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Abstract— Place recognition is a key element of mobile
robotics. It can assist with the “wake-up” and “kidnapped
robot” problems, where the robot position needs to be estimated
without prior information.

Among the different sensors that can be used for the task
(e.g., camera, GPS, LiDAR), LiDAR has the advantage of
operating in the dark and in GPS-denied areas. We propose a
new method that uses solely the LiDAR data and that can be
performed without robot motion.

In contrast to other methods, our system leverages intensity
information (as opposed to only range information) which is
encoded into a novel descriptor of LiDAR intensities as a group
of histograms, named DELIGHT.

The descriptor encodes the distributed histograms of inten-
sity of the surroundings which are compared using chi-squared
tests.

Our pipeline is a two-stage solution consisting of an intensity-
based prior estimation and a geometry-based verification.

For a map of 220k square meters, the method achieves
localisation in around 3s with a success rate of 97%, illustrating
the applicability of the method in real environments.

I. INTRODUCTION

Global localisation is an essential element for autonomous
robotic navigation. It is used in tasks like the “robot wake-
up” problem (lost robot problem) and loop closure in Si-
multaneous Localisation and Mapping (SLAM). The goal
is to compute the pose of the robot by estimating the
transformation of the local observations with respect to a
global map.

Although there are scenarios in which the issue can be
solved using external sensors (such as in GPS), there are sev-
eral areas where this infrastructure is not available. Cameras
have also been successfully applied for place recognition [1],
but they suffer from lower performance in unfavourable
lighting conditions. Addressing the shortcomings of other
sensors, in this paper we propose a novel approach for global
localisation using solely the information from 3D LiDAR
sensors. The main novelty of the proposed approach is the
fact that we exploit the intensity return (as opposed to only
range).

The global localisation problem consists of two main ele-
ments: i) recognition of the previously visited place, and ii)
pose estimation with respect to the existing map. In practice,
it means comparing a small point cloud obtained by scanning
a certain place in the environment (called in this paper a local
scan) with the previously obtained data (global map), and
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Fig. 1: A successful localisation based on our two-stage
place recognition approach with the DELIGHT descriptor.
The robot pose is shown as axes (red-green-blue), the point
cloud is coloured based on intensity, and the local scan is
depicted in bright colours.
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Fig. 2: Diagram illustrating the system structure, combining
the global localisation (grey shaded area) with the local
descriptors for the precise localisation (based on PCL). The
grey shaded area also indicates the key contributions of this
paper, based on DELIGHT.

finding the relative transformation. Although many works
focus only on the recognition part without pose estimation [2]
[3], the two elements are necessary for achieving full global
localisation. In our system we provide solutions to both
aspects of the problem.

Typical approaches for place recognition in 3D LiDAR
data are based on geometrical descriptors associated with cer-
tain features in the point clouds. Recognition comes down to
finding the most similar descriptors between different clouds.
Usually global and local descriptors are distinguished. The
former compute single statistics for the whole local scans
whereas, in case of the latter, multiple keypoints are selected
from the cloud and local descriptors (of a significantly
smaller radius than the point cloud) are calculated around



them. While global descriptors are very efficient for dimen-
sionality reduction and correspondence search, they, in gen-
eral, cannot provide the relative transformation. There exist
global descriptors that try to overcome this limitation [4],
but any additional information requires further computational
effort, e.g. calculating the viewpoint. Such additional steps
impair the efficiency of global descriptors. Transformation
can be also determined by using local descriptors but at the
expense of increased processing time since the complexity
of the problem grows significantly with the expansion of the
map [5].

To simultaneously keep the advantages of local descriptors
and to limit the processing time, the search space can be
severely restricted using the descriptor proposed in this paper.
Then, on this restricted area, local-descriptors-based recogni-
tion can provide the final precise position of the robot. These
two steps form the pipeline of the framework proposed.
There is additional information available in LiDAR data that
is not only associated with the target’s position in the space
(range information) but also with the characteristics of its
surface, namely the intensity (or reflectivity). This feature
has only been partially investigated in literature, and as we
show in this paper, it contains very meaningful information
for place recognition. Hence, we propose a novel approach
for place recognition based on DELIGHT: a DEscriptor of
LiDAR Intensities as a Group of HisTograms.

In the first step of our system is to limit the map to
the most likely area (prior) based on intensity similarity
using the DELIGHT descriptor. Secondly, a geometrical
recognition is performed between the local scan and the
prior. Figure 2 summarizes the pipeline, also highlighting
the specific contributions of this paper, represented by the
shaded area. A video summarising the system is available
online1. The reader is encouraged to view this video for an
animated description of our approach.

To the best of our knowledge, this is the first work that
proposes a sub-real-time solution to global localisation based
on global intensity descriptors. The main contributions of this
paper are:

• DELIGHT: a novel LiDAR intensity based global de-
scriptor.

• An approach for performing place recognition based on
the DELIGHT descriptor.

• A reliable and fast solution for global localisation using
only a 3D LiDAR sensor, by combining DELIGHT-
based recognition with keypoint-based geometry veri-
fication.

• A thorough validation of the proposed algorithm for a
wake-up problem in large real-world environment.

This paper is structured as follows. In Section II, existing
works leveraging LiDAR intensity and solutions for global
localisation are reviewed. In Section III the DELIGHT
descriptor is presented. In Section IV the whole pipeline
for global localisation is outlined. Section V contains the

1Video demonstration of the system: https://youtu.be/nK2ylxLi8uQ

evaluation of the system with experiments, followed by
relevant conclusions in Section VI.

II. RELATED WORK

Several methods for global localisation in 3D point clouds
have been proposed. Among techniques based on global
descriptors where each point cloud is encoded using a single
feature vector, Röhling et al. [2] proposed to describe places
by a histogram of points’ elevation. Another method is to
create the descriptor by dividing the point cloud a into a cubic
grid and calculating the density function which describes the
shapes that are later gathered into histograms [3]. One issue
with global descriptors is the fact that the map is interpreted
as a discrete set of places along the trajectory, and each
place has a defined origin forming a graph-like structure. In
this case the only possible robot locations are in the graph
vertices. When the robot is between the vertices or off the
original trajectory the exact location cannot be retrieved.

Local descriptors can also be used for place recognition.
Bosse and Zlot [6] used descriptors calculated around ran-
domly selected keypoints in the global map and the local
scan. Place recognition is based on the voting for the most
probable places. After geometric consistency validation, the
relative transformation is obtained using solution to the
Absolute Orientation Problem [7]. In a similar approach,
Tombari and Di Stefano [8] do not divide the global point
cloud into a set of places but look for all correspondences
instead. The correspondences are then grouped into actual
instances of the place using Hough voting. Dubé et al. [10]
recently proposed to recognize places on the basis of 3D seg-
ment extraction and matching, offering a trade-off between
local and global descriptors. The authors have demonstrated
that this strategy can be used in real-time multi-robot SLAM
applications [11]. However, in order to extract segments
which are robust to changes in point of view, this technique
assumes that the robot moves in its environment, which is
not always applicable or safe in the robot wake-up problem.

Closely related to the task of global localisation, the
SLAM problem was approached by several works proposing
to leverage the LiDAR intensity information. Khan et al. [12]
focused on calibrating the intensity to obtain the reflectivity
and applied the results to SLAM. A number of solutions
also combine intensity with information from other sensors.
Levinson et al. [13] [14] proposed a SLAM algorithm based
on road reflectivity maps. Pandey et al. [21] introduced an
interesting approach, which combines the information from
an omnidirectional camera and LiDAR. Barfoot et al. [15]
generate the intensity images from the LiDAR data, extract
SURF descriptors and perform feature-based localisation
similar to the visual SLAM. Their solution is an interesting
attempt to use intensity only for localisation, however it is
not always robust due to significant distortion arising from
the robot motion and it does not solve the global localisation
problem. Also, none of the above works propose to use the
LiDAR intensity information in a global place recognition
approach.



III. DELIGHT DESCRIPTOR

In this section we outline the details of the DELIGHT
descriptor, initially providing insights on the use of intensity,
followed by a presentation of the descriptor structure. The
use of the intensity information encoded into the DELIGHT
descriptor is the main novelty of the proposed system.

A. Concept of intensity

In addition to range information, a LiDAR can also
provide the intensity measure for each point, which is
the strength of return after reflection from a surface [12].
Depending on the field, intensity can be referred to as
remission, brightness or reflectivity (reflectance) [16] [17].
Additionally, reflectivity is a property of a surface obtained
from intensity by compensating for intrinsic parameters of
the sensor as well as extrinsic features such as distance to
the object, incidence angle, and air density [12]. Once a
sensor is calibrated, the data measured correspond to the
unique characteristics of the surface. A typical approach
for compensation (calibration) is to compare the intensity
of the target object with the reflection from the reference
surface [16].

B. Descriptor structure

The DELIGHT descriptor consists of m non-overlapping
bins which are obtained by the following division approach:
a spherical support structure centered around the sensor is
divided radially into two concentric spheres with a predefined
radius r1 for the outer sphere and r2 for the inner sphere.
Additionally, the spheres are divided horizontally into upper
and lower hemispheres. Finally, the azimuthal division is
applied for hemispheres, every ninety degrees, resulting in
m = 16, as illustrated in top picture of Figure 3. For each
descriptor bin, an histogram of intensity of the n points
falling into it is computed. This histogram is composed
of b adjacent bins of equal size and can be computed
in O(n logb). The proposed structure is embedded in the
descriptor name: DEscriptor of LiDAR Intensities as a Group
of HisTograms.

The descriptor can be computed around any arbitrarily
selected keypoint. In case of the global descriptor, this
keypoint is the origin of the LiDAR and the radius we define
by this sensor’s range R which means that R= r1. Example of
the division of a typical local scan is depicted in the bottom
picture of Figure 3, where R = 100 m, therefore the radius of
the outer sphere equals to r1 = R = 100 m. The inner sphere
in this example has a radius r2 = 15 m.

C. Descriptor alignment

Due to the specific form of division, a repeatable reference
frame must be established to determine in which bin the
points are located (i.e., it must be clear where is the “top”,
“bottom”, “left” and “right” of the cloud). To obtain the
reference frame, a Principal Components Analysis (PCA) of
all points located within the support is performed as proposed
by Tombari et al. [9]. The method is based on the eigenvalue
decomposition of the nearest neighbours covariance matrix

Fig. 3: The structure of the DELIGHT descriptor is shown in
the top picture. The red colour depicts the inner sphere while
the outer sphere is shown in green. Each sphere is divided
in 8 bins which results in a total of 16 bins. The example of
a point cloud division is shown in the bottom picture. In our
system, DELIGHT is a global descriptor and for each cloud
it contains an entire point cloud with the origin in the robot’s
position. The colours in the bottom picture correspond to the
bins of the descriptor.

and total least squares estimation. After obtaining the refer-
ence frame, bins boundaries are aligned with the axes and
each point is given an additional feature depicting the unique
bin identifier.

Next, for each bin of the descriptor, the histogram of
intensity of all points located in it is computed. It is important
to note that the intensity is the information directly obtained
from the sensor (during scanning). This implies that no
additional computation is necessary to create histograms
apart from counting the occurrence of points with specific
intensity, which results in O(b) complexity and ensures high
efficiency. Consequently the intensity descriptor consists of
a tuple of spatially distributed intensity histograms.

D. Matching

For the similarity assessment, the histogram of the i-th bin
of descriptor A is compared with histogram of the i-th bin



of the descriptor B using the chi-squared test Si
AB defined as

Si
AB =

b

∑
k=1

2 · (A(k)−B(k))2

A(k)+B(k)
(1)

where A(k) and B(k) refer to the k-th bins of the histograms
A and B, respectively, and b is the number of bins of each
histogram. Hence, Si

AB corresponds to a similarity value. The
similarity metric of the two descriptors SAB is obtained by
the average of results of chi-squared tests of all bins. It is
important to notice that other similarity tests, such as e.g.
Euclidean distance, can be also used.

