
PoseMap: Lifelong, Multi-Environment 3D LiDAR Localization

Philipp Egger1,2, Paulo V K Borges1, Gavin Catt1, Andreas Pfrunder2, Roland Siegwart2, Renaud Dubé2

Abstract— Reliable long-term localization is key for robotic
systems in dynamic environments. In this paper, we propose a
novel approach for long-term localization using 3D LiDARs,
coined PoseMap. In essence, we extract distinctive features
from range measurements and bundle these into local views
along with observation poses. The sensor’s trajectory is then
estimated in a sliding window fashion by matching current and
old features and minimizing the distances in-between. The map
representation facilitates finding a suitable set of old features,
by selecting the closest local map(s) for matching. Similarly to
a visibility analysis, this procedure provides a suitable set of
features for localization but at a fraction of the computational
cost. PoseMap also allows for updates and extensions of the map
at any time by replacing and adding local maps when necessary.
We evaluate our approach using two platforms both equipped
with a 3D LiDAR and an IMU, demonstrating localization
at 8 Hz and robustness to changes in the environment such
as moving vehicles and changing vegetation. PoseMap was
implemented on an autonomous vehicle allowing it to drive
autonomously over a period of 18 months through a mix of
industrial and unstructured off-road environments, covering
more than 100 kms without a single localization failure.

I. INTRODUCTION

Accurate and reliable localization in changing environ-
ments is key for autonomous navigation of robots and self-
driving cars. Although Simultaneous Localization and Map-
ping (SLAM) is extremely useful in a number of scenarios,
in many applications the goal is to perform map-based
waypoint navigation, where a vehicle has to travel along
predefined routes within a certain known area. Examples
include autonomous vehicle navigation in cities, mining sites,
ports, warehouses, agricultural lands, among others.

A number of sensors (and related algorithms) can pro-
vide an estimate of the current position of a vehicle in
a map, each with their advantages and drawbacks. Meth-
ods using a Global Positioning System (GPS) and marker-
based approaches have shown good results, but rely on
external infrastructure. GPS, for example, only works in
open outdoor environments and has limited precision to
be used for vehicle control, while beacon-based approaches
require prior installation. Therefore, systems based on local
environment sensing are preferable in many scenarios. Cam-
eras are generally affordable and provide great contextual
information, leading to good localization results in structured
environments (e.g. roads) [1]. However, cameras are sensitive
to changes in lighting [1], [2] and often unsuitable for night-
time operations.

1 Robotics and Autonomous Systems Group, Data61, CSIRO, Australia.
2 Autonomous Systems Lab, ETH Zurich.
Emails: philipp egger@outlook.com, paulo.borges@csiro.au,

gavin.catt@csiro.au, andrepfr@ethz.ch, rsiegwart@ethz.ch, rdube@ethz.ch

Among the many sensor options, LiDARs are one of the
most popular due to their ability to provide precise range
information and to be invariant to illumination changes.
For these reasons, the localization solution proposed in this
paper, coined PoseMap, focuses on LiDAR sensing.

As aforementioned, for many robotic applications it is
desirable to localize and navigate repeatedly within a known
area. In order to do so, the area first needs to be mapped.
Then, for localization, we must find a set of map features
that is visible at the robots location. These map features are
used to estimate the current position of the robot in the
map. Over time, however, the environment, tasks, and the
area of operation may change or be expanded. Therefore, for
robust long-term localization, the amount of changes between
current and stored map data needs to be considered, and the
map representation needs to be flexible and expandable.

To address the challenges above, instead of storing all
detected map features in one global map, PoseMap consists
of map feature bundles, each observed at unique locations.
Every set of features is associated with its pose of observa-
tion. When performing localization, the closest map nodes
are obtained. The features they hold, reflect what is visible
at this location. Hence, the selection of features is of similar
quality to the result of a visibility analysis with only the cost
of searching the nearest map nodes. This procedure works
due to the relatively large field of view (FOV) that LiDAR
units generally have.

