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Abstract— This work presents a method to improve vehicle
localization by using the information from a prior occupancy
grid to bound the possible poses. The method, named Map-
Aware Particle Filter, uses a nonlinear approach to map-
matching that can be integrated into a particle filter framework
for localization. Each particle is re-weighted based on the
validity of its current position in the map. In addition, we buffer
the trajectory followed by the vehicle and then append it to
each particle’s pose. We then quantify the overlap between the
trajectory and the map’s free space. This serves as a measure of
each particle’s validity given the trajectory and the shape of the
map. We evaluated the method by performing experiments with
different types of localization sensors: First, (i) we significantly
reduced the drift inherent to dead reckoning. By only using
wheel odometry and map information we achieved loop closure
over a distance of approximately 3 km. We also (ii) increased
the accuracy of GPS localization. Finally, (iii) we fused a fragile
2D LiDAR localization with the map information. The resulting
system had a higher robustness and managed to close the loop
in an outdated map where it had failed before.

I. INTRODUCTION

Sensor-based localization is an essential feature of robot
navigation systems. Yet, factors such as sensor uncertainty,
sensor fusion errors, and inaccurate prior maps can lead to
incorrect pose estimates.

In this paper we propose the enhancement of the vehicle’s
pose estimation by bounding it to the geometry of a prior
map. The spatial map representation chosen is an occupancy
grid. Occupancy grids [1] are discretized representations of
an environment where each grid cell denotes the probability
of an obstacle being present. They are a popular mapping
strategy in robotics and can be used for navigation purposes
such as path planning and localization.

The example shown in Fig. 1 shows a simple pose
correction through the use of an occupancy grid map. Here
we exemplify the measurement of an absolute localization
sensor such as a GPS. In Fig. 1a the red dot represents
the Maximum Likelihood Estimation (MLE) of the vehicle’s
position. The blue area represents an envelope of alternative
possible positions. In this case the MLE corresponds to the
mean position within the blue envelope. The white area in the
occupancy grid corresponds to the road, the free space. The
gray area is the space located behind the obstacles, which are
shown in black. In this example the MLE and most of the
possible positions are outside of the road area. Since the gray
areas are behind the obstacles, it is evident that the vehicle
cannot access them.
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(a) Maximum Likelihood Es-
timation (MLE). The red dot
corresponds to the mean and
the blue area to the range of
possible positions.

(b) Maximum A Posteriori Es-
timation (MAP). The range
of possible positions and the
mean now lie within the ac-
cessible areas.

Fig. 1: By combining a measurement with the occupancy grid
it is possible to obtain a better position estimation that yields
a valid mean position and reduced uncertainty. The white
space represents the traversable areas. Gray corresponds to
unknown space that lies behind the obstacles (black).

A correction can be made where only the accessible areas
are taken into consideration. Thus, the MLE and the map
information are fused to generate the Maximum A Posteriori
Estimate (MAP) as shown by the red dot in Fig. 1b. The new
estimate is still loyal to the measurement’s distribution and
lies within the physically plausible areas of the map.

Relative localization estimations can also benefit from
the map information. To illustrate the concept consider the
localization problem presented in Fig. 2. Let us assume that
the vehicle is known to have followed the trajectory shown
in Fig. 2b. By comparing the shape of the trajectory with
that of the map (Fig. 2a) it is possible to infer the pose
of the vehicle. This means that a relative position tracker
(odometry) could be used to perform absolute localization.
However, the cummulative drift of relative sensors render
them inadequate for such purpose over long distances.

In our proposal we follow the assumption that drift is
minimal over short distances. It is then possible to recursively
compare the last section of the trajectory with the map.
This allows us to use the information of the map’s shape to
compensate for drift over long distances. However, in order
to cope with the nonlinearities of a 2D Occupancy Grid a
similarly nonlinear approach is needed.

A. Map-Aware Particle Filter (MAPF)

In this paper we propose a new method, the Map-Aware
Particle Filter (MAPF). This is an extension of the Parti-
cle Filter algorithm [2] that incorporates map information



(a) The green arrow corre-
sponds to the current pose.

