsha	Nithpur	GT7056010	Nawabg.	Nachole	Molliqepur
GT6479046	Naogaon	Porsha	Khairpur	GT7066012	Nawabg.	Sadar	Amnura
GT6485047	Naogaon	Raninagar	Abedpur	GT7066013	Nawabg.	Sadar	Chapai polsha
GT6485048	Naogaon	Raninagar	Raninagar	GT7066014	Nawabg.	Sadar	Nawabgonj
GT6486049	Naogaon	Sapahar	Jabai	GT7066015	Nawabg.	Sadar	Debinagar
GT6486051	Naogaon	Sapahar	Nischintapur	GT7066016	Nawabg.	Sadar	Chunakhali
GT6486052	Naogaon	Sapahar	Ramrampur	GT7066018	Nawabg.	Sadar	Ramjibonpur
GT6915002	Natore	Baraigram	Garmati	GT7088020	Nawabg.	Shibganj	Baliadighi

WELL ID	DISTRICT	UPAZILA	VILLAGE	WELL ID	DISTRICT	UPAZILA	VILLAGE
GT7088021	Nawabg.	Shibganj	Shibgonj bazar	GT7385026	Nilphama.	Saidpur	Nizbari
GT7088022	Nawabg.	Shibganj	Parkrishnapur	GT7385027	Nilphama.	Saidpur	Bangalipur
GT7088023	Nawabg.	Shibganj	Monkhasa	GT7605001	Pabna	Atgharia	Atghoria
GT7088024	Nawabg.	Shibganj	Roshia	GT7605002	Pabna	Atgharia	Atghoria
GT7088025	Nawabg.	Shibganj	Dubra	GT7605003	Pabna	Atgharia	Durgapur
GT7088029	Nawabg.	Shibganj	Dhaninagar	GT7616004	Pabna	Bera	Nutanpara
GT7312001	Nilphama. ³	Dimla	Thakurgaon	GT7616005	Pabna	Bera	Natiabari
GT7312002	Nilphama.	Dimla	Khogakharibari	GT7616006	Pabna	Bera	Talimnagar
GT7312003	Nilphama.	Dimla	Ramdanga	GT7616007	Pabna	Bera	Horidebpur
GT7312004	Nilphama.	Dimla	Khalishachapa	GT7616008	Pabna	Bera	Natunmirpur
GT7312005	Nilphama.	Dimla	North jhunagac	GT7616009	Pabna	Bera	Bijoygonj
GT7312006	Nilphama.	Dimla	Uttar goyabari	GT7616010	Pabna	Bera	Bijoygonj
GT7315007	Nilphama.	Domar	Chilahati	GT7616011	Pabna	Bera	Bijoygonj
GT7315008	Nilphama.	Domar	Gomnati	GT7616012	Pabna	Bera	Nolbhanga
GT7315009	Nilphama.	Domar	Mirzagonj	GT7622013	Pabna	Chatmohar	Chatmohor
GT7315010	Nilphama.	Domar	Domar	GT7639017	Pabna	Ishwardi	F.mohamadp
GT7315011	Nilphama.	Domar	Baragacha	GT7639018	Pabna	Ishwardi	Pearpur
GT7315012	Nilphama.	Domar	Kumarbamnia	GT7639019	Pabna	Ishwardi	Sarajhaudia
GT7315013	Nilphama.	Domar	Harinchara	GT7639020	Pabna	Ishwardi	Sarajhaudia
GT7315014	Nilphama.	Domar	Domar	GT7655022	Pabna	Sadar	Atuadakhnpar
GT7336016	Nilphama.	Jaldhaka	Balagram	GT7655025	Pabna	Sadar	Daponia
GT7336017	Nilphama.	Jaldhaka	Jaldhaka	GT7655026	Pabna	Sadar	Hemayetpur
GT7336018	Nilphama.	Jaldhaka	Kherkatibazer	GT7655027	Pabna	Sadar	Hemayetpur
GT7336019	Nilphama.	Jaldhaka	Kaligonj(golna	GT7683030	Pabna	Sujanagar	Shujanagar
GT7336020	Nilphama.	Jaldhaka	Shalongram	GT7683031	Pabna	Sujanagar	Dulai
GT7345022	Nilphama.	Kishoreganj	Magura	GT7683032	Pabna	Sujanagar	Nayagram
GT7345023	Nilphama.	Kishoreganj	Baravita	GT7683033	Pabna	Sujanagar	Satbaria

WELL ID	DISTRICT	UPAZILA	VILLAGE	WELL ID	DISTRICT	UPAZILA	VILLAGE
GT7364025	Nilphama.	Sadar	Nilphamari rly	GT8549006	Rangpur	Sadar	Gangachara
GT7683034	Pabna	Sujanagar	Satbaria	GT8549007	Rangpur	Sadar	Jafarganj
GT7683035	Pabna	Sujanagar	Satbaria	GT8558008	Rangpur	Mithapukur	Mithapukur
GT7704001	Panchag. ⁴	Atwari	Puratonatwari	GT8558009	Rangpur	Mithapukur	Chuhat
GT7704002	Panchag.	Atwari	Tarai	GT8558010	Rangpur	Mithapukur	Shantipurbaza
GT7704003	Panchag.	Atwari	Alokhawa	GT8573011	Rangpur	Pirgachha	Pirgacha
GT7704501	Panchag.	Atwari	Toreya	GT8576012	Rangpur	Pirganj	Pirganj
GT7704502	Panchag.	Atwari	Jugikata	GT8576013	Rangpur	Pirganj	Baradarga
GT7725004	Panchag.	Boda	Tasherpara	GT8592014	Rangpur	Taraganj	Fazilpur
GT7725005	Panchag.	Boda	Boda bazar	GT8811001	Sirajganj	Belkuchi	Shrenagar
GT7725006	Panchag.	Boda	Sakowa	GT8811002	Sirajganj	Belkuchi	Chala
GT7725008	Panchag.	Boda	Maraya colony	GT8827003	Sirajganj	Chauhali	Betil-hatkhola
GT7734009	Panchag.	Debiganj	Kalupir	GT8844005	Sirajganj	Kamrkhanda	Kamarkhanda
GT7734010	Panchag.	Debiganj	Lakshmirhat	GT8850006	Sirajganj	Kazipur	Roibari
GT7734011	Panchag.	Debiganj	Sonahar	GT8850008	Sirajganj	Kazipur	Ratankandi
GT7734012	Panchag.	Debiganj	Debiganj	GT8861009	Sirajganj	Royganj	Raygonj
GT7734013	Panchag.	Debiganj	Tokrabasha	GT8861010	Sirajganj	Royganj	Solonga
GT7773014	Panchag.	Sadar	Jagdal	GT8861011	Sirajganj	Royganj	Chandikona
GT7773015	Panchag.	Sadar	Bodinajot	GT8867012	Sirajganj	Shahjadpur	Dariapur
GT7773016	Panchag.	Sadar	Panchagarh	GT8867013	Sirajganj	Shahjadpur	Kashipur
GT7773018	Panchag.	Sadar	Dafadarpara	GT8878014	Sirajganj	Sadar	Sirajganj
GT7790020	Panchag.	Tentulia	Burabarihat	GT8878015	Sirajganj	Sadar	Harina
GT7790021	Panchag.	Tentulia	Bangla bandh	GT8878016	Sirajganj	Sadar	New bogara
GT7790022	Panchag.	Tentulia	Shalbahan	GT8878017	Sirajganj	Sadar	Daulatpur
GT7790023	Panchag.	Tentulia	Tentulia	GT8878018	Sirajganj	Sadar	Ditpuralal
GT8503001	Rangpur	Badarganj	Badarganj	GT8878019	Sirajganj	Sadar	Sialkoal
GT8527003	Rangpur	Gangachara	Lalchandpur	GT8878020	Sirajganj	Sadar	Ponsosuratia