In order to make the localization more robust to changes
we not only localize against the map but also build opti-
mization constraints against the local history. This procedure
allows for some differences between the map and the current
real world without causing the localization to fail. When
substantial change occurs, affected map nodes in the area are
replaced automatically. Furthermore, the proposed algorithm
continues localizing when the map is exited by performing
local scan matching without additional map constraints.
When the map is entered again, the loop is closed at run-time
and the newly discovered area is instantly added to the map.
These capbilities make PoseMap an extremely flexible solu-
tion for map-based localization, with experiments illustrating
the applicability of the method on an autonomous unmanned
ground vehicle (UGV). The vehicle has navigated without
a single localization failure for more than 100 kms in very
hybrid environments (ranging from built-up areas to off-road
bushland) with significant slopes, using maps that are more
than one year old. The navigation results considered changes
in the environment (parking lots, buildings, vegetation) and
online updating of the map when entering unexplored areas.

The remainder of this paper is structured as follows.

In Section II we discuss related work, contextualizing our
approach within existing solutions. In Section III we describe
the underlying SLAM algorithm used in PoseMap and how
it can be used for localization in a map. Section IV presents
PoseMap, the core contribution of this paper. In Section V we
present experiments, with result from current and outdated
maps. Relevant conclusions are drawn in Section VI.

II. RELATED WORK

In this section, we provide an overview of LiDAR SLAM
methods and contextualize PoseMap within SLAM, contrast-
ing PoseMap with other localization methods.

In the past, LiDAR SLAM was commonly addressed in
2D with either an occupancy grid in combination with a Rao-
Blackwellized particle filter [3] [4] or a pose-graph where all
measurements are stored relative to their origin [5]. LiDAR
SLAM in 3D has only in the last decade become of more
interest due to its high computational cost. Bosse and Zlot
presented a system that actuates a 2D LiDAR unit actively
with a motor [6] or passively with a spring [7]. Their work
was developed at CSIRO and hence we refer to it as C-
SLAM in this paper. The trajectory is estimated continuously
in a batch optimization process. A similar solution with
additional high-frequency odometry has been proposed [8],
in addition to other open source 2D/3D SLAM solutions such
as Cartographer [9] and a multi-robot SLAM system for 3D
LiDARs [10].

For long-term localization the fact that environments grad-
ually (or suddenly) change over time needs to be considered,
evaluating how much it impacts performance. In 2D SLAM
this problem is often addressed with an occupancy grid
[11], where the space is divided into cells, with each cell
holding a probabilistic value for being occupied/free. Various
adaptations of the original principle have been proposed such
as modelling the occupancy with a two-state Markov process
[12][13] or creating a 3D occupancy grid with octrees [14].

Sample-based approaches, in contrast, store and replace
exact measurements instead of averaging them. Biber and
Duckett [15] proposed a system for 2D SLAM that replaces
random map measurements at a fixed rate. Walcott-Bryant
et al. [16] proposed a system that keeps a history of past
scans and activates and deactivates individual parts of
the scan depending on whether new observations match
previous views. More recently, Maddern et al. [17] showed
that for successful localization it is not necessary to keep a
fully accurate, up-to-date map. Instead they show successful
3D localization in cities using a set of past experiences
simultaneously.

The method proposed in this paper, PoseMap, relies on
a SLAM solution which needs to be able to provide a
coherent (all loops closed) initial map that is accurate enough
for waypoint localization. From the 3D methods mentioned
above, we found C-SLAM [7] to be able to meet these
requirements based on our experiments, hence we use C-
SLAM as our base SLAM algorithm for PoseMap. Note,

however, that the PoseMap concept can equally be applied
to other 3D LiDAR-SLAM solutions as well.

The work we present is closest to the sample-based
approaches. We do not keep actual measurements but instead
store sets of features as they are much more compact than the
raw point data. Similarly to dynamic pose graph SLAM [16],
we keep a number of old views. However, we do not need
multiple views of the same area, nor do we split the views
up into sections. Furthermore, we do not try to keep track of
highly-dynamic changes. Similarly to the work by Maddern
et al. that leverages prior experience in cities [17], our
map does not attempt to estimate the latest state of the
environment. We argue that with a combination of constraints
within our local history and against a map, we can handle a
large amount of changes and localize over extended periods
of time. We only try to update the map when substantial static
changes occur. The PoseMap is designed for localization
and not mapping. We do not aim to reflect the current
surroundings in our map nor is the map “coherent”, meaning
that map nodes next to each other can be updated at different
times and reflect different states of the environment. These
aspects are discussed thoroughly in Sections IV and V.

