
A Software Framework for Planning under Partial Observability

Marcus Hoerger1,2 and Hanna Kurniawati1 and Alberto Elfes 2

Abstract— Planning under partial observability is both chal-
lenging and critical for reliable robot operation. The past
decade has seen substantial advances in this domain: The
mathematically principled approach for addressing such prob-
lems, namely the Partially Observable Markov Decision Process
(POMDP), has started to become practical for various robotics
tasks. Good approximate solutions for problems framed as
POMDPs can now be computed on-line, with a few classes of
problems being solved in near real-time. However, applications
of these more recent advances are often hindered by the lack
of easy-to-use software tools. Implementation of state of the
art algorithms exist, but most (if not all) require the POMDP
model to be hard-coded inside the program, increasing the
difficulty of applying them. To alleviate this problem, we
propose a software toolkit, called On-line POMDP Planning
Toolkit (OPPT) (downloadable from http://robotics.
itee.uq.edu.au/˜oppt). By providing a well-defined and
general abstract solver API, OPPT enables the user to quickly
implement new POMDP solvers. Furthermore, OPPT provides
an easy-to-use plug-in architecture with interfaces to the high-
fidelity simulator Gazebo that, in conjunction with user-friendly
configuration files, allows users to specify POMDP models
of a standard class of robot motion planning under partial
observability problems with no additional coding effort.

I. INTRODUCTION

Planning under partial observability is essential to au-
tonomous robots. To operate reliably, an autonomous robot
must act strategically to accomplish its tasks, despite being
subject to various motion and sensing uncertainty, and un-
certainty regarding the environment the robot operates in.
Due to these uncertainties, the robot does not have full
observability on the state of the system. Over the past decade,
substantial advances on planning under partial observability
have been made. The general and mathematically principled
approach for solving such problems, namely the Partially
Observable Markov Decision Process (POMDP), which is
notorious for its computational intractability, has started to
become practical for various robotics planning problems [1],
[2], [3], [4], [5], even achieving near real-time performance
for a few classes of problems [4].

Despite these advances, an easy to use software tool
for POMDP-based motion planning is lacking, which in
turn hinders the community from reaping the full benefits
of these new advances. Several software tools for solving
POMDPs do exists, e.g., Symbolic Perseus [6], ZMDP [7],
APPL [8], and TAPIR [9]. To use these solvers, a user

M. Hoerger is supported by scholarships from CSIRO and the University
of Queensland

1The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
{m.hoerger, hannakur}@uq.edu.au

2CSIRO, Pullenvale, Brisbane, QLD 4069, Australia
Alberto.Elfes@data61.csiro.au

needs to first encode the POMDP model of the problem.
This encoding is easy for discrete POMDP problems: Users
only need to list down the values of the components that
define a POMDP problem in simple file formats, such as
the Cassandra file format [10], PomdpX file format [11],
and SPUDD format [12]. But, all software that can solve
continuous POMDP problems or POMDP problems on-line
require users to hard-code the problem in the software.

To alleviate the above difficulties, this paper presents On-
line POMDP Planning Toolkit (OPPT), a software-toolkit
for approximating POMDP solutions, on-line. OPPT uses a
plugin-based framework to provide flexibility and ease for
users to implement new POMDP models, withouth being
tied to a specific uncertainty model. For general POMDP
problems, the user can implement these plug-ins. However,
for standard motion planning under uncertainty problems
—that is, moving from one configuration to another with
errors in the effect of actions and sensing—, OPPT provides
a default POMDP model, such that users only need to
specify 3D models of the robot and environment, and a
configuration file that specifies parameters for the probability
density functions that represent uncertainties in the effect
of actions, observations, and starting state, and the reward
function.

OPPT allows a user to separate the POMDP model
(including the robot’s environment) for planning and for
simulated execution. It is known that developing a faithful
POMDP model is often difficult. However, it is also known
that strategies computed with imperfect POMDP models can
still generate relatively good robot behaviours. The ability
to separate planning and execution environments will bet-
ter facilitate sensitivity analysis studies of on-line POMDP
solvers and allow users to better predict the performance
these solvers in the physical world.