WELL ID	DISTRICT	UPAZILA	VILLAGE	WELL ID	DISTRICT	UPAZILA	VILLAGE
GT8549005	Rangpur	Sadar	Nababganj	GT9482503	Thakurg.	Pirganj	Tanshia
GT8889022	Sirajganj	Tarash	Nimgachi	GT9486011	Thakurg.	Ranisankail	Chandnchaha
GT8889023	Sirajganj	Tarash	Gunta	GT9486012	Thakurg.	Ranisankail	Ranisankail
GT8894024	Sirajganj	Ullah para	Ullapara	GT9486014	Thakurg.	Ranisankail	Ranisankail
GT8894025	Sirajganj	Ullah para	Charmohanpur	GT9494015	Thakurg.	Sadar	Ruhea
GT8894026	Sirajganj	Ullah para	Binayekpur	GT9494016	Thakurg.	Sadar	Farabari
GT8894027	Sirajganj	Ullah para	Hatkamrul	GT9494017	Thakurg.	Sadar	Hariharpur
GT9408001	Thakurg. ⁵	Baliadangi	Lahiri	GT9494019	Thakurg.	Sadar	Goryagoplpu
GT9408002	Thakurg.	Baliadangi	Baliadangi	GT9494020	Thakurg.	Sadar	Bhelajan
GT9408003	Thakurg.	Baliadangi	Lalapur	GT9494021	Thakurg.	Sadar	Madhabpur
GT9408501	Thakurg.	Baliadangi	Barabari	GT9494022	Thakurg.	Sadar	Singia
GT9451004	Thakurg.	Haripur	Haripur	GT9494023	Thakurg.	Sadar	Saltahari
GT9451005	Thakurg.	Haripur	Monnatali	GT9494025	Thakurg.	Sadar	Doulatpur
GT9451502	Thakurg.	Haripur	Pahargaon	GT9494027	Thakurg.	Sadar	Khalishakuri
GT9482006	Thakurg.	Pirganj	Saidpur	GT9494028	Thakurg.	Sadar	Singpara
GT9482008	Thakurg.	Pirganj	Chandpur	GT9494029	Thakurg.	Sadar	Thakurgaon
GT9482010	Thakurg.	Pirganj	Pirganj	GT9494030	Thakurg.	Sadar	Kalibari

¹Lalmonirhat; ²Chapai Nawabganj; ³Nilphamari; ⁴Panchagar; ⁵Thakurgaon

Well ID	Test Z	Slope	Remarks	Signif. ¹	Well ID	Test Z	Slope	Remarks	Signif.
GT8112001	3.42	0.16	Increasing	S ²	GT8172038	5.79	0.198	Increasing	S
GT8112002	4.38	0.229	Increasing	S	GT8172039	2.35	0.057	Increasing	S
GT8112003	1.44	0.061	Increasing	N^3	GT8172040	6.18	0.240	Increasing	S
GT8122005	5.64	0.189	Increasing	S	GT8182041	5.16	0.127	Increasing	S
GT8125006	4.71	0.063	Increasing	S	GT8182042	5.60	0.263	Increasing	S
GT8125008	5.21	0.101	Increasing	S	GT8194046	6.99	0.236	Increasing	S
GT8125009	4.36	0.173	Increasing	S	GT8194048	6.91	0.369	Increasing	S
GT8125010	1.25	0.013	Increasing	Ν	GT8194049	7.25	0.256	Increasing	S
GT8125011	4.64	0.166	Increasing	S	GT8194047	3.10	0.257	Increasing	S
GT8125012	-1.82	-0.020	Decreasing	Ν	GT1006001	5.68	0.086	Increasing	S
GT8131015	5.40	0.364	Increasing	S	GT1006002	3.65	0.033	Increasing	S
GT8134016	5.89	0.245	Increasing	S	GT1006003	5.87	0.066	Increasing	S
GT8134017	6.07	0.114	Increasing	S	GT1020004	-2.86	-0.043	Decreasing	S
GT8134018	3.73	0.150	Increasing	S	GT1020005	0.50	0.006	Increasing	Ν
GT8134019	6.42	0.447	Increasing	S	GT1020006	5.13	0.057	Increasing	S
GT8134020	5.92	0.165	Increasing	S	GT1020007	3.16	0.027	Increasing	S
GT8134021	4.38	0.079	Increasing	S	GT1027008	-0.08	-0.001	Decreasing	Ν
GT8134022	5.37	0.127	Increasing	S	GT1033009	4.23	0.110	Increasing	S
GT8134027	3.24	0.053	Increasing	S	GT1040010	-0.08	0.000	Decreasing	Ν
GT8134028	4.57	0.084	Increasing	S	GT1040011	-1.85	-0.017	Decreasing	Ν
GT8153030	6.42	0.250	Increasing	S	GT1040012	3.99	0.042	Increasing	S
GT8153031	6.97	0.479	Increasing	S	GT1054013	2.21	0.045	Increasing	S
GT8172032	5.30	0.381	Increasing	S	GT1054014	5.79	0.070	Increasing	S
GT8172033	6.78	0.333	Increasing	S	GT1067015	-3.45	-0.081	Decreasing	S
GT8172035	6.04	0.300	Increasing	S	GT1081016	-5.01	-0.115	Decreasing	S
GT8172036	4.47	0.157	Increasing	S	GT1081017	3.30	0.046	Increasing	S
GT8172037	4.91	0.120	Increasing	S	GT1081018	2.70	0.072	Increasing	S

Appendix-2. MAKESENS trend analysis results for annual maximum groundwater levels