III. BACKGROUND

This section provides background SLAM information to
assist the reader in understanding the contributions of this
paper.

A. C-SLAM

C-SLAM [6][7] works with a sliding window optimization
approach. At the core of the algorithm lie surface elements
termed surfels. These are planar features extracted from the
point cloud. For every new iteration, all newly added laser
data are projected into the map frame according to a motion
prior generated from IMU and/or odometry data. Then the
point cloud is split up into cubic bins, so called voxels. The
voxels are not only built with spatial constraints but also split
up according to time such that a new surfel is generated for
each new 3D scan of the same area. The points in every bin
are analyzed for their planarity p as

p = 2
λ2−λ1

λ1 +λ2 +λ3
, (1)

where λ1 ≤ λ2 ≤ λ3 are the eigenvalues of the voxel’s second
order moment matrix. Surfels with similar position and
orientation but different time of observation are matched with
a k-Nearest Neighbors (k-NN) search in a correspondence
step. Once the matching is finished the correspondences
are used to build constraints for the optimization step. The
optimization procedure calculates corrections of the trajec-
tory estimation in order to minimize the distance of two
similar surfels along their mean normal. This mean normal
represents the eigenvector corresponding to the minimum
eigenvalue of the sum of the matched surfels moment matri-
ces. Deviations from the IMU measurements are penalized
to ensure smoothness of the trajectory [6] [7].

Finally, continuity with the previous trajectory outside of
the window is enforced through initial condition constraints.
The optimization problem can be written as:

Amatch
−−−−−

Asmooth
−−−−−

Ainitial

δr(τ1)
δt(τ1)

.

.

.
δr(τn)
δt(τn)

=

bmatch

−−−−−
bsmooth
−−−−−

binitial

 (2)

where δr(τn) and δt(τn) are the frame corrections at time
step τn. The A-b pairs are the linearized constraints. Match
constraints are formed in continuous time and interpolated
for the discrete optimization problem. The optimization
problem is solved with iterative re-weighted least squares
in an M-estimator framework. In order to minimize drift, the
algorithm stores a set of m past surfel views, i.e. fixed views.
A fixed view contains the surfels that were observed during
a defined time-span which is no longer in the window. New
fixed views are stored whenever significant translational or
rotational movement occured since the last fixed view. For
offline loop closure an optimization problem as in Eq. 2
is formed for the entire trajectory with a specific set of
parameters.

B. Adjustments for Localization

Previous work [18] showed how replacing the fixed surfels
with features from the map allows using C-SLAM for
repeated localization. Hence, the match constraints in the
optimization problem are derived from a combination of
matches between local features, as well as matches between
local and map features.

In this work, we also experimented to only match local
features against map features. Due to the smaller optimiza-
tion problem, a largely increased (more than 20 Hz) update
rate was achieved. However, when combined with local con-
straints from within the sliding window, localization proved
to be much more robust to changes in the environment. In
experiments, the purely map based localization failed after
around two months due to changing vegetation. Therefore we
believe the latter, which was also used in [18], to be better
applicable for most real world scenarios.

A further adaption of C-SLAM for localization was the
introduction of a dynamic window shift size, as opposed
to a static one used in [7] and [18]. Whenever an iteration
has ended, a new one is started immediately with all new
data available. This allows for localization at the maximum
possible frequency of currently 4-10 Hz using both local and
map features.

IV. POSEMAP

The main contribution of our paper is a novel map
representation which we call the PoseMap. It represents the
environment as a set of map nodes that contain their own sets
of 3D surfels. When localizing in the bounds of the map, the
surfels of the closest map node(s) are used in the matching

and optimization step of C-SLAM. When the map is left
for a brief moment, the features in the newly discovered
area are optimized to blend into the map and then added.
In addition, map nodes are continuously evaluated for major
changes. When an area has experienced a substantial and
static change, the nearby nodes are automatically replaced
with new data.

The approach builds on three main assumptions:

1) The sensor setup has a very large field of view
(FOV). Otherwise, a more complicated method needs
to be used to find a good feature overlap (potentially
similar to visual slam solutions). Fortunately, a large
FOV is characteristic to most of the LiDAR units
currently available, assuming adequate positioning.

2) The initial point cloud is of high accuracy and does
not require further optimization. This assumption is
based on maps that are realistic representations of the
world that are accurate enough to serve as a base map
for localization [7].

3) For localization it is not necessary to maintain
a globally consistent map. Instead, we propose a
distributed map composed of submaps where each
node can be assessed and updated separately. Two
neighbouring positions in the map may consist of data
taken at entirely different points in time.

A. Overlap Criteria

In various parts of the PoseMap algorithm, such as change
detection and map filtering, we use a simple metric which
we call the overlap. The metric is calculated from two sets
of surfels: the test set ST and the reference set SR.

First, we propagate all surfels of SR by position through
an octree. The surfels of ST are then added, and each surfel
that falls into a bin which contains no surfel of SR is marked
as new. As a result, we have a new set of surfels SN which
is a subset of ST , i.e. SN ∈ ST . This is illustrated with an
example of change detection in an industrial environment in
Fig. 1, where the metric is used to estimate the amount of
change between the map and the local view.

Now let c(S) be a function returning the number of surfels
in a set of surfels S. Then we calculate

overlap =
c(ST)− c(SN)

c(ST)
=

c(ST \SN)

c(ST)
(3)

as the relative amount of “matched” surfels in ST . Corre-
spondingly, the amount of change can be reflected as

change = 1−overlap =
c(SN)

c(ST)
. (4)

It is important that a sensor setup with a similar FOV is
used when the overlap metric serves for change detection.
Otherwise, the additional area perceived with a new setup
with increased FOV is marked as change too.

Fig. 1: Overlap/change metric illustrated on the basis of
change detection in an industrial environment. Top left
picture shows the area on Google Maps. Purple and yellow
squares mark the centroids of surfels of SR and SN respec-
tively. Hence the yellow surfels mark new surfels that had
no surfel of SR nearby. While most surfels of SN have a
obvious reason to be marked “new”, the yellow surfels in
the top right are simply due to insufficient map density in
that area. Such noise artifacts influence the overlap/change
by a total error of less than 5%.

B. Initial Map Creation and Sparsification

Initially, we create a map of the area we want to localize
using C-SLAM to provide the registered point cloud and
trajectory. The data are then divided by time into small bins
such that the full FOV is perceived (we used 1.5 seconds with
our sensor setup.) Each bin is associated with its trajectory’s
mean position. Multiple measurements of the same area are
filtered out such that only one surfel exists in each spot. This
provides a set of submaps, each containing its mean position
and a set of features visible at this place. Neighbouring
submaps, however, still contain mostly overlapping data.
Hence, we filter out poses that do not contain sufficiently
unique surfels according to the overlap measure. We filter
out all submaps that have an overlap with their closest
neighbours that is higher than a threshold Toverlap. The
filtering was implemented such that in each iteration the
submap with the highest overlap, i.e. with the least unique
data, is deleted and then the scores of affected neighbours
are updated. This yields a very sparse, yet sufficient map
where submaps in key positions, such as corners, are kept.
This is clearly visible in the two map sectors in Fig. 2.

C. Localization

A major advantage of the proposed map representation is
the simplicity and speed of map queries. When localizing,
we simply use the surfels of the map’s nearest neighbours
to our current position. We generally use the closest two
submaps which are in most cases on opposite sides of our
ground vehicle. However, when they both lay on the same
hemisphere, we have

−−→
PN1 ∗

−−→
PN2

||−−→PN1|| ||
−−→
PN2||

> 0 (5)

(a)

(b)

Fig. 2: Red points represent the PoseMap nodes. Black
squares are surfel centroids. The top image shows map nodes
filtered to a minimum distance of 3m. The bottom image
shows filtering with Toverlap = 0.8. Note that the entire open
area is solely represented by 2 nodes. Along the way nodes
are kept at intersections and other points of interest.

with P being the current position and N1,N2 the two closest
map nodes. In this case, we propose adding an additional
map bundle into the correspondence search. This procedure
provides the advantages of a computation-intensive visibility
analysis at no cost. In our baseline approach [18], a k-NN
search around the estimated position was proposed which is
a more efficient alternative to a visibility analysis. However
Fig. 3 nicely illustrates the advantages of the new method.
The PoseMap offers a stronger assumption on what is visible,
i.e. locally perceived features nicely overlap with the local
map. Although the radius search in the baseline approach
was limited to 50 m, it still provided 90% more features for
matching. The PoseMap implementation not only reduces
computational costs of the matching problem, but it also
allows taking advantage of the full 100 m range of the LiDAR
unit used. Our experiments (Section V-B) show that the
increased range for localization improves robustness in open
areas with little structure nearby.