(b) Trajectory tracked by a
relative localization sensor.

Fig. 2: By comparing the trajectory and the shape of the map
it is possible to infer the pose of the vehicle.

into the pose estimation. Particle filters have an intrinsic
capability to handle nonlinear systems. Thus, we can easily
incorporate the information of an occupancy grid as an
additional “sensor”.

We present a method to efficiently obtain a particle’s
distance to the free space (Section III-A). By penalizing each
particle by this distance we promote the likelihood of the
estimation lying on the road (Section III-B). Furthermore,
we also propose the use of a trajectory buffer that keeps
track of the last odometric measurements. This trajectory is
then appended to each particle’s pose. By quantifying the
trajectory’s overlap with the free space in the map we can
evaluate how well each particle’s pose explains the shape of
the map (Section III-C).

We evaluated the MAPF on an autonomous ground robot
(Fig. 3). The test vehicle is equipped with wheel encoders
for odometry, a GPS sensor and an array of 2D LiDARs. A
3D LiDAR is also available but not used for localization.

We evaluated the impact of the MAPF for each of the
localization sensors. The results (Section V) show that, in
each case, localization benefited from the inclusion of the
map information. The pose estimation of the wheel odometry
alone increased in accuracy. Through MAPF the vehicle was
able to localize itself over a total trajectory of approximately
3 km. Similarly, the accuracy of GPS-based localization was
also increased. Furthermore, we fused a fragile 2D LiDAR
localization with the map information. The resulting system
had a higher robustness and managed to close the loop in an
outdated map where it had failed before.

Fig. 3: The test vehicle is a John Deere Electric Gator. The
2D LiDARs are marked with red circles and the 3D Velodyne
LiDAR with a green circle.

B. Related Work

Map-matching is the fusion of sensor measurements with
map information in order to improve localization [3]. Com-
mon applications include improving the accuracy of GPS
or dead reckoning position estimates by comparing them to
a digital map. Most of the previous research in this area
performs map-matching using geometric map representa-
tions, where roads are modeled as a collection of lines and
curves. The sensor-based estimated pose is then corrected
by matching it to the closest point on a line [4] or curve
[4], [5], [6] in its vicinity. More advanced methods take into
account the connections between road links [7], [8], [9],
or the probabilistic representation of sensor measurements
[9]. A detailed classification and analysis of different map-
matching algorithms on simplified roadmaps can be found
in [3]. The same solutions can be used on discretized grid
maps by analyzing them a priori and extracting geometric
and topological data to create a simplified roadmap [10].

The inclusion of road information into a particle filter
implementation was presented in [11], where a function
that penalizes a particle’s distance to the road is mentioned.
However, a method to obtain such distance is not provided,
and we propose our own metric in Section III-A. The analysis
of the validity of each particle’s movement is also presented
in [12], [13], [14], [15], where particles are considered
invalid if they traverse through a wall or obstacle on each
update step. An approach to backtracking particle trajectories
has also been proposed [14], [15], where each particle’s
trajectory history is stored such that their pose estimate can
be analyzed and corrected whenever they end on an invalid
position. Also, particle filter implementations where each
particle is weighted through an analysis of the vehicle’s speed
and kind of road have been presented [16].

The MAPF performs map-matching with a stochastic
spatial representation of the environment. It works directly
on the occupancy grid, rather than on a highly simplified
geometric model of the environment. As so, it does not
require any complex analysis to extract information of the
shape of the road. It works in this nonlinear space without
making any simplifications other than the ones intrinsic to
a 2D occupancy grid (namely, cell decomposition and 2D
representation). More so, our approach does not require to
keep in memory the previous poses of each of the particles.
Instead, a single trajectory, reconstructed from the odometry
measurements, is appended to each particle for evaluation.

II. PARTICLE FILTER

Although particle filtering is a well-known technique, we
include the following explanation for clarity and notation
consistency in our contributions in Sec. III. For improved
readability, the shorthand expression fa is used to represent
fa(a) unless specified otherwise.