Well ID	Test Z	Slope	Remarks	Signif.	Well ID	Test Z	Slope	Remarks	Signif.
GT1081019	-3.07	-0.030	Decreasing	S	GT2738017	5.95	0.190	Increasing	S
GT1081020	1.10	0.018	Increasing	Ν	GT2738018	5.32	0.102	Increasing	S
GT1088021	1.15	0.014	Increasing	Ν	GT2743019	3.59	0.041	Increasing	S
GT1088022	3.30	0.029	Increasing	S	GT2747021	4.88	0.064	Increasing	S
GT1088023	5.02	0.108	Increasing	S	GT2756023	3.30	0.023	Increasing	S
GT1094024	5.02	0.108	Increasing	S	GT2756024	2.98	0.032	Increasing	S
GT1094025	5.39	0.071	Increasing	S	GT2756026	2.95	0.075	Increasing	S
GT1095026	1.62	0.012	Increasing	Ν	GT2760029	3.51	0.031	Increasing	S
GT1095027	5.58	0.108	Increasing	S	GT2764030	3.80	0.031	Increasing	S
GT2710001	2.51	0.040	Increasing	S	GT2764031	2.86	0.025	Increasing	S
GT2712002	4.59	0.180	Increasing	S	GT2764033	3.46	0.032	Increasing	S
GT2712003	2.06	0.017	Increasing	S	GT2764034	3.45	0.103	Increasing	S
GT2712004	3.62	0.054	Increasing	S	GT2764035	5.88	0.182	Increasing	S
GT2712005	2.70	0.028	Increasing	S	GT2764036	4.27	0.061	Increasing	S
GT2712006	2.07	0.024	Increasing	S	GT2764037	5.38	0.158	Increasing	S
GT2717008	4.59	0.098	Increasing	S	GT2764038	5.45	0.085	Increasing	S
GT2717009	4.59	0.098	Increasing	S	GT2764039	4.36	0.169	Increasing	S
GT2717501	5.77	0.050	Increasing	S	GT2769040	4.10	0.044	Increasing	S
GT2721010	4.67	0.053	Increasing	S	GT2777042	6.21	0.125	Increasing	S
GT2721011	4.17	0.043	Increasing	S	GT2777043	5.86	0.093	Increasing	S
GT2721502	5.40	0.103	Increasing	S	GT3224001	3.18	0.029	Increasing	S
GT2721503	4.51	0.049	Increasing	S	GT3224002	-3.37	-0.044	Decreasing	S
GT2730012	4.15	0.100	Increasing	S	GT3224003	2.67	0.031	Increasing	S
GT2730013	3.66	0.033	Increasing	S	GT3230005	-1.19	-0.007	Decreasing	Ν
GT2730014	2.64	0.033	Increasing	S	GT3230006	2.95	0.016	Increasing	S
GT2730015	3.40	0.034	Increasing	S	GT3267008	-1.88	-0.025	Decreasing	Ν
GT2730016	5.40	0.074	Increasing	S	GT3267009	-1.65	-0.016	Decreasing	Ν

Appendix-2. MAKESENS trend analysis results for annual maximum groundwater levels (continued)

Well ID	Test Z	Slope	Remarks	Signif.	Well ID	Test Z	Slope	Remarks	Signif.
GT3282010	2.96	0.043	Increasing	S	GT5233004	2.11	0.019	Increasing	S
GT3282011	2.78	0.023	Increasing	S	GT5239005	-1.40	-0.024	Decreasing	Ν
GT3288014	2.32	0.020	Increasing	S	GT5239006	3.73	0.023	Increasing	S
GT3288015	2.06	0.017	Increasing	S	GT5239007	4.82	0.042	Increasing	S
GT3291017	0.39	0.002	Increasing	Ν	GT5239008	5.03	0.041	Increasing	S
GT3291018	1.02	0.017	Increasing	Ν	GT5255009	3.91	0.045	Increasing	S
GT3282012	4.81	0.058	Increasing	S	GT5255010	3.54	0.020	Increasing	S
GT3230004	3.08	0.025	Increasing	S	GT5255011	4.45	0.039	Increasing	S
GT3230007	6.28	0.097	Increasing	S	GT5255012	4.58	0.067	Increasing	S
GT3282013	-2.22	-0.050	Decreasing	S	GT5270013	1.20	0.008	Increasing	Ν
GT3847001	4.48	0.041	Increasing	S	GT5270015	0.37	0.004	Increasing	Ν
GT3847002	3.09	0.190	Increasing	S	GT5233003	1.70	0.027	Increasing	Ν
GT3847003	5.56	0.170	Increasing	S	GT6403001	4.69	0.149	Increasing	S
GT3861004	6.12	0.137	Increasing	S	GT6403002	5.03	0.056	Increasing	S
GT3861005	5.66	0.085	Increasing	S	GT6403003	0.73	0.028	Increasing	Ν
GT3874006	5.64	0.105	Increasing	S	GT6406004	3.50	0.064	Increasing	S
GT3874007	3.10	0.062	Increasing	S	GT6406005	5.27	0.120	Increasing	S
GT3874008	3.03	0.077	Increasing	S	GT6406006	3.51	0.183	Increasing	S
GT4909002	5.65	0.070	Increasing	S	GT6428007	6.21	0.179	Increasing	S
GT4952003	1.80	0.016	Increasing	Ν	GT6428008	1.46	0.015	Increasing	Ν
GT4952004	-1.25	-0.027	Decreasing	Ν	GT6428009	4.19	0.050	Increasing	S
GT4952005	1.19	0.006	Increasing	Ν	GT6428010	3.87	0.060	Increasing	S
GT4961007	1.72	0.012	Increasing	Ν	GT6428011	5.21	0.155	Increasing	S
GT4994008	2.26	0.018	Increasing	S	GT6447021	5.80	0.094	Increasing	S
GT4994009	4.35	0.055	Increasing	S	GT6450015	5.27	0.074	Increasing	S
GT5233001	0.42	0.002	Increasing	Ν	GT6450016	4.69	0.082	Increasing	S
GT5233002	3.81	0.026	Increasing	S	GT6450017	7.35	0.163	Increasing	S

Appendix-2. MAKESENS trend analysis results for annual maximum groundwater levels (continued)
Well ID	Test Z	Slope	Remarks	Signif.	Well ID	Test Z	Slope	Remarks	Signif.
GT6450018	4.87	0.086	Increasing	S	GT6991013	5.75	0.067	Increasing	S
GT6450019	-1.43	-0.039	Decreasing	Ν	GT6991014	1.66	0.017	Increasing	Ν
GT6460025	5.08	0.140	Increasing	S	GT6991015	2.84	0.069	Increasing	S
GT6460026	4.21	0.073	Increasing	S	GT6991016	1.30	0.046	Increasing	Ν
GT6460027	4.20	0.081	Increasing	S	GT7037001	3.70	0.050	Increasing	S
GT6475036	7.07	0.178	Increasing	S	GT7037003	6.41	0.812	Increasing	S
GT6475037	5.52	0.126	Increasing	S	GT7037004	1.12	0.020	Increasing	Ν
GT6475038	4.56	0.117	Increasing	S	GT7037005	3.52	0.140	Increasing	S
GT6475039	5.82	0.197	Increasing	S	GT7056006	5.95	0.509	Increasing	S
GT6475040	3.29	0.057	Increasing	S	GT7056007	7.05	0.448	Increasing	S
GT6475041	4.54	0.068	Increasing	S	GT7056009	4.30	0.459	Increasing	S
GT6479044	2.27	0.132	Increasing	S	GT7056010	4.97	0.068	Increasing	S
GT6479046	7.10	0.166	Increasing	S	GT7066012	6.31	0.509	Increasing	S
GT6485047	5.90	0.085	Increasing	S	GT7066013	0.68	0.021	Increasing	Ν
GT6485048	5.02	0.066	Increasing	S	GT7066014	0.00	0.000	No trend	Ν
GT6486049	4.29	1.140	Increasing	S	GT7066015	5.87	0.071	Increasing	S
GT6486051	4.41	1.229	Increasing	S	GT7066016	3.28	0.040	Increasing	S
GT6486052	3.65	1.608	Increasing	S	GT7066018	2.76	0.071	Increasing	S
GT6915002	4.32	0.150	Increasing	S	GT7088020	1.25	0.056	Increasing	Ν
GT6915004	3.18	0.083	Increasing	S	GT7088021	-0.81	-0.014	Decreasing	Ν
GT6941001	3.57	0.200	Increasing	S	GT7088022	0.00	0.000	No trend	Ν
GT6941005	4.30	0.147	Increasing	S	GT7088023	4.71	0.058	Increasing	S
GT6944006	-0.66	-0.013	Decreasing	Ν	GT7088024	4.08	0.036	Increasing	S
GT6944007	-1.44	-0.042	Decreasing	Ν	GT7088025	5.52	0.163	Increasing	S
GT6944009	-1.21	-0.017	Decreasing	Ν	GT7088029	4.66	0.050	Increasing	S
GT6944010	-0.88	-0.013	Decreasing	N	GT7312001	-2.18	-0.011	Decreasing	S
GT6963012	1.65	0.054	Increasing	Ν	GT7312002	3.76	0.027	Increasing	S

