USING SYNTHETIC DATA TO BOOST AUTOMATED IMAGE-BASED PLANT PHENOTYPING

Daniel Ward, Peyman Moghadam, Nicolas Hudson Robotics and Autonomous Systems, CSIRO Data61

www.data61.csiro.au

We present a framework for leaf instance segmentation by augmenting real plant datasets with generated synthetic plant images of rosette-shaped appearance. We present a synthetic data generation pipeline for obtaining labelled data required for leaf segmentation algorithms. The data pipeline produces 3D plant models from which a 2D top down colour image is rendered. We train a deep learning segmentation architecture (Mask-RCNN) on a combination of real and synthetic images of Arabidopsis plants. Our proposed approach achieves 90% leaf instance segmentation score outperforming the state-of-the-art approaches for the Computer Vision Problems in Plant Phenotyping (CVPPP) Leaf Segmentation Challenge (LSC) [2].

Problem

- Deep learning algorithms require large amounts of labelled data.
- Compared to common datasets, limited annotated leaf data is available.
- Different plants and species differ significantly in shape and appearance.
- Collecting sufficient training data for different plants is intractable.

Figure 1: A visualisation of a deep learning segmentation approach. Given sufficient training data (left) and corresponding labels (right), a network (centre) learns a mapping from the input image to the leaf instance segmentation labels.

The CVPPP Leaf Segmentation Challenge

- Contains five datasets of two plant species: Arabidopsis plants (A1, A2, A4) and Tobacco plants (A3). A5 contains a mix of Arabidopsis and Tobacco plants.
- A1, A2, A3, A4 contain 128, 31, 27, 624 training images and 33, 9, 65, 168 testing images respectively.

 Table 1: The number of images in common computer vision datasets. Popular datasets contain significantly more
 images than the amount of data available for the CVPPP leaf segmentation challenge.

Leaf Instance Segmentation Results

Figure 2: The first row shows images from the CVPPP LSC datasets. Our proposed leaf instance segmentation predictions are shown in the second row. We train Mask-RCNN on a combination of real and synthetic plant images.

 Table 2: Leaf segmentation results for the CVPPP LSC test datasets compared to the state-of-the-art. Note that other

approaches were individually trained for each test dataset (A1, A2, A3) while our method was only trained using A1 plants (Arabidopsis). Dataset A3 contains tobacco plants.

APPROACH

CVPPP LSC TEST SET PERFORMANCE (SBD)

Dataset	Application	Number of images
Pascal VOC	Object segmentation	10 000
MS COCO	Object segmentation	330 000
ImageNet	Object Recognition	500 000
CVPPP	Leaf segmentation	1000

Synthetic Data Generation

- We propose a framework to generate training data and segmentation labels.
- The synthetic data comes without the cost of data collection or annotation.

Leaf Synthesis Pipeline

Plant Synthesis Pipeline

	A1	A2	A3
RIS + CRF [17]	66.6	-	-
MSU [20]	66.7	66.6	59.2
Nottingham [20]	68.3	71.3	51.6
Wageningen [24]	71.1	75.7	57.6
IPK [14]	74.4	76.9	53.3
Salvador et al. [19]	74.7	-	-
Brandenbare et al. [3]	84.2	-	-
Ren et al. [16]	84.9	-	-
Ours [1]	90.0	81.0	51.0

Synthetic Arabidopsis Plant Dataset

- 10,000 synthetically generated Arabidopsis plant images.
- Leaf instance segmentation labels included.
- Publicly available at: <u>https://research.csiro.au/robotics/databases/synthetic-</u> arabidopsis-dataset/

DATA 61

CSIRO

Figure 3: A selection of synthetically generated Arabidopsis plants and their corresponding leaf instance segmentation labels. Note the variation in leaf shape and size and the variation in backgrounds.

FOR FURTHER INFORMATION

- Dr. Peyman Moghadam
- e peyman.moghadam@csiro.au
- Mr. Daniel Ward
- e daniel.ward@data61.csiro.au

REFERENCES

[1]: D. Ward, P. Moghadam, and N. Hudson. Deep leaf segmentation using synthetic data. In Proceedings of the British Machine Vision Conference (BMVC) Workshop on Computer Vision Problems in Plant Phenotyping (CVPPP), 2018.

[2]: CVPPP Leaf Segmentation Challenge, https://competitions.codalab.org/competitions/18405

ACKNOWLEDGEMENTS

This research was funded by the CSIRO AgTech Cluster for Robotics and Autonomous Systems. https://research.csiro.au/robotics/

Our Paper:

Our Dataset: