

Experimental Focal Plane Array Beamforming for the Expanded GMRT

Kaushal D. Buch, Bela S. Dixit, Rahul B. Aragade, Sreekar Sai Ranganathan, Ajithkumar B., Jayaram N. Chengalur Giant Metrewave Radio Telescope (GMRT), NCRA-TIFR, Pune, India kdbuch@gmrt.ncra.tifr.res.in

Phased Array Feed and Advanced Receiver (PAFAR) 2022 Workshop CSIRO, Sydney 15th November 2022

Giant Metrewave Radio Telescope (GMRT)

- One of the most sensitive telescopes for studying astrophysical phenomena at low radio frequencies (50 -1450 MHz)
- Located in India: 80 km north of Pune, 160 km east of Mumbai
- Array telescope with 30 antennas of 45 m diameter
- 14 antennas in 1 sq. km. region, others spread in a Y-shaped array
- Upgraded GMRT (uGMRT) near seamless observing from 120 to 1450 MHz, 400 MHz BW (max.)

Image Courtesy: N. Patra

Features of the Expanded GMRT(eGMRT)

Reference: Patra et al., "The Expanded GMRT", MNRAS, 483, 2019

Options being explored for eGMRT Beamformer

Prototype beamformer: L-band, 32-element, 32 MHz bandwidth, 1024 spectral channels, 5 independent beams, maxSNR beamforming

Signal Flow for the Prototype eGMRT beamformer

Narrowband FPA Beamformer

(beamformer design)

CASPER: https://casper.berkeley.edu/

beam design

ROACH-1 board: https://casper.astro.berkeley.edu/wiki/ROACH

Testing FPA in Aperture Array Mode

Test Range Configuration

- 3m reflector test antenna, 67 m away from FPA
- L-band cross dipole feed at prime focus
- ~15 degrees beamwidth at 1.3 GHz

ASTRON L-band FPA used for prototyping beamformer at GMRT

Array Configuration GS HS DS C7 D7 F7 67 H7 A7 **B7** E7 **B6** CG DG EG FG GG H6 A6 BS CS DS ES FS GS HS AS C4 D4 F4 **G4** 114 A4 **B4** E4 H3 A3 **B**3 C3 D3 E3 F3 G3 AZ **B2** C2 D2 E2 F2 G2 H2 A1 в1 CI DI E1 F1 G1 HI

Testing beamforming in free-space test range (Aperture Array Mode)

Beam Steering

Beamformer Testing in Free Test Range

- 8-element array config. Tested (length ~ 1m)
- Theoretical BW: 15° Measured BW: 17°

Null Steering & Multi-beamforming

Beam-1: phased array beam at boresight, Beam-2: nulling beamformer at boresight
Test using tone radiation at 1300 MHz, ~18 dB null depth

Test carried out in free-space test range

Optimal Beamforming

Ivashina et al., "An Optimal Beamforming Strategy for Wide-Field Surveys With Phased Array-Fed Reflector Antennas", IEEE Transaction on Antennas and Propagation, 2011

SNR Performance: Low Mutual Coupling

Cross-correlation Magnitude Matrix

SNR performance of phased array and optimal beam are very close

SNR Performance: High Mutual Coupling

Cross-correlation Magnitude Matrix

Beamformer SNR Comparison

SNR performance of optimal beam is better than phased array beam

Simulation Model

Buch and Ranganathan, System-level Simulation for an Aperture Array Beamformer, MATLAB EXPO 2022

Beam-steering Comparison with Experimental Test

RFSoC for Wideband Beamformer Development

RFSoC Toolflow Development and Testing

Simulink-System Generator Design using CASPER Toolflow

Summary

Prototype FPA beamformer (32 input, 5-beam, 32 MHz bandwidth) implemented on FPGA ; tested in free-space test range

□ maxSNR beamforming process and testing for FPA in aperture array mode (L-band)

Exploring various optimal beamforming and spatial RFI mitigation techniques

□ FPA beamformer to be installed and tested a dish

□ Wideband beamforming to be developed using RFSoC platform

□ FPA beamforming through system-level simulation

Future Plans

- Testing FPA beamforming using GMRT dish
- Costing and building a dish
- Developing a wideband single pixel feed
- Designing FPA for 550-900 MHz range

GMRT dish (D=45m, f/D=0.412)

Acknowledgements

eGMRT project members/students

Sudhir Phakatkar Atul Ghalame Narendranath Patra Jayanta Roy Nissim Kanekar Yashwant Gupta

GMRT groups

Backend group Computer group Frontend & OFC group Operations group Mechanical, Electrical & Civil groups

Collaboration for Astronomy Signal Processing and Electronics Research (CASPER)

NIUS program of HBCSE-TIFR funded by DAE, Govt. Of India Grant No. RTI4001

Mitch Burnett, Brigham Young University, USA

Netherlands Institute for Radio Astronomy (ASTRON)