Appendix-2. MAKESENS trend analysis results for annual maximum groundwater levels (continued)

Well ID	Test Z	Slope	Remarks	Signif.	Well ID	Test Z	Slope	Remarks	Signif.
GT7312003	3.44	0.028	Increasing	S	GT7616006	1.22	0.034	Increasing	Ν
GT7312004	-3.00	-0.033	Decreasing	S	GT7616007	2.66	0.028	Increasing	S
GT7312005	-0.67	-0.005	Decreasing	Ν	GT7616008	3.32	0.035	Increasing	S
GT7312006	4.35	0.058	Increasing	S	GT7616009	-0.71	-0.015	Decreasing	Ν
GT7315007	4.54	0.051	Increasing	S	GT7616010	1.80	0.037	Increasing	Ν
GT7315008	1.02	0.008	Increasing	Ν	GT7616011	0.16	0.001	Increasing	Ν
GT7315009	5.27	0.069	Increasing	S	GT7616012	-3.39	-0.031	Decreasing	S
GT7315010	3.54	0.037	Increasing	S	GT7622013	4.45	0.147	Increasing	S
GT7315011	5.53	0.077	Increasing	S	GT7639017	3.23	0.061	Increasing	S
GT7315012	6.48	0.166	Increasing	S	GT7639018	-0.23	-0.003	Decreasing	Ν
GT7315013	5.58	0.036	Increasing	S	GT7639019	1.62	0.016	Increasing	Ν
GT7315014	3.18	0.041	Increasing	S	GT7639020	3.76	0.040	Increasing	S
GT7336016	-2.98	-0.025	Decreasing	S	GT7655022	3.73	0.067	Increasing	S
GT7336017	-4.43	-0.051	Decreasing	S	GT7655025	2.23	0.050	Increasing	S
GT7336018	2.37	0.042	Increasing	S	GT7655026	4.39	0.053	Increasing	S
GT7336019	4.30	0.030	Increasing	S	GT7655027	4.07	0.054	Increasing	S
GT7336020	-4.51	-0.043	Decreasing	S	GT7683030	1.66	0.021	Increasing	Ν
GT7345022	-2.53	-0.022	Decreasing	S	GT7683031	3.05	0.061	Increasing	S
GT7345023	-3.05	-0.035	Decreasing	S	GT7683032	-1.58	-0.061	Decreasing	Ν
GT7364025	3.76	0.069	Increasing	S	GT7683033	2.55	0.038	Increasing	S
GT7385026	2.03	0.038	Increasing	S	GT7683034	1.89	0.017	Increasing	Ν
GT7385027	0.24	0.010	Increasing	Ν	GT7683035	1.39	0.025	Increasing	Ν
GT7605001	3.76	0.101	Increasing	S	GT7704001	3.64	0.052	Increasing	S
GT7605002	4.53	0.119	Increasing	S	GT7704002	0.34	0.002	Increasing	Ν
GT7605003	4.72	0.133	Increasing	S	GT7704003	-0.37	-0.006	Decreasing	N
GT7616004	-1.38	-0.011	Decreasing	N	GT7704501	3.07	0.019	Increasing	S
GT7616005	-0.24	-0.004	Decreasing	N	GT7704502	1.83	0.018	Increasing	Ν

Appendix-2. MAKESENS trend analysis results for annual maximum groundwater levels (continued)

Well ID	Test Z	Slope	Remarks	Signif.	Well ID	Test Z	Slope	Remarks	Signif.
GT7725004	1.14	0.021	Increasing	Ν	GT8576013	1.48	0.044	Increasing	Ν
GT7725005	1.29	0.022	Increasing	Ν	GT8592014	2.43	0.026	Increasing	S
GT7725006	1.49	0.029	Increasing	Ν	GT8811001	-2.42	-0.028	Decreasing	S
GT7725008	3.97	0.027	Increasing	S	GT8811002	0.88	0.008	Increasing	Ν
GT7734009	3.94	0.090	Increasing	S	GT8827003	0.86	0.025	Increasing	Ν
GT7734010	0.78	0.012	Increasing	Ν	GT8844005	3.31	0.029	Increasing	S
GT7734011	5.52	0.063	Increasing	S	GT8850006	0.39	0.001	Increasing	Ν
GT7734012	1.12	0.003	Increasing	Ν	GT8850008	5.58	0.057	Increasing	S
GT7734013	2.21	0.039	Increasing	S	GT8861009	1.54	0.036	Increasing	Ν
GT7773014	2.09	0.022	Increasing	S	GT8861010	2.45	0.026	Increasing	S
GT7773015	-2.17	-0.021	Decreasing	S	GT8861011	4.43	0.102	Increasing	S
GT7773016	0.29	0.003	Increasing	Ν	GT8867012	4.15	0.052	Increasing	S
GT7773018	5.29	0.065	Increasing	S	GT8867013	2.77	0.063	Increasing	S
GT7790020	-0.62	-0.006	Decreasing	Ν	GT8878014	0.42	0.003	Increasing	Ν
GT7790021	-0.08	-0.001	Decreasing	Ν	GT8878015	3.49	0.035	Increasing	S
GT7790022	1.60	0.012	Increasing	Ν	GT8878016	3.64	0.023	Increasing	S
GT7790023	5.18	0.039	Increasing	S	GT8878017	4.72	0.062	Increasing	S
GT8503001	2.56	0.026	Increasing	S	GT8878018	0.55	0.003	Increasing	Ν
GT8527003	2.25	0.024	Increasing	S	GT8878019	1.80	0.015	Increasing	Ν
GT8549005	-0.88	-0.010	Decreasing	Ν	GT8878020	2.38	0.071	Increasing	S
GT8549006	-0.93	-0.008	Decreasing	Ν	GT8889022	-2.18	-0.065	Decreasing	S
GT8549007	0.76	0.005	Increasing	Ν	GT8889023	5.16	0.048	Increasing	S
GT8558008	-1.41	-0.016	Decreasing	Ν	GT8894024	1.02	0.013	Increasing	Ν
GT8558009	1.66	0.012	Increasing	Ν	GT8894025	4.78	0.061	Increasing	S
GT8558010	2.74	0.053	Increasing	S	GT8894026	1.84	0.026	Increasing	N
GT8573011	-1.69	-0.012	Decreasing	N	GT8894027	2.14	0.084	Increasing	S
GT8576012	3.13	0.064	Increasing	S	GT9408001	0.50	0.006	Increasing	Ν