The Particle Filter is a nonlinear approach to state esti-
mation that aims to represent (potentially complex and non-
linear) noise models through sampling [2]. As an estimation
of the Bayesian tracking algorithm it aims to approximate
the probability density function (PDF) fxk|z1:k , where xk



is the state at discrete time k and z1:k corresponds to the
collection of measurements of all the sensors up to time k.
The standard formulation splits the state estimation in two
steps, prediction update and measurement update.

For the prediction step, the state of each particle n is
estimated based on a model of the system’s state evolution:

x̃n
k = qk−1(x

n
k−1, uk−1, v

n
k−1), (1)

where u is the control input and v is noise with known
PDF fvk and whose values are generated through Monte-
Carlo sampling. Note that the initial state of each particle is
initialized through a Monte-Carlo sampling of a given initial
state PDF xn

0 ∼ fx0
.

The measurement update step aims to correct the state
estimation through the inclusion of sensor measurements
zk. This is based on a measurement model hk(xk, wk),
where w is the measurement noise with known PDF fw,
and fw(·)⊥fv(·)⊥fx0

(·) .

zk = hk(xk, wk) (2)

In this step each particle is assigned a weight βn based on
the likelihood of the sensor measurement given the particle’s
state.

βn = α · fzk|xn
k
, (3)

where α is a normalization factor such that
N∑

n=1

βn = 1. (4)

A resampling step is then performed where each particle
has a probability βn of being resampled. The distribution of
the particles is then a representation of fxk|z1:k [2].

III. MAP-AWARE PARTICLE FILTER

We propose enhancing the measurement update section
of the Particle Filter algorithm with information from the
occupancy grid. Rather than fully eliminating all of the
particles that lie outside of the free area, we allow for
small deviations. This ensures that the system is robust
against small changes in the environment and inaccuracies
in the map. Essentially, each particle’s weight becomes a
function of its proximity to the free space areas in the
map. Since calculating this distance is a costly operation,
we propose analyzing each cell in the map beforehand such
that reweigthing becomes a look-up operation and real-time
performance can be maintained.

A. Creation of the Proximity Map

The Proximity Map P ∈ R2 is a grid map where each
cell is given a numerical value that represents the amount of
cells between itself and the free space in the map (i.e. the
road). It is analogous to the “likelihood fields” used for beam
endpoint models [17] but, rather than measuring the distance
to the obstacle, it measures the distance to the free space. P
can be computed through a dynamic programming approach,
starting with the knowledge of the free space cells in the map

and expanding it by sequentially exploring the neighboring
cells, as detailed in Algorithm 1. In here, c represents an
individual cell in the map, C corresponds to the set of all
cells and F to the set of free-space cells from the occupancy
grid. B is the set of cells that are to be explored. This set is
updated on each iteration. The distance from each cell to the
free space, measured in number of cells, is then obtained
recursively. Say neigh(c,B) is true whenever cell c is a
neighbor of any of the cells in B.

Algorithm 1 Algorithm to initialize the proximity map

1: P(c) = −1 ∀c ∈ C
2: B = F
3: P(c) = 0 ∀c ∈ B
4: current distance = 1
5: while |B| > 0 do
6: current distace++
7: B = {c | c ∈ C, neigh(c,B),P(c) == −1}
8: P(c) = current distance ∀c ∈ B
9: end while

B. Enhancement of the measurement update step

The distance to the road can be used as an additional
sensor input by creating a measurement model that penalizes
particles for being away from the road [11]. In order to
achieve real-time performance, we propose the use of P(c)
to obtain the number of cells between each particle and the
road. The distance dnroad can then be computed with the map
resolution rpm. Assuming that the particle n lies in cell c the
calculation is as follows

dnroad = P(c) · rpm. (5)

An inverse exponential function

fzpm
k |xn

k
= exp (−λpm · dnroad), (6)

is used as a sensor model. The decay rate λpm is a soft
constraint that defines how harshly the particles will be
penalized for being far from the road. Let zs represent the
sensor measurements and zpm represent the measurement
model of P. Given the conditional independence of both
measurements given xn

k ,

fzs
k,z

pm
k |xn

k
= fzs

k|x
n
k
· fzpm

k |xn
k
. (7)

Therefore,
βn = α · fzs

k|x
n
k
· fzpm

k |xn
k
. (8)

C. Including trajectory information

Odometric position estimation generally drifts over dis-
tance traveled. However, within short distances it can be
very accurate. Thus, accuracy can also be expected if we
propagate the current pose backwards in time over a short
distance. As shown in Fig. 2 this short trajectory could be
compared to the shape of the map to improve localization.