OPPT allows users to implement new POMDP solvers,
too. For this purpose, OPPT provides an abstract and general
POMDP solver class that is not restricted to specific data
structures. Furthermore, users also have access to a rich
framework that provides functionalities common for many
motion planning problems, such as kinematic computations,
physical simulation (via ODE [13] in Gazebo [14]) of
the robot and the environment it operates in and collision
detection (via FCL [15]).

II. POMDP BACKGROUND

Modelling a POMDP problem means defining the
components of the tuple 〈S,A,O, T, Z,R, b0, γ〉. The
notations S, A and O are the state, action, and observation
spaces. The notation T is a conditional probability function

http://robotics.itee.uq.edu.au/~oppt
http://robotics.itee.uq.edu.au/~oppt

p(s′ | s, a) (where s, s′ ∈ S and a ∈ A) that represents
uncertainty in the effect of actions, while Z is a conditional
probability function p(o|s, a) that represents uncertainty in
the observations. The notation R is the reward function,
which depends on the state–action pair. The notations b0
and γ ∈ (0, 1) are the initial belief and discount factor. At
each time-step, a POMDP agent is in a state s ∈ S, takes
an action a ∈ A, perceives an observation o ∈ O, receives a
reward based on the reward function R(s, a), and moves to
the next state. Due to uncertainties in the results of actions
and observations, the agent never knows its exact state and
therefore, estimates its state as a probability distribution,
called belief. The solution to the POMDP problem is
an optimal policy (denoted as π∗), which is a mapping
π∗ : B → A from beliefs (B denotes the set of all beliefs,
which is called the belief space) to actions that maximizes
the expected total reward the robot receives, i.e., V ∗(b0) =
maxa∈A

(
R(b, a) + γ

∫
o∈O p(o|b, a)V

∗(τ(b, a, o)) do
)
,

where R(b, a) =
∫
s∈S R(s, a)b(s)ds and τ(b, a, o) computes

the updated belief estimate after the robot performs action
a ∈ A from belief b and perceived o ∈ O.

III. ON-LINE POMDP PLANNING TOOLKIT (OPPT)

OPPT separates implementations of POMDP models from
solvers. To ease implementation of POMDP models, OPPT
allows users to specify the state, action, and observation
spaces via a configuration file, and uses a plug-in architecture
to implement transition, observation, reward functions, and
the initial belief. These plug-ins may have optional variables.
The values of such variables are specified in the configuration
file (the same file that specifies the three spaces of a
POMDP problem). The details of the plug-in architecture
are in Section III-B. OPPT implements a POMDP model
of a standard motion planning under partial observability
problem (defined in Section IV-A), which means that for such
problems, a user only needs to specify a configuration file.
For more general problems, a user needs to implement the
appropriate plug-in(s) as necessary and write a configuration
file that specifies the state, action, and observation spaces,
and plug-in options.

A new solver can be implemented via program API, as
described in Section IV-D. The default solver in OPPT is
Adaptive Belief Tree (ABT) [4].

Before discussing the details of how the POMDP models
and solvers are implemented in OPPT, let’s first discuss its
overall architecture.

A. ARCHITECTURE OVERVIEW

The overall architecture of OPPT is shown in Fig-
ure 1. OPPT separates implementations of POMDP models
and solver. Furthermore, for model implementation, OPPT
allows separate models for planning and execution, al-
though of course the same model can be used both for
planning and execution. At the core of the model are
the ProblemEnvironment, RobotEnvironment and
Robot classes.

1) ProblemEnvironment: The ProblemEnvironment
is the main component of OPPT. It is responsible for initial-
izing, setting-up, and running a POMDP problem, as well
as loading and initializing an instance of the POMDP solver
that will be used to solve the specified POMDP problem.
ProblemEnvironment follows the general work-flow of
online POMDP planning, which includes the following high-
level steps:

1) Use the Solver to improve the policy with respect
to the current belief (Solver::improvePolicy).

2) Get the best action to apply to the robot (via
Solver::getNextAction).

3) Apply the action to the robot and sample an observa-
tion and a reward.

4) Inform the solver about the action taken
and observation received to update its belief
(Solver::updateBelief).

5) Repeat steps 1–4 until a terminal state is reached, or a
maximum number of steps is exceeded

After a simulation run is finished, the
ProblemEnvironment generates an output file
containing statistics about the simulation run.