D. Online Map Extension

To increase robustness and versatility of our system, we
added online map extension capabilities. This allows the
robot to go into a new area which has not been mapped yet.
When the known map is left, motion estimation is continued
through local matching. Upon re-entry, the loop is closed
through a global optimization step where the PoseMap is
used as fixed constraints and the extension is optimized to
blend into the map. Map exit and entry can be identified
either by the proximity to map nodes or by the overlap
measure. The optimization is run in a separate thread in
order not to interrupt the ongoing localization processing.
The optimized data are then grouped, filtered and added to

Fig. 3: Comparison of the surfels handed over by radius
search (left) in a global map and by a PoseMap submap
query (right). Green are the surfels from the map and blue
are surfels in the current window. The PoseMap consists of
90% less surfels.

the PoseMap. This procedure is designed for small extensions
for a new task around the known map. In order to make
bigger extensions, the presented technique would need to
be augmented with a global place recognition strategy [19],
[20], [21].

E. Lifelong Localization

With our proposed approach, we do not aim to incorporate
every change of the environment into the map. Our experi-
ments indicate that, for localization purposes, the system is
very robust to a significant amount of change without the
need for map updates. We attribute the high robustness to
three main factors:

1) Our sensing systems have an extremely large field of
view. Hence they can perceive all static objects, such
as buildings and trees, that are in the environment. We
believe the concept would, for instance, not work in 2D
LiDAR SLAM as there are cases where only dynamic
elements are perceived, i.e. in a car park.

2) The combination of local and fixed constraints in the
optimization increases reliability (see Section III-B).
Map features of areas that changed are generally not
matched at all in the correspondence search. However,
these new features are still used for matching against
the local past, earlier in the sliding window.

3) Surfels are rather generic features, averaging the under-
lying environment. We believe that this is superior over
other features such as lines for long-term localization,
particularly in natural environments.

Accordingly, updates are not necessary in daily scenarios
with people and cars moving or a tree being removed. As
presented in the experiments of Section V-C, we propose
to only incorporate substantial static changes, such as new
buildings or large adjustments of the terrain.

Whenever a local observation next to a map node has
overlap smaller than a threshold Tchange the environment is
considered to have changed substantially. The local observa-
tion is then bundled to a map node replacement candidate
and stored. When revisiting the same place again and the
local surfels match now sufficiently well, this indicates that
change was not of static nature and the replacement candidate

Fig. 4: QCAT, the test site, with coloured areas. red: build-
ings; blue: parking lot, green: dense trees and bushes, purple:
off-road hilly area with open grassland and sparse trees.

is discarded. If the map, however, still does not reflect
the present state, but the candidate does, the map node is
replaced. This procedure can be tuned with the threshold
Tchange, a minimum time interval between evaluations and a
the number of reconfirmations before node replacement. For
practical operation, in our experiments, we used a minimum
time interval of 12 hours and a single confirmation.

V. EXPERIMENTAL RESULTS

To illustrate the applicability of the proposed method, we
run experiments at the Queensland Centre of Advanced Tech-
nologies (QCAT) in Brisbane, Australia. The site features
a rich mixture of static and dynamic elements, as well as
bounded and open spaces. An aerial view of site is shown in
Fig. 4, where the different areas are color coded. In the red
area buildings and paved roads are predominant. Marked in
blue is the parking area, which is constantly changing due to
car movements. Green and purple mark non-manufactured,
natural areas. While there is a paved road enclosed by trees
and bushes in the green zone, the high hill (purple) is covered
with open grassland and scattered trees.

We mapped the 15 hectare test site with C-SLAM and built
a PoseMap from the trajectory and point cloud. The PoseMap
was filtered as explained in Sec. IV-B with Toverlap = 0.6,
which we found to be a good level of filtering. At lower levels
of Toverlap, gaps begin to appear between map nodes. The
resulting map had a size of only 9.4 MB, which is arguably
very small compared to the 5 GB point cloud from where the
map was generated.