For this purpose we propose the use of a relative position
buffer that tracks the changes in odometry in order to recreate
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Fig. 4: The odometric trajectory (blue arrows) is appended
to each of the particles’ poses (green arrows). Each particle
is then weighted based on the overlap between the appended
trajectory and the Proximity Map P (orange gradient).

the last section of the trajectory. This trajectory can then
be appended to each particle’s pose and compared with the
Proximity Map. This is illustrated in Fig. 4.

In the example the odometric trajectory consists of a
right turn, shown by the blue arrows. This trajectory is then
appended to each of the particles’ poses (the green arrows)
so that it can be compared with the Proximity Map P. The
Proximity Map is shown as an orange gradient, where the
solid color represents the road and the reduced tonalities
represent the lower weights as the distance to the road
increases. By measuring the overlap between each particle’s
appended trajectory and the weight of P it is possible to
evaluate how well each particle can explain the shape of the
road via its current pose and estimated trajectory. It is then
evident that particle “1” offers a conflicting pose hypothesis
given that particular trajectory and map. Meanwhile, the pose
of particle “3” offers a harmonious one.

The buffer is bounded by two parameters: the total length
to be tracked dmax and the trajectory resolution rtraj that
defines the distance between trajectory points as shown in
Fig. 5. More so, as we know that the odometry estimate
degrades with distance it is possible to give a higher weight
to the most recent ones. This is represented in Fig. 4 by the
varying width of the blue arrows. For instance, even though
particle “4” has most of its trajectory points within the road,
the first two, which have the highest weight, are outside of
the road. Therefore, the particle would receive a low weight.

Given a distance djvehicle from a given trajectory point j
to the vehicle and a function g(djvehicle) that weights each
trajectory point,

fzpm
k |xn

k
∝

m∑
j=0

g(djvehicle) · fzpm
k |xn,j

k
(9)

A weighted sum was chosen instead of a product to avoid
a single invalid trajectory position to cancel the combined
weight.1

1Note that equations (6) and (9) are not formal probability definitions as∑
fzk|xn

k
̸= 1. However, the normalization step in (4) enforces the “sum

to 1”.

dmax

rtraj

Inverse 
exponential 
weighting

Fig. 5: Each trajectory point is given a weight based on its
distance from the vehicle.

Based on experimental evaluation, we found g(djvehicle)
to be adequately modeled through an exponentially decaying
function. Given that smaller values of j are closer in time to
the current pose,

g(djvehicle) = exp (−λtraj · djvehicle), (10)

where λtraj is a decaying factor that determines how much
the buffer positions that lie farther away from the vehicle
will be penalized. The weighting of the trajectory points can
be visualized on Fig. 5.

Note that if the same relative localization sensor is used
for the state evolution (1) and the trajectory evaluation
then the odometric information is accounted for twice. One
way to avoid this would be to use two different sensors.
Alternatively, a single odometric sensor could be used given
some constraints. First, dmax should be small, following the
assumption that the drift is minimal over a short distance.
The acceptable values would depend on the characteristics
of each sensor. Second, the road width should be large
enough to allow for small drifts in the odometry. Given these
constraints the map’s shape would have a much larger effect
on the measurement than the odometric drift.

D. Computational cost

The time complexity of the measurement state of a tra-
ditional particle filter is at least linear with the number of
particles O(N) (i.e. evaluates every particle). The addition
of trajectory information adds a complexity proportional to
the number of particles N and the number of trajectory
points to be used J . If the lookup operation for a particle’s
position in the proximity map is done in constant time,
then the added complexity of the model is O(N · J). This
leads to a total complexity of the measurement step of
O(N(1 + J)) = O(N · J).