Appendix-2. MAKESENS trend analysis results for annual maximum groundwater levels (continued)

Well ID	Test Z	Slope	Remarks	Signif.	Well ID	Test Z	Slope	Remarks	Signif.
GT9408002	2.93	0.019	Increasing	S	GT9494015	3.89	0.055	Increasing	S
GT9408003	-0.50	-0.008	Decreasing	Ν	GT9494016	-0.29	-0.006	Decreasing	Ν
GT9408501	4.09	0.049	Increasing	S	GT9494017	2.66	0.020	Increasing	S
GT9451004	3.57	0.051	Increasing	S	GT9494019	2.91	0.052	Increasing	S
GT9451005	4.49	0.050	Increasing	S	GT9494020	2.87	0.050	Increasing	S
GT9451502	2.11	0.026	Increasing	S	GT9494021	2.91	0.035	Increasing	S
GT9482006	3.49	0.044	Increasing	S	GT9494022	5.23	0.071	Increasing	S
GT9482008	2.64	0.034	Increasing	S	GT9494023	3.20	0.028	Increasing	S
GT9482010	3.08	0.045	Increasing	S	GT9494025	2.04	0.037	Increasing	S
GT9482503	5.17	0.058	Increasing	S	GT9494027	3.88	0.056	Increasing	S
GT9486011	1.10	0.012	Increasing	Ν	GT9494028	-1.84	-0.035	Decreasing	Ν
GT9486012	3.42	0.026	Increasing	S	GT9494029	6.31	0.070	Increasing	S
GT9486014	4.59	0.036	Increasing	S	GT9494030	1.76	0.020	Increasing	N

Appendix-2. MAKESENS trend analysis results for annual maximum groundwater levels (continued)

¹Statistical Significance; ²Significant (p=0.05); ³Not significant (p=0.05)

Well ID	Test Z	Slope	Remarks	Signif. ¹	Well ID	Test Z	Slope	Remarks	Signif.
GT8112001	2.58	0.055	Increasing	S ²	GT8172038	5.97	0.130	Increasing	S
GT8112002	5.11	0.108	Increasing	S	GT8172039	3.69	0.086	Increasing	S
GT8112003	2.83	0.089	Increasing	S	GT8172040	4.15	0.081	Increasing	S
GT8122005	5.64	0.154	Increasing	S	GT8182041	3.62	0.038	Increasing	S
GT8125006	5.64	0.154	Increasing	S	GT8182042	3.10	0.037	Increasing	S
GT8125008	3.54	0.062	Increasing	S	GT8194046	7.22	0.435	Increasing	S
GT8125009	4.43	0.084	Increasing	S	GT8194048	7.44	0.454	Increasing	S
GT8125010	3.31	0.066	Increasing	S	GT8194049	7.53	0.450	Increasing	S
GT8125011	3.29	0.067	Increasing	S	GT8194047	4.12	0.423	Increasing	S
GT8125012	3.08	0.076	Increasing	S	GT1006001	6.05	0.306	Increasing	S
GT8131015	2.99	0.034	Increasing	S	GT1006002	4.70	0.141	Increasing	S
GT8134016	0.98	0.155	Increasing	N ³	GT1006003	5.85	0.300	Increasing	S
GT8134017	5.11	0.178	Increasing	S	GT1020004	3.58	0.108	Increasing	S
GT8134018	2.66	0.202	Increasing	S	GT1020005	3.33	0.082	Increasing	S
GT8134019	6.89	0.644	Increasing	S	GT1020006	4.33	0.153	Increasing	S
GT8134020	6.50	0.285	Increasing	S	GT1020007	4.80	0.142	Increasing	S
GT8134021	5.09	0.156	Increasing	S	GT1027008	3.28	0.088	Increasing	S
GT8134022	3.75	0.066	Increasing	S	GT1033009	4.61	0.160	Increasing	S
GT8134027	3.68	0.083	Increasing	S	GT1040010	2.60	0.050	Increasing	S
GT8134028	4.22	0.096	Increasing	S	GT1040011	1.64	0.023	Increasing	Ν
GT8153030	6.08	0.219	Increasing	S	GT1040012	3.97	0.068	Increasing	S
GT8153031	6.02	0.197	Increasing	S	GT1054013	4.56	0.201	Increasing	S
GT8172032	2.94	0.081	Increasing	S	GT1054014	5.40	0.234	Increasing	S
GT8172033	6.39	0.304	Increasing	S	GT1067015	5.32	0.137	Increasing	S
GT8172035	3.52	0.058	Increasing	S	GT1081016	0.86	0.003	Increasing	Ν
GT8172036	5.23	0.057	Increasing	S	GT1081017	2.43	0.042	Increasing	S
GT8172037	5.27	0.105	Increasing	S	GT1081018	2.30	0.046	Increasing	S

Appendix-3. MAKESENS trend analysis results for annual minimum groundwater levels

Well ID	Test Z	Slope	Remarks	Signif.	Well ID	Test Z	Slope	Remarks	Signif.
GT1081019	1.17	0.020	Increasing	N	GT2738017	4.78	0.139	Increasing	S
GT1081020	2.19	0.027	Increasing	S	GT2738018	5.27	0.086	Increasing	S
GT1088021	3.23	0.082	Increasing	S	GT2743019	1.04	0.020	Increasing	Ν
GT1088022	3.70	0.163	Increasing	S	GT2747021	4.20	0.072	Increasing	S
GT1088023	4.09	0.063	Increasing	S	GT2756023	0.61	0.005	Increasing	Ν
GT1094024	4.09	0.063	Increasing	S	GT2756024	5.33	0.088	Increasing	S
GT1094025	4.57	0.100	Increasing	S	GT2756026	4.05	0.041	Increasing	S
GT1095026	3.16	0.043	Increasing	S	GT2760029	0.88	0.006	Increasing	Ν
GT1095027	4.37	0.096	Increasing	S	GT2764030	1.05	0.013	Increasing	Ν
GT2710001	3.13	0.108	Increasing	S	GT2764031	0.20	0.005	Increasing	Ν
GT2712002	4.80	0.055	Increasing	S	GT2764033	0.41	0.005	Increasing	Ν
GT2712003	3.24	0.066	Increasing	S	GT2764034	1.84	0.010	Increasing	Ν
GT2712004	1.35	0.012	Increasing	Ν	GT2764035	5.42	0.083	Increasing	S
GT2712005	1.26	0.008	Increasing	Ν	GT2764036	2.84	0.049	Increasing	S
GT2712006	1.36	0.017	Increasing	Ν	GT2764037	2.97	0.037	Increasing	S
GT2717008	2.88	0.028	Increasing	S	GT2764038	4.33	0.119	Increasing	S
GT2717009	2.88	0.028	Increasing	S	GT2764039	3.23	0.027	Increasing	S
GT2717501	4.72	0.095	Increasing	S	GT2769040	4.56	0.099	Increasing	S
GT2721010	2.06	0.021	Increasing	S	GT2777042	3.55	0.022	Increasing	S
GT2721011	1.84	0.004	Increasing	Ν	GT2777043	5.69	0.132	Increasing	S
GT2721502	3.67	0.016	Increasing	S	GT3224001	5.69	0.132	Increasing	S
GT2721503	0.37	0.001	Increasing	Ν	GT3224002	0.60	0.013	Increasing	Ν
GT2730012	3.63	0.047	Increasing	S	GT3224003	1.76	0.010	Increasing	Ν
GT2730013	-1.31	-0.012	Decreasing	N	GT3230005	0.36	0.004	Increasing	Ν
GT2730014	1.45	0.007	Increasing	N	GT3230006	4.48	0.049	Increasing	S
GT2730015	1.17	0.013	Increasing	Ν	GT3267008	0.00	0.000	No trend	Ν
GT2730016	1.29	0.014	Increasing	N	GT3267009	-0.28	-0.004	Decreasing	N