A. Hardware

We implemented the localization algorithm on an elec-
trical utility vehicle, i.e. a John Deere Gator TE, that was
automated at CSIRO (Fig. 5a). The vehicle is equipped with
a Microstrain GX3 IMU and a Velodyne PUCK VLP-16
LiDAR. Although the VLP-16 already features 16 beams,
the generated data are rather sparse. We therefore designed
a setup to continuously rotate the LiDAR on an electric motor

(a) (b)

(c) (d)

Fig. 5: (a) Picture of the fully automated John Deere Gator
equipped with a Velodyne VLP-16 LiDAR. (b) Design con-
siderations for the 45◦ sensor configuration. (c) Point cloud
captured with a upright sensor mount. (d) A tilted sensor at
45◦ yields improved sampling due to alternating directions
of the beams.

approximately 1 m above the vehicle in order to maximize
the FOV. We initially mounted the sensor at an upright
position but later redesigned the rotating platform for the
LiDAR to be mounted at an angle of 45◦. This way we
maximize the amount of data along the horizontal plane and
obtain fewer measurements from the sky or from the vehicle
itself. The mounting is illustrated in Fig. 5b.

This angled configuration helps to increase robustness in
open areas where there may be insufficient data on objects
far away (the sensor has a range of 100 m). Furthermore, the
beams sample the environment in different directions and
therefore yield an improved sampling of the environment.
This is visualized on the basis of point clouds in Fig. 5c and
Fig. 5d, where the difference between an upright configura-
tion and the 45◦ setup is clearly visible. We limit the amount
of data coming from the sensor for online operation. We
employ the same two filters proposed by Andreas et al. [18].
Firstly, a “ring” filter filters out all the data of some of the
sensor’s 16 beams. Figure 8 illustrates the effect of this filter
on localization speed. In a second step, the octree filter then
propagates the remaining data through an octree and deletes
all but one random measurement in each voxel.

B. Autonomous Navigation

In order to evaluate the suitability of the proposed method,
we performed a large number of autonomous test runs,
using a waypoint navigation pipeline [18]. Fig. 6 shows
an example trajectory that was driven fully autonomously
with six predefined waypoints. We observe that the estimated
trajectory is globally consistent as it precisely aligns with

Fig. 6: Trajectory of an autonomous test run at QCAT
overlaid on an image from google maps. The route was
defined via six waypoints and spans a total length of 1.6 km.

Fig. 7: Pictures taken approximately four months apart along
the same track. The grass in the top pictures is approximately
1.5 m high and was freshly cut in the second photo. Local-
ization and autonomous navigation were still working after
the changes.

aerial images. A comparison against RTK GPS was already
made by Pfrunder et al. [18] and is therefore not shown
again in this paper. However, we managed to repeatedly
navigate throughout all areas of the test site. The offroad
area is especially demanding due to the vibrations and
little structure. In this environment, localization was not yet
possible with the baseline approach [18]. This is due to the
fact that with the PoseMap we make use of the full 100 m
range and have a more suitable set of features from the
map. Furthermore, the 8x higher update rate reduces errors
in the motion prior from IMU integration. A video of an
autonomous test run is available online: https://youtu.be/B-
WxDRWdIpY

C. Lifelong Localization

To this date, the localization technique presented has
been tested for a period of over 18 months. Throughout
this time, localization was always possible despite constant
changes in the environment. Fig. 7 illustrates how much the
environment can change without affecting the localization.
Throughout the period of testing no level of change occurred

4 6 8 10 12 14 16

Number of VLP-16 beams used

4

6

8

10

12
U

pd
at

e
fr

eq
ue

nc
y

[H
z]

Fig. 8: Average update rate calculated on the same dataset
for varying numbers of beams. Numbers were computed on
a customized Dell Precision M4800 with a Intel Core i7-
4910MQ processor.

Fig. 9: Average computation time of different software
components used during an autonomous run at QCAT.

that would compromise the localization and therefore the
map update procedures were not necessary. Nevertheless the
update procedures are still important to maintain successful
operation in the case of any major change. We implemented
and tested map updates with an overly sensitive threshold in
the car park area. While the map was built during the day
when the car park was full, we ran various test runs at night
with no cars and a threshold Toverlap = 0.85 which was high
enough to replace some nodes that were fully surrounded by
cars. This was only for testing, as we generally do not want to
adapt to dynamic elements as these. For long-term operation
we now use Toverlap = 0.6 which was not yet reached in all
our testing.