An important step for correctly matching the descriptors is
the elimination of the ambiguity in axes directions obtained
from the PCA. According to our experiments the disambigua-
tion method proposed by Tombari et al. [9] is not reliable
for clouds that are symmetric or have varying density. The
approach proposed by Bosse and Zlot [6] requires an IMU
to determine the vertical direction, while we aim to use
exclusively the LiDAR data. For this reason we propose
an alternative approach. As long as the directions z and
x are defined, the direction of y can be determined by
the cross product of z and x unit vectors. Therefore, there
are four possible combinations of the reference frame (z
“up” or “down” and x “left” or “right”). We assume that
all combinations of bins are equally probable and compare
descriptor A with four different “versions” of descriptor B.
In this case, different versions mean different sequences of
bins which depend on the orientation of the reference frame.
The possible options are depicted in Figure 4, which shows
the orientation of the axes and the numbering of bins. It is
important to notice that it is only the unique identifier of the
bin that changes but not the contents of the bin. The output
of this comparison is a set of four similarity values. As a
comparison result we select the minimum value:

SAB = min{1SAB,
2 SAB,

3 SAB,
4 SAB}.

Due to the simplicity of the descriptor, the proposed approach
adds no significant increase to the complexity and processing
time, as illustrated in the experiments in Section V.

IV. GLOBAL LOCALISATION PIPELINE

In this section the full global localisation pipeline is
described. Since in our application the system is a module in
an autonomous vehicle, the description is focused on solving
the wake-up problem, although a similar approach can be
used for other global localisation tasks.

A. System overview

The main goal of the system is to provide full global
localisation (as defined in the introduction) at the start-up
of the operation (or in case the robot gets lost). Initially, the
robot is given the global map of the environment, which
was generated by this robot through SLAM [26], in the
form of LiDAR-obtained point cloud and the corresponding
trajectory. The procedure of map generation consists of
two steps. First the robot drives through the environment
and registers all data obtained by the LiDAR sensor. Next,
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Fig. 4: Combination of bins depending on the direction of
x and z. The point cloud is represented by a shaded area
within the descriptor. In all cases the position and orientation
of the point cloud remain unaltered but the directions of the
axes change. It is important to compare bins that contain
the same parts of the point cloud. Case 0 shows the original
reference frame, where the digits correspond to the unique
bin identifiers. Cases I., II. and III. show the reference frames
and bin sequences in case of different axes orientations.
Red numbers correspond to the unique identifiers of bins
in the bottom hemisphere and black in the upper. During the
similarity check the corresponding bins should be compared.
An example is shown using the blue arrows. Bin 0.6 should
be compared with 0.6, I.4, II.13 and III.15, while bin 0.14
with 0.14, I.12, II.5 and III.7.

the collected data is processed by the mentioned SLAM
algorithm which provides stitching of the consecutive scans
and computes global alignment of the generated point cloud
and the trajectory. The high-level scheme of the system is
shown in Figure 5, with details in the following sections.
The pipeline consists of two main stages: i) intensity-based
prior extraction and ii) geometry-based verification.

B. Preprocessing of the global map

The procedures described in this section only have to be
performed once on a newly generated map. Once on a global
map against which localisation is desired. This map can be
obtained by driving the robot through the environment and by
accumulating the LiDAR data. This data are fed to a SLAM
algorithm which estimates the robot trajectory by registering
successive scans. For the actual localisation pipeline, the
computed elements are loaded form memory.

The first and key part is the division of the map, which
is especially significant because each extracted place has to
correspond to the scan that can be obtained by the robot
being in that place and not moving. Extraction based on the
sensor range (i.e., the descriptor of all points lying within a
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Fig. 5: High-level scheme of the localisation pipeline.

sphere with radius equal to the sensor range) will not bring
correct results. This is because the areas which cannot be
seen by the robot, e.g. an object behind a wall, will fall into
the descriptor sphere and therefore influence the descriptor.

Instead, we extract places based on the mapping trajectory.
We first divide the trajectory into segments of length k
meters. For each segment we create a point cloud from all
the points that were visible when the robot drove through this
small part of the trajectory and assign the origin of the cloud
to the middle of the segment. By partitioning the trajectory
based on distances, the map is divided into places that are
very similar to the scans which are generated by static robots.
Therefore, it is important to keep the segments sufficiently
short. In other words, with this approach we approximate
that the map is divided into a set of static scans with origins
located on the trajectory, and that have a distance of k meters
to each other (in our experiments, k = 2 m).

After extracting the places the DELIGHT descriptor is
computed for each place, according to the description in
Section III-B. Correspondingly, the local, geometrical de-
scriptors are also calculated (for details see Section IV-E).