Note that if only the proximity map is used without includ-
ing trajectory information (i.e. J = 1 since we only check
the current position) the total complexity of the measurement
step remains O(N).

IV. EXPERIMENTS

Experiments were performed on an autonomous ground
robot platform, a John Deere Gator TE electric, shown in
Fig. 3. It is equipped with four 2D LiDARs, a GPS, two
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Fig. 6: Satellite view of the test area (a) and the occupancy grids used for the experiments. The first map (b) was built with
a 3D laser SLAM algorithm and is used to test accuracy. The second map (c) was built with a 2D laser SLAM algorithm
and has loop-closure errors and outdated obstacles. It is used to test robustness.

wheel encoders for odometry and a nodding 3D LiDAR.
Due to the different nature of each of these sensors, multiple
experiments were designed to evaluate the effect of the Map-
aware Particle Filter on each of them.

The software is written in C++ and built upon the Robot
Operating System (ROS) framework. In addition, the 2D laser
localization method used in this work is an implementation
of the Adaptive Monte-Carlo Localization [17] which is
available through the amcl package [18] from ROS.

Note that the performance of the method proposed in this
paper is highly dependent on the shape of the occupancy
grid. For our experiments we used the maps shown in Fig. 6.
The first one corresponds to a map built with the nodding
3D laser, a Velodyne PUCK VLP-16 [19]. Mapping was
performed by using the 3D SLAM pipeline presented in [20].
In order to get a 2D occupancy grid, an offline ray tracing
algorithm was applied while ignoring the obstacles that lied
above and below user defined heights. A detailed description
of the mapping algorithm is not in the scope of this paper
and will be a topic of future publications.

The sensors used for the second map were four 2D Hokuyo
UTM-30LX LIDARs, placed on the corners of the vehicle at
a height of 0.79m. These lasers have an angular resolution
of 0.25◦, a scan angle of 270◦, run at a frequency of 30Hz
and have a maximum detection distance of 30m. The map
was built with the gmapping algorithm [21], [22] using the
slam gmapping wrapper [23].

The map built with the 3D lasers is newer and more accu-
rate than the one built with the 2D laser SLAM. Therefore,
the former is used to test accuracy while the latter is used
to test robustness.

A. Model selection

The models used for fzpm
k |xn

k
correspond to (6) and (10).

Also, the following parameters were chosen empirically
based on experimental results: λpm = 1, λtraj = 0.1,
rtraj = 5, αslow = 0.001, αfast = 0.1. Note that the amcl
package [18] from ROS also has two parameters αslow and
αfast which are not the same as the ones used for the MAPF .
They are meant to determine when to generate random poses
as a recovery measure. In our experiments they were both
set to zero (deactivated).

We evaluated the MAPF with and without the incor-
poration of trajectory information. First we evaluate the
performance with the Proximity Map alone. A second test
uses a trajectory of length dmax = 30.

The particle filter implementation was partially based on
the amcl package and had a minimum and maximum number
of particles of 500 and 3000, respectively. Furthermore, for
laser localization we used the likelihood field model [17].
The motion model (1) for differential robots present in the
amcl package was also used. Note that the motion model was
solely used for the state evolution of the particle filter and
is independent of the trajectory buffer used by the MAPF.

B. Pure Odometric localization

A comparison was made between the pose estimation of
the wheel odometry with and without the map correction.
The purpose of this experiment was to evaluate the effect of
the MAPF for relative pose estimators. The pose estimation
from the 2D lasers was used as ground truth as it was the
most accurate sensor available.

For this experiment the map from Fig. 6b was used and a
trajectory of five consecutive loops was performed around the
circuit. This trajectory was meant to prove that loop closure
can be achieved through odometry sensing alone with the
help of the MAPF. Results for this experiment can be found
in Section V-A.

C. GPS bounding

The effect of using the MAPF for the GPS pose estimation
was also evaluated. In this case, the objective was to quantify
the improvement of an absolute localization method through
the inclusion of the map information. Once again, the trajec-
tory built by the 2D lasers was used as ground truth.