D. Performance

With the dynamic window shift size (Sec. III-B) the update
rate of the algorithm is not fixed but mostly depends on
the amount of data to be processed. The correlation to raw
range measurements is clearly visibly in Fig. 8, which depicts
the update frequency depending on the number of LiDAR
beams being considered. Empirically, we found that 6-8
beams yields the best compromise between robustness and
performance at an average localization rate of around 8 Hz.

However, performance also largely depends on the number
of surfels. The amount of local surfels depends on the
environment. In open spaces we have more surfels than
in confined areas, hence the localization is slower. With
8 beams the update rate varied between 4 to 10 Hz. The

(a) (b)

(c) (d)

Fig. 10: (a) point cloud of initial map (b) georeferenced
trajectory of initial map overlaid in Google MyMaps (6.1 km)
(c) fixed sensor setup with GPS antenna and GoPro for
documentation. IMU unit is embedded in the aluminium disk
below the LiDAR unit (d) trajectory of a localization run
(3.7 km).

amount of map surfels depends on how the set of features is
selected in the map. Compared with our baseline system [18],
which ran at a fixed update rate of 1 Hz, we were able
to significantly increase performance due to the PoseMap’s
improved selection of map surfels compared to the radius
search (Sec. IV-C).

Fig. 8 illustrates how, on average, only around 4% of the
computation time is used by the PoseMap. This includes
all PoseMap functionality except loop closure. With only
matching against fixed surfels we were able to increase
the update rate by a factor of approximately four. In that
case fewer local surfels were generated, which reduces the
computation time in all sectors but the PoseMap query.
However, as described in Sec. III-B, the system became
significantly more sensitive to changes.

E. Urban Driving

In addition to the experiments using the UGV Gator
platform, we also tested the algorithm’s suitability for urban
driving. For this purpose we built a new fixed sensor setup
with no moving parts outside the LiDAR unit (Fig. 10c),
using only the vehicle’s movement in order to scan the
environment. We mapped a suburban neighbourhood (In-
dooroopilly) in Brisbane, Australia. In an initial mapping
run, a total distance of 6.1 km was driven (Fig. 10b) and a

Fig. 11: Map extension in the street. The extension spans
over a distance of 480 m. White points are used for surfel
centroids of the map and orange for the extension. Green
points are the local surfels of the localization.

point cloud (Fig. 10a) was generated using additional data
from a GPS module. This was necessary due to the smaller
FOV of the sensor configuration. From the point cloud the
PoseMap was extracted with only 10.3 MB in size. The map
was then used to localize in this area on multiple occasions
at regular speeds of 40-60 kmh. All localization runs were
successful with no GPS used. Tests were made at different
times of the day including nighttime and times with increased
traffic. Fig. 10d illustrates the estimated trajectory of such a
localization run. The corresponding video is available online:
https://youtu.be/KSxuxDnfiko

F. Map Extension

Map extensions were successfully tested both at QCAT
and in the urban driving experiment. In Fig. 11 an extension
in Indooroopilly is shown. The proposed technique is suit-
able for extensions up to about 1 km in length. For larger
extensions an additional place recognition algorithm would
be necessary. It is important to point out, however, that
the online extensions were not designed to map large new
areas, but instead to increase flexibility within and around
the mapped area. In case localization is required in a new
area, it should first be mapped in a designated mapping run.

VI. CONCLUSIONS

This paper presented a technique for long-term 3D lo-
calization in a mapped environment enabling autonomous
agents to navigate in order to fulfill their tasks. The PoseMap
consists of local views of features which are used for
localization and can be updated or extended at run-time. We
showed successful localization in a variety of environments
spanning from grasslands to industrial buildings. During a
test period of 18 months the system functioned without a
single localization failure despite various changes in the
test area. In comparison to the considered baseline, our
approach led to 8 times higher localization rate and allowed
localization in even more challenging terrain. Our approach
additionally features map update and extension capabilities at
runtime and is currently in use on some of CSIRO’s drones
and hexapods, illustrating the flexibility of the method. In
future work, we would like to further increase the robustness
of our method by detecting and filtering out dynamic objects,

keeping only static elements. This can potentially allow
for localization only against map surfels at increased speed
(Section III-B).