2) RobotEnvironment: The RobotEnvironment class
represents an interface for the Solver to communicate with
a Robot. It also contains a geometric representation of the
environment and the robot (the latter via the Robot class).
At start-up, the ProblemEnvironment instantiates two
RobotEnvironments: One will be used for planning,
while the other for simulated execution. This class also
sets up the Gazebo interface. Many robot motion planning
problems involve robots with complex non-linear dynamics
and observation function that cannot be modelled in closed-
form. For such problems, OPPT uses the ODE physics engine
(via Gazebo) to compute the robot’s dynamics. The interface
thereby serves two purposes: It maintains a kinematic and
dynamic model of the environment and the robot, using the
underlying model structure of Gazebo, and provides simple
methods that allow the transition and observation plug-ins to
communicate with the physics engine to simulate environ-
ment, robot and sensor dynamics. RobotEnvironment
class automatically sets-up Gazebo, based on a particular
environment and robot model, and a state, action and obser-
vation description within the problem configuration file, to
free the user from any additional set-up operations.

3) Robot: The Robot class is a general representation of
the physical robot. It maintains the TransitionPlugin
and the ObservationPlugin and provides methods
(transitionState and getObservation) that allows
the Solver to communicate with these plugins. The Robot
class is also responsible to construct the underlying state,
action and observation spaces of the robot. This is done
automatically given a specific problem description. Further-
more, this class provides methods to determine if a state is
valid (via the isValid method) or a terminal state (via the
isTerminal method), which use the TerminalPlugin

Fig. 1. OPPT architecture overview. Rounded boxes represent core components of the OPPT framework. Square-shaped boxes represent components for
which alternative implementations can be provided. A directed arrow from A to B depicts ”A is owned by B”

B. PLUG-IN ARCHITECTURE

OPPT uses a plug-in architecture similar to the one used in
Gazebo [14], to provide flexibility in extending both POMDP
model and solver. These plug-ins are implemented as shared
libraries that are loaded dynamically during runtime.

In terms of the model implementation, plug-ins are used
to implement the transition, observation, and reward func-
tions, and the initial belief (and terminal states, if required)
components of a POMDP model. OPPT provides one plug-in
type for each POMDP component. For each plug-in, OPPT
provides an implementation for the standard motion planning
problem (see Section IV-A). Standard plug-ins that specify
the transition and observation functions and initial belief
defines only the types of the distributions. The parameters
of the distributions are provided as inputs and are specified
in the configuration file. This means that to implement a
POMDP model for a standard motion planning under partial
observability, a user only needs to write a configuration file
that specifies the state, action, and observation spaces, and
the parameters of the distributions.

Furthermore, since plug-ins can be exchanged during run-
time, OPPT provides better support for changing environ-
ments, commonly encountered in long-term autonomy tasks.
For instance, when the quality of a sensor deteriorates, one
can replace the observation function, while OPPT is running.

The default solver in OPPT is Adaptive Belief Tree
(ABT) [4]. ABT is derived from Monte Carlo Tree Search,
which requires a rollout strategy to estimate the values of the
leaf nodes of the tree. In OPPT, this strategy is implemented
as a heuristic plug-in that users can easily replace.

IV. WORKING WITH OPPT

A. STANDARD MOTION PLANNING PROBLEMS

As discussed earlier, OPPT implements the model plug-
ins for a standard motion planning under partial observability
problem. In this problem, one or more robots must move

from an initial configuration to a configuration in a goal
region. The initial configuration is not known exactly, and is
represented as a uniform distribution with bounded support.
The exact bounds are given as input parameters. Actions
and observations are disturbed by additive Gaussian noise,
whose parameters are given as input parameters. The robot
and sensor dynamics are simulated by the physics engine
within Gazebo. These dynamics can be linear or non-linear.
Therefore, despite additive Gaussian noise in the transition
and observation functions, the beliefs may not be Gaussian
(even if the initial belief was Gaussian). The robot’s en-
vironment is fully observable, though it may change. The
reward function is designed such that the robot receives a
penalty when colliding with an obstacle, a small penalty for
every step it performs and a large reward when reaching the
goal area. The exact penalty and reward are given as input
parameters. States are terminal when the robot collides with
an obstacle or reaches the goal area.