The map from Fig. 6b was used as it is more accurate.
A total of 10 tests were performed over the same trajectory,
which is a single loop around the map. The results for this
experiment can be found in Section V-B.

D. Robustness

We also made a comparison between the robustness of our
pure odometric approach and that of a 2D laser localization
method that used a popular Particle Filter algorithm (Adap-
tive Monte-Carlo Localization [17]). For this, the outdated
and less accurate map from Fig. 6c is used to localize the



(a) Correct position
estimation.

(b) Wrong position
estimation with high
weight.

(c) Better position
estimation with
lower weight.

Fig. 7: The laser localization might give higher weight to an
incorrect solution over one that is closer to the correct one.
The laser scan is represented by the red lines.

vehicle as it performs several loops around the industrial
complex. The pure odometric localization is proven to be
more robust, although not as precise as the laser localization.
Both sensors are then fused in order to obtain a state
estimation that is both robust and precise. The results for
this experiment are presented in Section V-C.

1) Fusion challenge: The performance of the 2D laser
localization method is highly dependent on an accurate
initialization. It localizes itself by matching laser scans to the
obstacles in the occupancy grid and thus, once it is lost, it
might match the laser scans with incorrect obstacles. If this
happens, the laser localization might not have a tendency
towards finding its way back into the correct pose. This is
illustrated in Fig. 7. The weight given to a wrong estimation
such as the one in Fig. 7b is higher than the one given to a
better estimation such as the one in Fig. 7c. Thus, the filter
does not tend to converge into the right solution.

In such scenario the laser localization’s incorrect certainty
about a wrong hypothesis could impair the sensor fusion.
When trying to use the fusion method described in Sec-
tion III-B the laser hypothesis would have such a high
certainty that it would overpower the map-related weight and
avoid its correction.

2) Fusion solution: A different fusion method is proposed
where the lasers’ contribution to the particles’ weight βn

is ignored when the performance of the laser localization
decreases.

In order to track the performance of the laser localization
an adaptation of a method described in [17] is used. In
the original version, the average particle weight is tracked
through ωslow and ωfast, which act as exponential filters over
long and short time respectively. These parameters would
then be used to determine when to generate random particles
on the map so that the vehicle could localize itself again
(solve the kidnapped robot problem). In our case, we do not
use this method to generate random particles but, instead,
we use it to evaluate the current laser performance. For this,
instead of tracking the average particle weight, we track the
highest one ωmax. The following equations describe how the
variables are updated after each measurement update.

ωmax = max
n

fzlasers
k |xn

k
(11)

ωslow = ωslow + αslow · (ωmax − ωslow) (12)

ωfast = ωfast + αfast · (ωmax − ωfast) (13)

Where αslow and αfast describe the decaying factor of the
exponential filters and 0 ≤ αslow ≪ αfast. The switching
then works as shown in Algorithm 2.

Algorithm 2 Laser fusion method

if (1− ωfast

ωslow
) ≥ τ then

Use (8)
else

Use βn = α · fzpm
k |xn

k

end if

Here, 0 ≤ τ ≤ 1 is a user-defined threshold. In our case,
it was empirically set to 0.5.

Note that both the beam model for laser localization and
the analysis of the appended trajectories of each particle are
computationally expensive tasks. When trying to use both
simultaneously the laser localization turned even more fragile
as the update frequency of the filter decreased. Furthermore,
the accuracy of the LiDAR is already high and would
not benefit much from the low accuracy of the corrected
odometry. Therefore, this experiment was only done with
the MAPF implementation that did not include the trajectory
information.

V. RESULTS

A. Pure Odometric Localization

The results for the experiment described in Section IV-
B, where several loops were ran while localizing only with
the wheel odometry, are shown in Fig. 8. Similarly, Table I
shows the mean squared error (MSE) of each trajectory when
compared to the 2D LiDAR Localization. The drift is evident
when no map correction is being made. Meanwhile, a map
correction without trajectory information reduces the drift but
is still not as precise as when the trajectory is being tracked.
The graphs from Fig. 9 show the evolution of the squared
error as the vehicle navigates. In this graph dmax = 0
corresponds to the implementation of the MAPF without
using the trajectory information. It can be seen that the
drift is largely reduced for both map-corrected trajectories.
However, when no trajectory information is used the system
does appear to start drifting by the end of the graph. This
is expected as in this case the MAPF would only manage to
keep the estimate within the road boundaries but would not
correct for its position within the length of the road.

