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Abstract

We introduce a synthetic dataset for evaluating non-rigid 3D
human reconstruction based on conventional RGB-D cameras. The
dataset consist of seven motion sequences of a single human model.
For each motion sequence per-frame ground truth geometry and
ground truth skeleton are given. The dataset also contains skinning
weights of the human model. More information about the dataset
can be found at: https://research.csiro.au/robotics/
our-work/databases/synthetic-human-model-dataset/

1 Introduction

Volumetric 3D reconstruction for rigid scenes and objects is a well studied
problem in computer vision and robotics |1, 2, 3]. Often reconstructed 3D
maps are fused with other complementary modalities such as RGB
information [1], non-visible imaging information such as thermal-infared
[5, 6, 7] or sound [8] for application such as medical imaging [9], disaster
response |10] and energy auditing [11].

The more general scenario, where the objects or scenes are dynamic and
undergo non-rigid deformation, is still a challenge to be solved [12|. There
are only a few publicly datasets available for evaluating RGB-D based
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non-rigid 3D reconstruction. Those datasets [13]| are for general non-rigid
subjects and not specific to human bodies. Even though the dataset
published with [12] has the frame-to-frame live ground truth geometry and
camera trajectory |14, they do not have ground truth skeleton joints and
have very small non-rigid motion. We found that accurate skeleton joints
play an important role in human performance capture algorithms.
Motivated by this we developed a synthetic dataset which contains ground
truth geometry and skeleton joints. The dataset contains human motion
sequences which posses high frame-to-frame non-rigid motion.

2 Differences with previously published
dataset

Our previous published dataset [I1] has frame-to-frame live ground truth
geometry and camera trajectory as the corresponding work [12] targets for
usage of camera pose for non-rigid reconstruction. Frame-to-frame non-rigid
motion in that sequences is very small. In the current publication [15] we
are more focused on reconstructing non-rigid movements of human subjects
like boxing, jumping etc.

These sequence posses high frame-to-frame non-rigid movements. This
dataset also provides ground truth skeleton joints along with per frame
ground truth geometry. In addition we are using a human model for motion
tracking. The dataset also contains our human model with skinning weight
information.

3 The Dataset

Our dataset [16] consists of

1. Ground truth of human 3D geometry at each frame in world coordinate
frame.

2. Ground truth of skeleton points at each frame in world coordinate
frame.

3. Extrinsic parameters of RGB and depth cameras

4. RGB and depth images.



Name N Mean Min Max Std

Jump Balance 60 0.988 0.263 2.605 0.629
Punch Strike 250 0.444 0.084 0.938 0.201

Boxing 245 0.650 0.015 1.589 0.312
Sword Play 248 0.521 0.082 1.165 0.252
Exercise 248 0.733 0.068 1.919 0.456
Kick Ball 161 0.536 0.030 2.752 0.607

Direct Traffic 251 0.578 0.126 1.912 0.260

Table 1: Details of the synthetic data. Each row have sequence name, number
of frames in sequence (), and statistics of joint motion are given.

The dataset consist of seven motion sequences of varying motions
characteristics. Table 1 shows motion statistics of the corresponding data
sequences. The motion is estimated as the sum of joint movement in each
frame. We assign the same name as used in the CMU Mocap dataset for
each sequence. The first two columns in Table 1 show name and number of
frames in the sequence. The remaining columns shows the motion statistics
for each data sequence.

Elanattil et al. [12] outlines the detail of the design and production of
this synthetic dataset.

3.1 Data Description

The dataset consists of eight folders in which seven of them contains motion
sequence data and remaining one contains our human model data. Each
motion sequence folders named as the corresponding sequence name as
shown in Table 1. Each sequence folder is structured as follows.

color

depth

gt

skeleton
transformation.txt



Each motion sequence folder contains color, depth, gt, skeleton sub-folders
and a transformation text file. The color and depth folders contains RGB
and depth images respectively. The file names have the following form:

e frame XXXXX.png: the RGB image of the scene;
e depth XXXXX.png: the depth image;

The gt and skeleton folders contains ground truth mesh and ground truth
skeleton joints correspond to each frame. The file name has the form:

e mesh XXXXX.ply: mesh file of human in world co-ordinates;

e skeletonCSV XXXXX.csv: skeleton joints of the human in camera
co-ordinates;

where XXXXX is an integer number representing the frame number
within the data sequence. In each skeleton file, joint locations of each skeleton
bones are given. The transformation.txt file contains the world to camera
transformation matrix.

3.2 Camera Parameters

In our synthetic environment the RGB and depth cameras are placed in same
location and orientation. Therefor the extrinsic matrix between RGB and
Depth cameras is 4 x 4 identity matrix. The intrinsic parameter matrix for
both RGB and depth images is

fo 0 ¢ 1050 0 480
0 f, ¢|=1] 0 1050 480
0 0 1 0 0 1

3.3 Human Model

Our human model is a mesh with 17,021 vertices and 31,492 faces. Skinning
bone indexes and weights of each vertices are given in labels.csv and
weights.csv files of the model information folder. Our model is based on
14 bone skeleton. The skeleton bone indexes and corresponding bone names
are shown in Figure 1. The Figure 2 shows our human model which is color
coded based on the highest skinning weight for the corresponding skeleton
bone. Note that the color coding used for skeleton (Figure 1) and human
model (Figure 2) is different.
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Figure 1: The skeleton used in our human model is shown. The skeleton
bone indexes and corresponding bone names are shown.

3.4 Obtaining The Data

This dataset can be downloaded from https://research.csiro.au/
robotics/our-work/databases/synthetic-human-model-dataset/.
When making use of this data we ask that [15] [10] are cited.

3.5 Example Data Visualizations

Sample data from our dataset is shown in Figures 3 and 4 respectively. Figure
3 shows RGB image, depth image, ground truth mesh and 3D skeleton of a
particular frame in 'Boxing’ motion sequence. Figure 4 shows RGB images
of 'Boxing’, "Exercise’ and ’Jumping’ motion sequences in the dataset.
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Figure 2: The color coded human model is shown. Each point in the mesh
is color coded based on the highest skinning weight for the corresponding
skeleton bone.
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