The configuration file enables the user to specify an
instance of this class of standard motion planning problems.
Here, the user provides state, action and observation de-
scriptions of the POMDP model. A list of state, action and
observation descriptions the user can define are shown in
Table I and Table II. Additionally the problem configuration
file specifies the set of POMDP plugins that will be loaded
during runtime, and provides a reference to the robot and
environment model files. Furthermore it is possible to define
additional parameters that are being used by a specific
Solver implementation.

For motion planning problem that fits the above descrip-
tion, a user can use the default plug-ins, specifies the state,
action, and observations spaces and the input parameters in
the configuration file. The kinematic and dynamic model of
the robot and the environment the robot operates in are given
as inputs, and defined using the SDF format [16], a XML-
like descriptive format that contains a precise kinematic

TABLE I
STATE AND OBSERVATION CONFIGURATION VARIABLES FOR MOTION PLANNING PROBLEMS

jointPositions, jointVelocities Joint angles in rad, joint velocities in rad/s
linkPoses.
linkPositionsX, linkPositionsY, linkPositionsZ,
linkOrientationsX, linkOrientationsY, linkOrientationsZ

Poses, positions and orientations of the local link frames w.r.t. world frame

linkVelocitiesLinear, linkVelocitiesAngular
linkVelocitiesLinearX, linkVelocitiesLinearY, linkVelocitiesLinearZ
linkVelocitiesAngularX, linkVelocitiesAngularY, linkVelocitiesAngularZ

Linear and angular velocities of the local link frames w.r.t. world frame

additionalDimensions Additional state dimensions that are not considered by the physics engine

TABLE II
ACTION CONFIGURATION VARIABLES FOR MOTION PLANNING PROBLEMS

jointTorques Input for torque controlled joints
jointPositions Input for position controlled joints
jointVelocities Input for velocity controlled joints
additionalDimensions Additional action dimensions that are not considered by the physics engine

and dynamic description of the environment and the robot.
These SDF-models are used by the GazeboInterface
to initialize the underlying physics engine. Within the SDF-
model files, the user can attach sensors to the robot that are
used by the standard observation plug-in.

B. GENERAL PLANNING PROBLEM

For problems that do not fall into the class of standard
motion planning problems, such as grasping, target-tracking
and environmental exploration problems, the user can pro-
vide custom implementations of the plug-ins that define a
particular POMDP problem. The plug-ins are designed such
that only a small number of virtual methods have to be im-
plemented. Each plug-in must implement the load method,
which is called after a plugin has been instantiated. Here,
the user can perform set-up operations for any custom data
structures that are maintained within a plugin. Additionally, a
pointer to the RobotEnvironment is passed to the load
method that can be used by a specific plugin implementation
(e.g. for collision checking).

We emphasize that OPPT does not enforce a particular
uncertainty model. Instead, the user has to define how states,
actions and observations are affected by the uncertainties
within the transitionState (for the transition plu-
gin) and getObservation (for the observation plugin)
methods. The user can also define their own distribution
representation within the plug-ins.

C. USER INTERACTION

A benefit of the default solver, ABT, is that its policy
can be adjusted when the environment changes. To reap
this benefit, OPPT allows users to interact with the robot’s
operating environment using the Gazebo client GUI, during
run-time. They can add and remove obstacles or change the
pose of obstacles. If changes in the environment are known
a priori, users can define them inside the configuration file.
Here, the user specifies at which time step a specific change
to the environment occurs. When the environment changes,
the Solver will be informed about these changes via

the Solver::handleEnvironmentChanges method.
Implementing this method is optional, but if the user wishes
to adapt the policy to the environment changes, the user must
implement this method. This method has been implemented
for our default solver.

For problems with fully observable environments, addi-
tional care is needed. Changes in the environment during
run-time are always applied to the RobotEnvironment
that is used by the ProblemEnvironment to execute a
policy. However, it is possible reflect these changes in the
planning environments as well.

For visualizing the motion planning progress, OPPT pro-
vides a lightweight standalone GUI that visualizes the 3D-
environment, the current state of the robot, and the current
belief during run-time. It is based on RViz [17], a visualiza-
tion toolkit within the ROS framework [18]. This GUI can
also be used to replay the output files that are generated by
the ProblemEnvironment after each simulation run.