C. Generating local scans

In our platform scanning is realised using a 3D LiDAR
sensor Velodyne VLP-16. This sensor has only 16 rings
which results in a low resolution for objects located far from
the sensor. To increase robustness, the sensor is mechanically
rotated around the z-axis and tilted 45◦ from the vertical
position, as shown in Figure 7. The DELIGHT descriptor is
composed of histograms which are the metrics of quantity
and it is important to ensure that the distribution of points
in the cloud is as uniform as possible (in case some areas

(a) Image of the vehicle (around the centre of the image) in the test
environment.

(b) Corresponding intensity coloured point cloud as scanned from the
vehicle.

Fig. 6: Example of the test environment.

are swept more times than others). For this purpose, after
the scan is obtained, the points are downsampled with a high
resolution using uniform sampling. Additionally, the rotating
setup enables a direct control of the sweep and in our system
the wake-up scan is generated from points obtained from two
full rotations of the LiDAR. A typical local scan is depicted
in Figure 6b.

D. Intensity-based recognition

After computing the DELIGHT descriptor of the wake-
up scan, a simple linear correspondence search is performed
against all descriptors of the places extracted from the map
(see Figure 5). From the comparison results (as explained in
Section III-D) the most probable place is selected as the one
with the highest similarity (smallest SAB). For correctness
validation and full localisation, the geometry-based recogni-
tion is introduced to the process as a second stage.

E. Geometry-based verification

The transformation between two point clouds can be
acquired using the solution to the Absolute Orientation
Problem [7]. This algorithm however requires establishing
the corresponding points between the clouds.For this purpose
we perform recognition based on local descriptors. In our
approach we follow the pipeline proposed by Aldoma et al.
[19]. First keypoints are selected from the point clouds by
downsampling, then the SHOT descriptors [9] are computed



for all keypoints. Next, the correspondences are found be-
tween the clouds and they are subsequently filtered based on
the geometric consistency. For the correspondences found,
the Absolute Orientation algorithm is applied followed by
RANSAC [20] to eliminate inconsistent matches. Finally,
ICP is used to refine the transformation and align the wake-
up scan with the global map.

A secondary role of the geometrical stage is to verify
the quality of the intensity-based recognition. In case of
a significant change in the environment, close intensity
similarity of the places in the environment or the robot being
far off the trajectory, the initial intensity-based recognition,
using one candidate, may not find a correct place. To consider
this place a correct match two conditions must be fulfilled:
i) the number of correspondences between local descriptors
must be above a given threshold T1 and ii) if the fitness
score of the ICP must be below a second threshold T2. These
conditions provide the system with ability to discard false
matches. Threshold parameters depend on the resolution of
the point clouds and should be found experimentally. If the
above requirements are not fulfilled the number of places
candidates n is increased and the procedure is repeated. The
maximum value of n can also be limited. If the amount of
place candidates reaches the maximum and the conditions are
not fulfilled, the place is considered to be located outside of
the map.

V. EXPERIMENTS

In this section we describe our experimental platform and
the method adopted for generating local scans, followed by
a discussion of the numerical results.

The proposed system was evaluated in a large CSIRO
site in Brisbane. The area in which the experiments took
place is a industrial park with different characteristics - from
structured buildings to unstructured bushland, as illustrated in
Figure 8. This diversity enabled us to evaluate our algorithm
in various conditions and with multiple surface materials.
The environment was first mapped by driving the robot and
places were extracted from the point cloud generated by
the SLAM system, which is based on the continuous-time
SLAM implementation of Bosse and Zlot [25][26]. The robot
travelled approximately 4 km within the map, resulted in
2055 extracted places. The covered area has roughly 220,000
square meters (Figure 8). Test wake-up scans were generated
in 101 locations by driving the robot to these locations and
keeping it stationary during the scan acquisition.

A. Platform overview

The considered platform is based on a commercially-
available TE John Deere Gator, an utility vehicle that was
transformed into an autonomous platform by the CSIRO
team [23][24] (Figure 7). This robot is able to drive au-
tonomously over all areas of the site, and has covered more
than 200 km under unmanned operations [22]. The system
proposed in this paper found direct and successful applica-
bility to this platform, with efficient wake-up localisation.

Fig. 7: The John Deere Gator platform automated by the
CSIRO. The LiDAR Velodyne sensor is mounted above the
vehicle and is rotated by a motor at a 45◦ angle.