Appendix-3. MAKESENS trend analysis results for annual minimum groundwater levels (continued)

Well ID	Test Z	Slope	Remarks	Signif.	Well ID	Test Z	Slope	Remarks	Signif.
GT3282010	2.78	0.058	Increasing	S	GT5233004	1.88	0.011	Increasing	N
GT3282011	0.00	0.000	No trend	Ν	GT5239005	-1.69	-0.015	Decreasing	Ν
GT3288014	-3.36	-0.042	Decreasing	S	GT5239006	0.53	0.005	Increasing	Ν
GT3288015	1.56	0.023	Increasing	Ν	GT5239007	1.40	0.009	Increasing	Ν
GT3291017	1.36	0.021	Increasing	Ν	GT5239008	2.32	0.012	Increasing	S
GT3291018	1.95	0.025	Increasing	Ν	GT5255009	-0.26	-0.001	Decreasing	Ν
GT3282012	2.26	0.025	Increasing	S	GT5255010	-0.78	-0.004	Decreasing	Ν
GT3230004	3.20	0.040	Increasing	S	GT5255011	0.50	0.003	Increasing	Ν
GT3230007	6.44	0.257	Increasing	S	GT5255012	3.58	0.044	Increasing	S
GT3282013	2.66	0.047	Increasing	S	GT5270013	3.11	0.023	Increasing	S
GT3847001	5.31	0.170	Increasing	S	GT5270015	1.48	0.013	Increasing	Ν
GT3847002	2.96	0.106	Increasing	S	GT5233003	4.43	0.049	Increasing	S
GT3847003	4.91	0.117	Increasing	S	GT6403001	1.02	0.020	Increasing	Ν
GT3861004	6.51	0.244	Increasing	S	GT6403002	3.91	0.051	Increasing	S
GT3861005	4.90	0.209	Increasing	S	GT6403003	2.04	0.047	Increasing	S
GT3874006	5.71	0.109	Increasing	S	GT6406004	3.28	0.103	Increasing	S
GT3874007	4.32	0.156	Increasing	S	GT6406005	3.20	0.073	Increasing	S
GT3874008	1.49	0.023	Increasing	Ν	GT6406006	4.86	0.153	Increasing	S
GT4909002	0.73	0.007	Increasing	Ν	GT6428007	6.63	0.384	Increasing	S
GT4952003	4.70	0.056	Increasing	S	GT6428008	2.06	0.053	Increasing	S
GT4952004	1.12	0.014	Increasing	Ν	GT6428009	5.50	0.160	Increasing	S
GT4952005	-0.36	-0.004	Decreasing	Ν	GT6428010	4.27	0.187	Increasing	S
GT4961007	0.06	0.001	Increasing	Ν	GT6428011	5.87	0.359	Increasing	S
GT4994008	1.79	0.008	Increasing	Ν	GT6447021	4.12	0.107	Increasing	S
GT4994009	2.40	0.020	Increasing	S	GT6450015	5.91	0.200	Increasing	S
GT5233001	-1.22	-0.005	Decreasing	Ν	GT6450016	4.36	0.121	Increasing	S
GT5233002	1.63	0.012	Increasing	N	GT6450017	7.14	0.304	Increasing	S

Appendix-3. MAKESENS trend analysis results for annual minimum groundwater levels (continued)

Well ID	Test Z	Slope	Remarks	Signif.	Well ID	Test Z	Slope	Remarks	Signif.
GT6450018	5.42	0.285	Increasing	S	GT6991013	3.83	0.151	Increasing	S
GT6450019	5.71	0.118	Increasing	S	GT6991014	2.84	0.056	Increasing	S
GT6460025	4.10	0.076	Increasing	S	GT6991015	2.24	0.035	Increasing	S
GT6460026	4.55	0.110	Increasing	S	GT6991016	1.82	0.037	Increasing	Ν
GT6460027	4.27	0.157	Increasing	S	GT7037001	3.23	0.157	Increasing	S
GT6475036	5.42	0.383	Increasing	S	GT7037003	5.61	0.268	Increasing	S
GT6475037	6.12	0.336	Increasing	S	GT7037004	1.77	0.061	Increasing	Ν
GT6475038	5.44	0.311	Increasing	S	GT7037005	4.50	0.338	Increasing	S
GT6475039	6.70	0.399	Increasing	S	GT7056006	3.82	0.550	Increasing	S
GT6475040	5.61	0.141	Increasing	S	GT7056007	3.91	0.677	Increasing	S
GT6475041	5.34	0.257	Increasing	S	GT7056009	3.09	0.401	Increasing	S
GT6479044	3.75	0.300	Increasing	S	GT7056010	3.86	0.142	Increasing	S
GT6479046	6.96	0.360	Increasing	S	GT7066012	4.22	0.390	Increasing	S
GT6485047	6.37	0.310	Increasing	S	GT7066013	2.21	0.041	Increasing	S
GT6485048	4.39	0.159	Increasing	S	GT7066014	2.35	0.071	Increasing	S
GT6486049	3.96	0.444	Increasing	S	GT7066015	2.64	0.103	Increasing	S
GT6486051	3.67	0.419	Increasing	S	GT7066016	3.49	0.117	Increasing	S
GT6486052	1.53	0.101	Increasing	Ν	GT7066018	1.74	0.042	Increasing	Ν
GT6915002	1.27	0.017	Increasing	Ν	GT7088020	-0.28	-0.010	Decreasing	Ν
GT6915004	2.90	0.040	Increasing	S	GT7088021	2.94	0.075	Increasing	S
GT6941001	4.83	0.060	Increasing	S	GT7088022	2.43	0.108	Increasing	S
GT6941005	3.78	0.070	Increasing	S	GT7088023	1.64	0.040	Increasing	Ν
GT6944006	3.33	0.167	Increasing	S	GT7088024	2.48	0.058	Increasing	S
GT6944007	2.04	0.040	Increasing	S	GT7088025	4.48	0.097	Increasing	S
GT6944009	3.46	0.100	Increasing	S	GT7088029	2.81	0.070	Increasing	S
GT6944010	3.64	0.079	Increasing	S	GT7312001	-1.85	-0.005	Decreasing	N
GT6963012	2.98	0.080	Increasing	S	GT7312002	-1.47	-0.002	Decreasing	N