D. IMPLEMENTING NEW SOLVERS

In addition to reducing the difficulty of using on-line
POMDP solvers, OPPT aims to ease implementation of new
POMDP solvers. To this end, OPPT provides a general
Solver interface, which is an abstract class that provides
three key methods that must be implemented for new solvers.

The first method is improvePolicy, which is called
by the ProblemEnvironment at each planning step.
Within this method the Solver calculates the best policy
from the current belief. Note that OPPT does not enforce
a specific belief data structure. Depending on the solver, a
belief can have very different representations, such as a set
of particles or a multivariate-normal distribution. A Solver
implementation therefore has to provide its own internal
belief data structure.

The second key method is the
Solver::getNextAction, which is called
by the ProblemEnvironment after the
Solver::improvePolicy method is finished. This
method should return an action according to the calculated

policy, such that this action maximises the expected
discounted future reward the robot receives when executing
this action.

The third key method is the Solver::updateBelief,
which takes the action the robot has performed and the
observation that has been received as input arguments. In
this method, the Solver performs a belief update according
to the action and the observation. As mentioned above,
a Solver is not restricted to a specific type of belief,
therefore the user has to implement his/her own belief
update functionality. OPPT provides an implementation of
the Sequential-Importance-Resampling particle filter [19],
which can be used when the belief is represented by a set
of particles.

Apart from these three core methods, the Solver inter-
face provides a set of optional methods for serialization and
visualization.

V. EXAMPLE PROBLEMS

OPPT is written in the C++ programming language using
the C++11 specification. The source code can be downloaded
from the OPPT website: http://robotics.itee.uq.
edu.au/˜oppt. It implements the standard motion plan-
ning under partial observability problem, as described in
Section IV-A, and ABT, a state-of-the-art online POMDP
solver that can adapt its policy to changes in the POMDP
model. Also included are a number of example problem
scenarios: An instance of the Rocksample problem [20], a
simple car-like robot with second-order dynamics operating
inside a maze environment shown in Section V-B, 2DOF and
4DOF-manipulators with torque control operating inside a
3D-environment populated by static obstacles, and a 7DOF
Kuka IIWR robot with torque control operating inside an
office environment. The following subsections describe how
to implement some of these problem examples in OPPT.

A. 2DOF Manipulator

This problem scenario, illustrated in Figure 2(a) is an
example of our standard motion planning under partial
observability problem. Therefore, we can specify its POMDP
model without additional implementation effort. The problem
consists of a simple 2DOF-manipulator problem in which
the robot operates within a 3D-environment populated by a
static obstacle. The robot has to move from a known initial
state to a state where the end-effector lies inside a goal-
area (marked by the green sphere) while avoiding collisions
with the obstacle. The robot consists of two box-shaped links
connected by a revolute joint. Furthermore the first link is
connected to a fixed base via a revolute joint. Both joints
are torque-controlled. In this problem the state of the robot
consists of the angles and velocities of both joints, and the
actions are the input torques for both joints. Furthermore
the robot is equiped with two types of sensors: The first
sensor measures the joint velocities, wherease the second
sensor measures the pose of the second link inside the robot’s
workspace with respect to the world frame. We assume that

both the actions and the observations are disturbed by zero-
mean additive Gaussian noise.

The robot receives a penalty of −500 when it collides with
the obstacle, and a reward of 1000 when it reaches a goal
state. Additionally, to encourage the robot to move to the
goal quickly, it receives a penalty of −1 for every step it
takes. A simulation run ends if the robot either collides with
the obstacle, reaches a goal state, or when the maximum
number of 50 steps is exceeded.