B. Sensor calibration

As mentioned in Section III-A the sensor requires cal-
ibration for correct estimation of the intensity. The VLP-
16 that we used for the experiments was calibrated by the
producer so we assumed intrinsic and extrinsic factors to be
compensated (e.g., laser power or distance to the object)[18]
and we directly used the intensity that is output by the sensor.
In this case, intensities are encoded in 8-bit values and we
therefore set b= 256 (the number of bins per histogram). It is
important to notice that in the case of the incidence angle, the
surface reflection model is required for correct compensation.
A universal model for various surfaces does not exist and it
should be estimated for each surface type separately. To make
the system more generic, we do not estimate the reflection
model for each object due to the large variety of surfaces that
exist in most environments. We also do not compensate for
the incidence angle, although this could potentially be im-
plemented. However, as the experiments illustrate (see next
section), very good localisation performance was achieved
without this compensation.

C. Results and Discussion

There were 101 wake-up locations tested around the entire
area. They are depicted by the red dots in the top image of
Figure 8. In order to validate the robustness of the pipeline,
these wake-up locations are located in both visually similar
and dissimilar areas. The locations in the midst of the
buildings (central part of the top picture of Figure 8) and in
the semi-forested areas (bottom right quarter) are particularly
similar in terms of materials and structures present. In
addition, some of the locations were used several times
in different lighting conditions to investigate the influence
of sunlight. The experiments show that the performance
is independent of the illumination. The results are shown
in Figure 9a. The proposed localisation approach achieved
an overall success rate of 97%, with wake-up scans that
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Fig. 8: Overview of the test environment. The top image
shows the satellite picture with red dots indicating the
wake-up locations in the tests. The bottom picture shows
the corresponding point cloud with the mapping trajectory
depicted in white.

were generated at various distances from the trajectory and
different times of the day. Clearly, despite the fact that the
places extracted from the map are located solely along the
trajectory, the algorithm can perform successful localisation
even for wake-up scans that lie far away from it.

The effect of noise and uncertainties can be reduced by
increasing the amount of place candidates. Figure 9b shows
that the further the robot is from the original trajectory, the
less certain it is about its position. In that case it may happen
that the geometrical validation fails because of an excessive
difference between the section of the map’s point cloud and
the local scan. In this case, the number of candidates is
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Fig. 9: Success rate, statistics and computational timings
resulting from 101 localisation attempts in a 220k square
meters multi-characteristics environment.

increased. Nevertheless, in the majority of cases (82%) using
a single place candidate was enough to successfully localise.
In our experiments the furthest point from the mapping
trajectory for which our system successfully managed to
localize was located at a distance of 15 meters. The three
failures (out of 101 tests) that occurred were noticed for
places that lie closer to the trajectory, and these took place



in a mostly featureless environment (no characteristic objects
around like trees or bushes).

In Figure 9c, the plot shows the processing times for
two different approaches: i) classical geometry-based only
approach (i.e., using the second step of the pipeline only,
without the intensity-based candidates selection) where the
search for the correspondences is performed between the
wake-up scan and the whole, unlimited map, and ii) our
approach, i.e., geometry-based recognition performed only
on the places candidates selected based on intensity. Ad-
ditionally, Figure 9c contains the information about the re-
quired amount of place candidates necessary for a successful
localisation. This is shown by different background colours
corresponding to the increased number of candidates. It is
also illustrated that the number of candidate places directly
correlates with the processing time of the algorithm. As it
can be seen, for a single place candidate the average required
processing time drops from approximately 1000 seconds to
3 seconds. Increasing the amount of candidates results in
longer processing times which are still much shorter than in
the traditional approach.

VI. CONCLUSIONS

This paper presented a novel approach for global lo-
calisation based on the intensity information provided by
LiDAR sensors, introducing the novel DELIGHT descriptor.
Our experiments clearly show that the intensity contains
valuable information that can be leveraged to achieve ef-
ficient place recognition. Additionally, when properly en-
hanced with geometrical information, it can provide a full
and robust localisation algorithm. We showed that with our
system we can achieve very fast localisation outperforming
(in terms of processing time) our baseline approach using
local descriptors. The algorithms have been implemented and
tested in a robotic vehicle to assist in the wake-up problem
and are now used in all operations of the robot.
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[2] T. Röhling, J. Mack, and D. Schulz, “A fast histogram-based similarity
measure for detecting loop closures in 3-d lidar data,” in Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ International Conference
on. IEEE, 2015, pp. 736–741.