Appendix-3. MAKESENS trend analysis results for annual minimum groundwater levels (continued)

Well ID	Test Z	Slope	Remarks	Signif.	Well ID	Test Z	Slope	Remarks	Signif.
GT7312003	4.45	0.020	Increasing	S	GT7616006	-0.55	-0.007	Decreasing	N
GT7312004	-0.59	-0.001	Decreasing	Ν	GT7616007	2.18	0.045	Increasing	S
GT7312005	-3.15	-0.008	Decreasing	S	GT7616008	3.62	0.050	Increasing	S
GT7312006	4.38	0.019	Increasing	S	GT7616009	-0.18	0.000	No trend	Ν
GT7315007	1.96	0.009	Increasing	S	GT7616010	2.76	0.060	Increasing	S
GT7315008	0.77	0.006	Increasing	Ν	GT7616011	2.00	0.012	Increasing	S
GT7315009	0.21	0.001	Increasing	Ν	GT7616012	3.24	0.014	Increasing	S
GT7315010	0.37	0.004	Increasing	Ν	GT7622013	3.51	0.115	Increasing	S
GT7315011	-0.62	-0.002	Decreasing	Ν	GT7639017	3.47	0.067	Increasing	S
GT7315012	1.87	0.010	Increasing	Ν	GT7639018	1.03	0.020	Increasing	Ν
GT7315013	4.15	0.046	Increasing	S	GT7639019	2.58	0.047	Increasing	S
GT7315014	-1.32	-0.007	Decreasing	Ν	GT7639020	1.62	0.031	Increasing	Ν
GT7336016	-2.41	-0.009	Decreasing	S	GT7655022	3.88	0.099	Increasing	S
GT7336017	-3.77	-0.017	Decreasing	S	GT7655025	2.93	0.062	Increasing	S
GT7336018	1.21	0.013	Increasing	Ν	GT7655026	3.30	0.094	Increasing	S
GT7336019	4.48	0.025	Increasing	S	GT7655027	3.28	0.079	Increasing	S
GT7336020	0.09	0.001	Increasing	Ν	GT7683030	2.69	0.047	Increasing	S
GT7345022	1.66	0.013	Increasing	Ν	GT7683031	3.85	0.060	Increasing	S
GT7345023	-0.11	-0.001	Decreasing	Ν	GT7683032	0.36	0.005	Increasing	Ν
GT7364025	0.44	0.002	Increasing	Ν	GT7683033	2.23	0.029	Increasing	S
GT7385026	2.16	0.035	Increasing	S	GT7683034	2.12	0.020	Increasing	S
GT7385027	0.42	0.002	Increasing	Ν	GT7683035	3.05	0.044	Increasing	S
GT7605001	3.50	0.087	Increasing	S	GT7704001	1.92	0.009	Increasing	Ν
GT7605002	3.90	0.092	Increasing	S	GT7704002	1.72	0.005	Increasing	Ν
GT7605003	4.24	0.090	Increasing	S	GT7704003	1.12	0.003	Increasing	Ν
GT7616004	1.53	0.017	Increasing	N	GT7704501	2.34	0.016	Increasing	S
GT7616005	0.60	0.005	Increasing	N	GT7704502	3.37	0.015	Increasing	S

Appendix-3. MAKESENS trend analysis results for annual minimum groundwater levels (continued)

Well ID	Test Z	Slope	Remarks	Signif.	Well ID	Test Z	Slope	Remarks	Signif.
GT7725004	-0.24	-0.002	Decreasing	Ν	GT8576013	0.60	0.006	Increasing	Ν
GT7725005	0.94	0.008	Increasing	Ν	GT8592014	3.50	0.045	Increasing	S
GT7725006	2.69	0.028	Increasing	S	GT8811001	1.14	0.022	Increasing	Ν
GT7725008	3.47	0.043	Increasing	S	GT8811002	3.34	0.090	Increasing	S
GT7734009	2.33	0.022	Increasing	S	GT8827003	0.77	0.011	Increasing	Ν
GT7734010	0.41	0.006	Increasing	Ν	GT8844005	1.89	0.036	Increasing	Ν
GT7734011	2.79	0.025	Increasing	S	GT8850006	2.01	0.035	Increasing	S
GT7734012	2.74	0.054	Increasing	S	GT8850008	1.02	0.019	Increasing	Ν
GT7734013	1.24	0.006	Increasing	Ν	GT8861009	3.27	0.138	Increasing	S
GT7773014	0.24	0.008	Increasing	Ν	GT8861010	2.14	0.050	Increasing	S
GT7773015	2.13	0.007	Increasing	S	GT8861011	3.00	0.058	Increasing	S
GT7773016	3.83	0.035	Increasing	S	GT8867012	0.73	0.020	Increasing	Ν
GT7773018	2.65	0.009	Increasing	S	GT8867013	1.41	0.022	Increasing	Ν
GT7790020	-1.28	-0.012	Decreasing	Ν	GT8878014	0.88	0.019	Increasing	Ν
GT7790021	6.73	0.045	Increasing	S	GT8878015	2.14	0.048	Increasing	S
GT7790022	1.57	0.013	Increasing	Ν	GT8878016	2.28	0.035	Increasing	S
GT7790023	0.00	0.000	Increasing	Ν	GT8878017	-0.06	-0.002	Decreasing	Ν
GT8503001	-0.41	-0.011	Decreasing	Ν	GT8878018	1.04	0.022	Increasing	Ν
GT8527003	3.77	0.024	Increasing	S	GT8878019	1.72	0.042	Increasing	Ν
GT8549005	-1.80	-0.037	Decreasing	Ν	GT8878020	2.63	0.102	Increasing	S
GT8549006	0.75	0.008	Increasing	Ν	GT8889022	-0.54	-0.011	Decreasing	Ν
GT8549007	-1.30	-0.011	Decreasing	Ν	GT8889023	5.14	0.058	Increasing	S
GT8558008	0.88	0.014	Increasing	Ν	GT8894024	0.65	0.014	Increasing	Ν
GT8558009	2.92	0.030	Increasing	S	GT8894025	0.92	0.023	Increasing	Ν
GT8558010	3.64	0.020	Increasing	S	GT8894026	0.83	0.020	Increasing	N
GT8573011	0.68	0.004	Increasing	Ν	GT8894027	3.23	0.078	Increasing	S
GT8576012	1.46	0.009	Increasing	N	GT9408001	2.19	0.010	Increasing	S

Appendix-3. MAKESENS trend analysis results for annual minimum groundwater levels (continued)