For this problem, we maintain a geometric and dynamic
representation of the robot in the GazeboInterface and
use ODE physics engine (via Gazebo) to simulate the robot
dynamics.
To specify the POMDP model of this problem in OPPT, we
only need to set the configuration file. The state space is
specified under the [state] section as follows:

[state]
jointPositions = [joint1, joint2]
jointVelocities = [joint1, joint2]

With this description, OPPT models the states of the robot as
a 4D-vector consisting of the joint angles and joint velocities.
Note that the joint names have to be consistent with the ones
used in the robot model file.
Next, we have to specify the POMDP actions:

[action]
jointTorques = [joint1, joint2]

This tells OPPT that the actions are 2D-vectors consisting
of the joint torques. This specification also provides enough
information to the GazeboInterface, such that an action
vector is applied to the specified joints.
Similarly, we have to specify the observations the robot can
perceive:

[observation]
jointVelocities = [joint1, joint2]
linkPoses = [link2]

This specifies that the observations are 8D-vectors consisting
of the joint velocities and the 3D-pose of the second link
(poses are represented as 6D-vectors consisting of a position
and an axis-angle orientation component).

The above specifications (in a single configuration file),
together with the 3D model of the robot and environment
geometry, are all that is required to specify a POMDP model
when the problem is an instance of OPPT’s standard motion
planning under partial observability problem.

B. Car-like robot with 2nd-order-dynamics

For this problem, the robot and sensor dynamics are
defined as closed form dynamic equations. Therefore, the
transition and observation functions in the standard problem
(where we rely on ODE and Gazebo simulator) must be
modified. To this end, we need to provide custom imple-
mentations of the transition and observation plug-ins. Note
that only these two plug-ins need to be implemented, the
rest of the plug-ins can use the standard implementations.

http://robotics.itee.uq.edu.au/~oppt
http://robotics.itee.uq.edu.au/~oppt

(a) 2DOF-manipulator (b) Car-like robot
Fig. 2. Problem scenarios. (a) A 2DOF-manipulator has to reach a goal area within the environment (green sphere) while avoiding collisions with the
obstacle (grey box). The three images (from left to right) illustrate a typical simulation run after t = 0, t = 12, and t = 22 steps. The beliefs at these
steps are depicted by a set of blue particles. (b) A car-like robot (orange rectangle in the lower-left corner) drives on a flat xy-plane populated by static
obstacles (black areas). The goal is to reach the area in the upper-right corner (green sphere) without collisions with any obstacles. The two blue squares
in the upper-left and lower-right corners are the beacons that help localization.

We consider a nonholonomic car-like robot that drives on a
flat xy-plane inside a 3D environment populated by obstacles
as shown in Figure 2(b). The robot must drive from a known
start state to a position inside the goal region (marked as a
green sphere) without colliding with the obstacles.

The state of the robot consists of its the position and
orientation on the plane and its linear velocity expressed in
the local frame of the robot. The actions are defined as the
acceleration and the steering wheel angle. We assume that the
robot is equiped with two types of noisy sensors: The first
sensor receives signals from two beacons that are location
inside the environment (blue squares), whereas the second
sensor measures the linear velocity of the robot. Details on
the transition and observation models used for this problem
can be found in [21].

To specify this POMDP model, we implement the transi-
tion and observation plug-ins. The rest of the model com-
ponents follows the standard problem class, as provided by
OPPT, and specified in the configuration file. The state is
specified by adding the link of the robot to the linkPo-
sitionsX, linkPositionsY and linkOrientationsZ parameters.
Now, note that our options for action variables (Table II)
does not include acceleration. Therefore, for the actions of
this scenario, we set additionalDimensions=2, where these
two dimensions represent the acceleration and the steering
wheel angle, which will is used in the transition plug-in
implementation. Similarly, for the observations we set addi-
tionalDimensions=3, representing the two observed beacon
signals and the linear velocity of the robot with respect to
its local frame.

C. Rocksample

Rocksample[20] is a well-known scalable benchmark
problem for POMDP solvers. However, this is a robot explo-
ration problem and is outside of our standard class of motion
planning under partial observability problems. Therefore,
we have to provide custom implementations of each model
plug-in. Rocksample models a Mars rover seeking to collect
samples from valuable rocks in the environment. The rock
locations are known exactly, but the quality of these rocks
(”good” or ”bad”) is not known a priori. The rover’s task
is to sample as many ”good” rock as possible in the fastest

time possible. The robot is equipped with a noisy long-range
sensor that can be used to check a rock. The precision of this
sensor decreases exponentially as a function of the Euclidean
distance of the robot to the target rock. Further details of the
Rocksample problem can be found in [20]. For this problem,
we use Rocksample78, which means 8 rocks exist in a 7X7
grid cells.