TABLE I: Mean Squared Error (MSE) for the distance and
orientation between odometric trajectories and the 2D laser’s.

MSE dist. [m2] MSE orient. [rad2]
No map correction 2504.5 0.2925

MAPF no trajectory info. 170.23 0.0634
MAPF dmax = 30m 61.7806 0.0231

B. GPS Bounding

The use of the proximity map P to bound the GPS’ pose
estimation, as detailed in Section IV-C, yielded a higher
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Fig. 8: Odometry trajectory with different levels of map correction. The use of the map information reduced the drift.
Furthermore, the use of trajectory information yielded a more precise estimation.
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Fig. 9: Error evolution for the odometric trajectories.

position accuracy. This can be observed in Table II. The dis-
tance error reduced by 17%, although not much improvement
was obtained by including the trajectory information for the
map analysis. The trajectories generated are also plotted in
Fig. 10.

TABLE II: Mean Squared Error (MSE) for the distance
between GPS estimates and the 2D laser’s.

MSE distance [m2]
No map correction 91.1585

MAPF without trajectory information 77.4681
MAPF with trajectory dmax = 30 75.4853

Note that the trajectory from Fig. 10b appears to be closer
to the ground truth than the one from Fig. 10c despite
yielding a similar error measure. We attribute this to the
fact that the use of a longer odometric trajectory buffer
allowed the vehicle to deviate farther from the free-space
areas in some sections of the map. This is particularly
evident in the right-most section where the GPS and LiDAR
measurements showed the largest difference. However, the
increase of accuracy in the remaining portions of the map
compensated for this deviation.

C. Robustness analysis
This section presents the results for the experiment defined

in Section IV-D.
The trajectories tracked by the 2D LiDAR and the cor-

rected odometric trajectory are compared in Fig. 11. As can
be seen, the laser-based localization (which used a popular
Particle Filter algorithm) got lost after the first loop closure.
Meanwhile, our enhanced odometric estimation, although
imprecise, was robust enough to complete the loop several
times.

The result of the fusion of both can be visualized in
Fig. 12. The xy plane corresponds to the map coordinates
while the color represents ωmax, the maximum weight
among the particles as assigned by the laser measurements.
In this case we use ωmax as a measure of the performance of
the laser localization. The vehicle had a tendency to switch
modes to purely odometric localization after the curve in the
top-right corner of the map. This is evident by the sudden
drop in ωmax and the decrease in precision. As can be seen
in Fig. 6, the lower part of the map is not as structured as the
upper half. This corresponds to a section of the operational
space that is surrounded by vegetation.

After getting lost in the curve, the vehicle could not
localize itself with the LiDAR until it returned to a more
structured environment. The vehicle then changed modes,
which is evident by observing the sudden increase in both,
ωmax, and the precision of the estimations in the middle-left
section of the map. It is evident that the system sacrificed
accuracy in the lower half of the map in order to increase
its robustness.

VI. CONCLUSIONS

This work presents a method to incorporate the informa-
tion from the occupancy grid to improve the accuracy of
a relative localization sensor (wheel odometry) into being
able to perform multiple loop closures. More over, it has
also been shown to increase the accuracy of an absolute
localization sensor (GPS) and to increase the robustness of
an accurate, but fragile, Markovian localization method (2D
LiDAR localization). This improvement in performance was
obtained through a simple implementation that utilizes the
framework of a Particle Filter localization algorithm.

The benefit from using the method presented is highly
dependent on the shape of the occupancy grid. Therefore,
future work could present a methodology to perform an a
priori analysis of the map in order to determine the expected
performance of the algorithm in different sections of the
operational space.
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