Well ID	Test Z	Slope	Remarks	Signif.	Well ID	Test Z	Slope	Remarks	Signif.
GT9408002	2.02	0.015	Increasing	S	GT9494015	5.71	0.033	Increasing	S
GT9408003	-4.79	-0.021	Decreasing	S	GT9494016	-0.18	0.000	No trend	Ν
GT9408501	2.97	0.007	Increasing	S	GT9494017	-0.15	-0.001	Decreasing	Ν
GT9451004	4.37	0.054	Increasing	S	GT9494019	-0.97	-0.004	Decreasing	Ν
GT9451005	4.29	0.038	Increasing	S	GT9494020	-1.12	-0.003	Decreasing	Ν
GT9451502	1.80	0.034	Increasing	Ν	GT9494021	4.06	0.026	Increasing	S
GT9482006	-2.84	-0.012	Decreasing	S	GT9494022	4.35	0.030	Increasing	S
GT9482008	2.57	0.036	Increasing	S	GT9494023	1.12	0.004	Increasing	Ν
GT9482010	3.35	0.056	Increasing	S	GT9494025	2.46	0.024	Increasing	S
GT9482503	3.99	0.013	Increasing	S	GT9494027	2.96	0.010	Increasing	S
GT9486011	5.06	0.025	Increasing	S	GT9494028	3.42	0.017	Increasing	S
GT9486012	2.24	0.023	Increasing	S	GT9494029	3.67	0.060	Increasing	S
GT9486014	2.48	0.031	Increasing	S	GT9494030	4.15	0.072	Increasing	S

Appendix-3. MAKESENS trend analysis results for annual minimum groundwater levels (continued)

¹Statistical Significance; ²Significant (p=0.05); ³Not significant (p=0.05)

Appendix-4. List of monitoring well-types based on suction limit (6 m)

Type	1: Wells	having	groundwater	level	always	below	suction	limit
- JPC	1	114 1115	Stoullanater	10101	uivuyb		Juction	TTTTTC

GT8134016	GT8172033	GT1006003	GT3861005	GT6450017	GT6475041	GT7037003
GT8134018	GT8194046	GT1033009	GT6428007	GT6450018	GT6479046	GT7037005
GT8134019	GT8194048	GT1054013	GT6428009	GT6475036	GT6485047	GT7056006
GT8134020	GT8194049	GT1054014	GT6428010	GT6475037	GT6486051	GT7056007
GT8153030	GT8194047	GT1088022	GT6428011	GT6475038	GT6486052	GT7056009
GT8153031	GT1006001	GT3861004	GT6450015	GT6475039	GT3230007	GT7066012

Type 2: Wells having groundwater level always above suction limit

GT1095026	GT3224003	GT5233001	GT5233003	GT7315014	GT7704501	GT7790021	GT9486011
GT2712005	GT3230005	GT5233002	GT7312001	GT7336016	GT7704502	GT8527003	GT9486012
GT2712006	GT3230006	GT5233004	GT7312002	GT7336017	GT7725004	GT8549005	GT9494016
GT2721010	GT3267008	GT5239005	GT7312003	GT7336018	GT7725005	GT8549006	GT9494017
GT2721011	GT3267009	GT5239006	GT7312004	GT7336019	GT7725008	GT8549007	GT9494021
GT2721503	GT3282011	GT5239007	GT7312005	GT7336020	GT7734010	GT8558008	GT9494023
GT2730013	GT3288015	GT5239008	GT7312006	GT7345022	GT7734011	GT8558009	GT9494028
GT2730014	GT3291017	GT5255009	GT7315007	GT7345023	GT7734012	GT8573011	GT9494030
GT2730015	GT3291018	GT5255010	GT7315008	GT7364025	GT7734013	GT9408001	
GT2756023	GT3230004	GT5255011	GT7315009	GT7385026	GT7773015	GT9408003	
GT2760029	GT4952004	GT5255012	GT7315010	GT7704001	GT7773016	GT9408501	
GT2764031	GT4961007	GT5270013	GT7315011	GT7704002	GT7773018	GT9482006	
GT3224001	GT4994008	GT5270015	GT7315013	GT7704003	GT7790020	GT9482503	

GT8112001	GT1020005	GT2730016	GT3874007	GT6944006	GT7605002	GT7734009	GT8889022
GT8112002	GT1020006	GT2738017	GT3874008	GT6944007	GT7605003	GT7773014	GT8889023
GT8112003	GT1020007	GT2738018	GT4909002	GT6944009	GT7616004	GT7790022	GT8894024
GT8122005	GT1027008	GT2743019	GT4952003	GT6944010	GT7616005	GT7790023	GT8894025
GT8125006	GT1040010	GT2747021	GT4952005	GT6963012	GT7616006	GT8503001	GT8894026
GT8125008	GT1040011	GT2756024	GT4994009	GT6991013	GT7616007	GT8558010	GT8894027
GT8125009	GT1040012	GT2756026	GT6403001	GT6991014	GT7616008	GT8576012	GT9408002
GT8125010	GT1067015	GT2764030	GT6403002	GT6991015	GT7616009	GT8576013	GT9451004
GT8125011	GT1081016	GT2764033	GT6403003	GT6991016	GT7616010	GT8592014	GT9451005
GT8125012	GT1081017	GT2764034	GT6406004	GT7037001	GT7616011	GT8811001	GT9451502
GT8131015	GT1081018	GT2764035	GT6406005	GT7037004	GT7616012	GT8811002	GT9482008
GT8134017	GT1081019	GT2764036	GT6406006	GT7056010	GT7622013	GT8827003	GT9482010
GT8134021	GT1081020	GT2764037	GT6428008	GT7066013	GT7639017	GT8844005	GT9486014
GT8134022	GT1088021	GT2764038	GT6447021	GT7066014	GT7639018	GT8850006	GT9494015
GT8134027	GT1088023	GT2764039	GT6450016	GT7066015	GT7639019	GT8850008	GT9494019
GT8134028	GT1094024	GT2769040	GT6450019	GT7066016	GT7639020	GT8861009	GT9494020
GT8172032	GT1094025	GT2777042	GT6460025	GT7066018	GT7655022	GT8861010	GT9494022
GT8172035	GT1095027	GT2777043	GT6460026	GT7088020	GT7655025	GT8861011	GT9494025
GT8172036	GT2710001	GT3224002	GT6460027	GT7088021	GT7655026	GT8867012	GT9494027
GT8172037	GT2712002	GT3282010	GT6475040	GT7088022	GT7655027	GT8867013	GT9494029
GT8172038	GT2712003	GT3288014	GT6479044	GT7088023	GT7683030	GT8878014	
GT8172039	GT2712004	GT3282012	GT6485048	GT7088024	GT7683031	GT8878015	
GT8172040	GT2717008	GT3282013	GT6486049	GT7088025	GT7683032	GT8878016	
GT8182041	GT2717009	GT3847001	GT6915002	GT7088029	GT7683033	GT8878017	
GT8182042	GT2717501	GT3847002	GT6915004	GT7315012	GT7683034	GT8878018	
GT1006002	GT2721502	GT3847003	GT6941001	GT7385027	GT7683035	GT8878019	
GT1020004	GT2730012	GT3874006	GT6941005	GT7605001	GT7725006	GT8878020	

Type 3: Wells having groundwater level below suction limit maintaining an annual cycle