To model this problem, we first specify the state, action,
and observation spaces as follows:

[state]
linkPositionsX = [RocksampleRobotLink]
linkPositionsY = [RocksampleRobotLink]
additionalDimensions = 8

The first two parameters tell OPPT that part of the state
variable consist of the x and y position of the robot within
the environment. Since the rock states cannot be modelled
according to a specific physical quantity of the robot, we
need eight additional state dimensions (denoted by the addi-
tionalDimensions parameter) —each dimension representing
the goodness of a rock.

[action]
additionalDimensions = 1

Since the provided action variables are all continuous,
but this problem has a discrete action space, the ac-
tion space is specified as a single variable, defined via
additionalDimensions, that encodes the discrete action
set. The transition plug-in will define the values and the
meaning of each action in this set. Similarly, since the set of
observations consists of two discrete observations, we set

[observation]
additionalDimensions = 1

More problem examples and their implementations are
available in the release version of OPPT.

VI. PERFORMANCE AND SCALABILITY

OPPT is designed such that the core components of the
framework have little-to-no impact on the performance and
scalability of new solvers. The majority of the computing
cost is used by the POMDP plug-ins, the collision-detection

Fig. 3. A 7-DOFs Kuka LBR iiwa robot operating inside an office
environment. The aim is to reach the goal area (green sphere) without
colliding with the interior

function (for which the user can provide alternative imple-
mentations) and the solver itself. To investigate how the
majority of the CPU resources are used, we ran a CPU
profiler for 10 simulation runs on the Rocksample problem,
the Car-like robot scenario, and a scenario of a 7-DOF
Kuka arm operating in an office environment populated by
complex obstacles (illustrated in Figure 3). Similar to the
2DOF Manipulator, the 7-DOF problem is defined using a
problem configuration file and the standard POMDP plug-ins
only, without any additional coding.

For the Rocksample problem, 85.2% of the CPU time
is used by ABT to construct and maintain the belief tree,
whereas 12.2% of the CPU time is used by the POMDP
plug-ins to sample states and observations. The remaining
CPU time is used for setup operations.

In the Car-like problem, the transition plug-in uses 60.8%
of the CPU time, as it uses collision-detection, while 34.1%
is used by the heuristic plug-in that is used by ABT to
estimate the values of leaf nodes in the belief tree. The rest
of the CPU time is used by ABT to maintain the belief tree.

For the Kuka robot, the majority of the CPU time (around
66.7%) is used by the transition plug-in, due to the physics
engine and collision-detection. Around 28.2% is used by the
heuristic plug-in. The rest of the CPU time is used by ABT
to construct and maintain the belief tree.

In all three scenarios, methods that are specific to the
OPPT framework didn’t show up in the profiling statistics.

Apart from a geometric representation of the environment
and the robot, OPPT doesn’t maintain any internal data struc-
tures. In other words, the memory resources are used mainly
by the POMDP solver, rather than the core framework.

VII. SUMMARY

This paper presents OPPT, an open-source software frame-
work for on-line POMDP planning. Current software tools
for on-line POMDP planning are either limited to a specific
solver, or require problems to be hard-coded within the
provided implementation. OPPT alleviates both limitations
by providing a rich framework for the standard class of
motion planning under partial observability problems and

a plug-in based architecture. It provides a general API for
developing on-line POMDP solvers further, and implements
ABT [4] —an on-line POMDP solver that can adapt its
solutions to changes in the POMDP model— as its default
solver. OPPT allows users to specify a POMDP model
via plug-ins and a simple configuration files. Furthermore,
for the standard class of motion planning problems, users
can specify a POMDP model with no coding effort, via
a configuration file and 3D models of the robot and the
environment.

We hope OPPT reduces the difficulty of applying recent
advances in POMDP-based planning to robotics tasks. We
also hope this software will encourage and support the
community to further extend the capabilities of POMDP
solvers, and decision making under uncertainty in general,
so as to address a major bottleneck for reliable and robust
autonomous robot operations.