REFERENCES

[1] C. McManus, B. Upcroft, and P. Newman, “Learning place-dependant
features for long-term vision-based localisation,” Autonomous Robots,
vol. 39, no. 3, pp. 363–387, 2015.

[2] P. Mühlfellner, M. Bürki, M. Bosse, W. Derendarz, R. Philippsen, and
P. Furgale, “Summary maps for lifelong visual localization,” Journal
of Field Robotics, vol. 33, no. 5, pp. 561–590, 2016.

[3] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE transac-
tions on Robotics, vol. 23, no. 1, pp. 34–46, 2007.

[4] S. Kohlbrecher, O. Von Stryk, J. Meyer, and U. Klingauf, “A flexible
and scalable slam system with full 3d motion estimation,” in Safety,
Security, and Rescue Robotics (SSRR), 2011 IEEE International Sym-
posium on. IEEE, 2011, pp. 155–160.

[5] M. Bosse and R. Zlot, “Map matching and data association for
large-scale two-dimensional laser scan-based slam,” The International
Journal of Robotics Research, vol. 27, no. 6, pp. 667–691, 2008.

[6] M. Bosse and R. Zlot, “Continuous 3d scan-matching with a spinning
2d laser,” in Robotics and Automation, 2009. ICRA’09. IEEE Interna-
tional Conference on. IEEE, 2009, pp. 4312–4319.

[7] M. Bosse, R. Zlot, and P. Flick, “Zebedee: Design of a spring-
mounted 3-d range sensor with application to mobile mapping,” IEEE
Transactions on Robotics, vol. 28, no. 5, pp. 1104–1119, 2012.

[8] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time.” in Robotics: Science and Systems, vol. 2, 2014.

[9] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2d lidar slam,” in Robotics and Automation (ICRA), 2016 IEEE
International Conference on. IEEE, 2016, pp. 1271–1278.

[10] R. Dubé, A. Gawel, H. Sommer, J. Nieto, R. Siegwart, and C. Cadena,
“An online multi-robot slam system for 3d lidars,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2017.

[11] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.

[12] D. Meyer-Delius, M. Beinhofer, and W. Burgard, “Occupancy grid
models for robot mapping in changing environments.” in AAAI, 2012.

[13] J. Saarinen, H. Andreasson, and A. J. Lilienthal, “Independent markov
chain occupancy grid maps for representation of dynamic environ-
ment,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, 2012, pp. 3489–3495.

[14] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “Octomap: An efficient probabilistic 3d mapping framework
based on octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206,
2013.

[15] P. Biber and T. Duckett, “Experimental analysis of sample-based maps
for long-term slam,” The International Journal of Robotics Research,
vol. 28, no. 1, pp. 20–33, 2009.

[16] A. Walcott-Bryant, M. Kaess, H. Johannsson, and J. J. Leonard,
“Dynamic pose graph slam: Long-term mapping in low dynamic envi-
ronments,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, 2012, pp. 1871–1878.

[17] W. Maddern, G. Pascoe, and P. Newman, “Leveraging experience
for large-scale lidar localisation in changing cities,” in Robotics and
Automation (ICRA), 2015 IEEE International Conference on. IEEE,
2015, pp. 1684–1691.

[18] A. Pfrunder, P. V. K. Borges, A. R. Romero, G. Catt, and A. Elfes,
“Real-time autonomous ground vehicle navigation in heterogeneous
environments using a 3d lidar,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sept 2017, pp.
2601–2608.

[19] M. Bosse and R. Zlot, “Place recognition using keypoint voting in
large 3D lidar datasets,” in IEEE International Conference on Robotics
and Automation (ICRA), 2013.

[20] R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C. Cadena,
“SegMatch: Segment based place recognition in 3D point clouds,” in
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2017, pp. 5266–5272.

[21] R. Dubé, A. Cramariuc, D. Dugas, J. Nieto, R. Siegwart, and C. Ca-
dena, “SegMap: 3d segment mapping using data-driven descriptors,”
in Robotics: Science and Systems (RSS), 2018.