[3] M. Magnusson, H. Andreasson, A. Nuchter, and A. J. Lilienthal,
“Appearance-based loop detection from 3d laser data using the normal
distributions transform,” in Robotics and Automation, 2009. ICRA’09.
IEEE International Conference on. IEEE, 2009, pp. 23–28.

[4] A. Aldoma et al. , “OUR-CVFH–oriented, unique and repeatable
clustered viewpoint feature histogram for object recognition and 6DOF
pose estimation,”, Joint DAGM (German Association for Pattern
Recognition) and OAGM Symposium. Springer, 2012, pp. 113–
122.

[5] A. Luis, “3d descriptors for object and category recognition: a compar-
ative evaluation,” in International Conf. on Intelligent Robotic Systems
- IROS, 2012.

[6] M. Bosse and R. Zlot, “Place recognition using keypoint voting in
large 3d lidar datasets,” in Robotics and Automation (ICRA), 2013
IEEE International Conference on. IEEE, 2013, pp. 2677–2684.

[7] B. K. Horn, “Closed-form solution of absolute orientation using unit
quaternions,” JOSA A, vol. 4, no. 4, pp. 629–642, 1987.

[8] F. Tombari and L. Di Stefano, “Object recognition in 3d scenes
with occlusions and clutter by hough voting,” in Image and Video
Technology (PSIVT), 2010 Fourth Pacific-Rim Symposium on. IEEE,
2010, pp. 349–355.

[9] F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of
histograms for local surface description,” Computer Vision and Image
Understanding, vol. 125, p. 251264, 2014.
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[17] B. Steder, M. Ruhnke, R. Kümmerle, and W. Burgard, “Maximum
likelihood remission calibration for groups of heterogeneous laser
scanners,” in Robotics and Automation (ICRA), 2015 IEEE Interna-
tional Conference on. IEEE, 2015, pp. 2078–2083.

[18] VLP-16 Velodyne LiDAR Puck. User’s manual and programming
guide., Velodyne, 3 2016, rev. B.

[19] A. Aldoma, M. Zoltan-Csaba, F. Tombari, W. Wohlkinger, C. Potthast,
B. Zeisl, R. B. Rusu, S. Gedikli, and M. Vincze, “Tutorial: Point
cloud library: Three-dimensional object recognition and 6 dof pose
estimation,” IEEE Robotics & Automation Magazine, vol. 19, pp. 80
– 91, 9 2012.

[20] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[21] G. Pandey, J. R. McBride, S. Savarese, and R. M. Eustice, “Toward
mutual information based place recognition,” in Robotics and Automa-
tion (ICRA), 2014 IEEE International Conference on. IEEE, 2014,
pp. 3185–3192.

[22] A. Pfrunder et al,“Real-Time Autonomous Ground Vehicle Navigation
in Heterogeneous Environments Using a 3D LiDAR” to appear in
IEEE International Conference on Intelligent Robots and System
(IROS), 2017.

[23] Romero, A.R., Borges, P.V.K., Elfes, A. and Pfrunder, A., 2016,
September. “Environment-aware sensor fusion for obstacle detection”,
in IEEE International Conference on Multisensor Fusion and Integra-
tion for Intelligent Systems (MFI), 2016 (pp. 114-121).

[24] R. Aeschimann and P. V. K. Borges, “Ground or obstacles? Detecting
clear paths in vehicle navigation,” in IEEE International Conference
on Robotics and Automation (ICRA), Seattle, WA, 2015, pp. 3927-
3934.

[25] M. Bosse and R. Zlot, “Continuous 3D scan-matching with a spin-
ning2D laser,”in IEEE International Conference on Robotics and
Automation (ICRA), Kobe, 2009, pp. 4312-4319.

[26] R. Zlot and M. Bosse, “Efficient large-scale three-dimensional mobile
mapping for underground mines,” in Journal of Field Robotics, vol.
31,no. 5, pp. 758779, 2014.