REFERENCES

[1] Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: An
anytime algorithm for POMDPs. In: IJCAI. (2003) 1025–1032

[2] Kurniawati, H., Hsu, D., Lee, W.: SARSOP: Efficient point-based
POMDP planning by approximating optimally reachable belief spaces.
In: RSS. (2008)

[3] Silver, D., Veness, J.: Monte-Carlo Planning in Large POMDPs. In:
NIPS. (2010)

[4] Kurniawati, H., Yadav, V.: An Online POMDP Solver for Uncertainty
Planning in Dynamic Environment. In: ISRR. (2013)

[5] Somani, A., Ye, N., Hsu, D., Lee, W.S.: DESPOT: Online POMDP
planning with regularization. In: NIPS. (2013) 1772–1780

[6] Poupart, P.: Symbolic-perseus. https://cs.uwaterloo.ca/

˜ppoupart/software.html#symbolic-perseus
[7] Smith, T.: ZMDP. http://longhorizon.org/trey/zmdp/
[8] of Singapore, N.U.: APPL. http://bigbird.comp.nus.edu.

sg/pmwiki/farm/appl/
[9] Klimenko, D., and. H. Kurniawati, J.S.: Tapir: A software toolkit

for approximating and adapting pomdp solutions online. In: Proc.
Australasian Conference on Robotics and Automation. (2014)

[10] Cassandra, A.R.: Pomdp format. http://pomdp.org/code/
pomdp-file-spec.html

[11] Ong, S., Png, S., Hsu, D., Lee, W.: Planning under uncertainty for
robotic tasks with mixed observability. IJRR 29(8) (2010) 1053–1068

[12] Hoey, J., St-Aubin, R., Hu, A., Boutilier, C.: Spudd: Stochastic
planning using decision diagrams. In: Proceedings of the Fifteenth
conference on Uncertainty in artificial intelligence, Morgan Kaufmann
Publishers Inc. (1999) 279–288

[13] Smith, R.: Open dynamics engine. http://www.ode.org/
[14] Koenig, N., Howard, A.: Design and use paradigms for gazebo, an

open-source multi-robot simulator. In: Intelligent Robots and Sys-
tems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International
Conference on. Volume 3., IEEE (2004) 2149–2154

[15] Pan, J., Chitta, S., Manocha, D.: Fcl: A general purpose library for
collision and proximity queries. In: Robotics and Automation (ICRA),
2012 IEEE International Conference on, IEEE (2012) 3859–3866

[16] Foundation, O.S.R.: SDFormat. http://sdformat.org
[17] Foundation, O.S.R.: RViz. http://wiki.ros.org/rviz
[18] Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J.,

Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system.
In: ICRA Workshop on Open Source Software. (2009)

[19] Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking.
IEEE Transactions on signal processing 50(2) (2002) 174–188

[20] Smith, T., Simmons, R.: Heuristic search value iteration for POMDPs.
In: UAI. (2004)

[21] Hoerger, M., Kurniawati, H., Bandyopadhyay, T., Elfes, A.: Lineariza-
tion in motion planning under uncertainty. In: Proceedings of the 12th
International Workshop on the Algorithmic Foundations of Robotics
(WAFR). (2016)

https://cs.uwaterloo.ca/~ppoupart/software.html#symbolic-perseus
https://cs.uwaterloo.ca/~ppoupart/software.html#symbolic-perseus
http://longhorizon.org/trey/zmdp/
http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
http://pomdp.org/code/pomdp-file-spec.html
http://pomdp.org/code/pomdp-file-spec.html
http://www.ode.org/
http://sdformat.org
http://wiki.ros.org/rviz

	INTRODUCTION
	POMDP BACKGROUND
	On-line POMDP Planning Toolkit (OPPT)
	ARCHITECTURE OVERVIEW
	ProblemEnvironment
	RobotEnvironment
	Robot

	PLUG-IN ARCHITECTURE

	WORKING WITH OPPT
	STANDARD MOTION PLANNING PROBLEMS
	GENERAL PLANNING PROBLEM
	USER INTERACTION
	IMPLEMENTING NEW SOLVERS

	EXAMPLE PROBLEMS
	2DOF Manipulator
	Car-like robot with 2nd-order-dynamics
	Rocksample

	PERFORMANCE AND SCALABILITY
	SUMMARY
	References

