

The University of Manchester

pHEMT Characterisation and SSEC Extraction from 4 K to 290 K

Long Jiang, William Mcgenn, Mark McCulloch, Elle Franks, Amy Suddards, Danielle George and Gary A. Fuller

Advanced Radio Instrumentation Group

University of Manchester

FACILITIES AND CAPABILITIES

Development of Microwave Components

Design of millimetre and sub-millimetre wavelength devices using MMIC technology. S-parameters and Noise Measurements

Capability to measure S-parameters up to 330GHz and noise up to 110GHz

Integrated circuits

and packaged

devices

Measurements of

MMICs and transistors

to improve models and

design

Cryogenic facilities

On-waffer cryogenic measurements at 4K and RF cryostat to meassure down to 300mK

Focus on design and development of LNAs and front-end receiver instrumentation up to 400 GHz

MMIC LNAs Design in ARIG

- 13.6 to 24 GHz LNA designed by Daniel White, William Mcgenn et. al
- WIN PP10-10 pHEMT technology
- Published in: <u>2019 IEEE Asia-Pacific Microwave</u> <u>Conference (APMC)</u>

- 75-110 GHz (ALMA Band 2 + 3) MMIC LNAs published by David Cuadrado-Calle, et. Al, 2017
- Three-stage MMICs using 35nm InP process at Northrop Grumman Corporation (NGC)

1. Challenges of MMIC LNA Design for PAF

ALMA

ASKAP

- A massive number of LNAs are required for Radio Telescope Arrays and Phase Array Feeds. These LNAs should have good consistent performance when there are used in a PAF.
- An accurate cryogenic model of transistors is needed for MMIC LNA design.
- Shortening the development cycle and reducing the price are also important considerations.

2. WIN and Diramics Commercial pHEMT Technology

- 1. WIN 0.1 um GaAs pHEMT technology
 - 100 nm gate length
 - F_t greater than 135 GHz and F_{max} over 185 GHz
 - The high degree of process maturity and commercially available technology
 - Two 150mm GaAs fabs with monthly capacity of 24,000 wafers (2016)

www.microwavejournal.com

PP10-10 0.10um pHEMT Model Handbook_Ver1.3.3

2. Diramics PH-100 InP Technology

Available Dimensions for the pH-100 Technology		
Gate Length:	100 nm	
Finger Width:	10 μm – 150 μm	
Number of Fingers:	2/4/6	
Basic Characteristics of a 4 x 20 µm Device (incl. bond-/probe- pads)		
, F,		

	300 K	15 K
f _T :	220 GHz	235 GHz
f _{MAX} :	550 GHz	800 GHz
gm:	1250 mS/mm	1500 mS/mm
NFmin (@30GHz)	0.6 dB	0.08 dB
Tmin (@30GHz)	43 K	5 K

www.diramics.com

MANCHESTER

The University of Manchester

- 100 nm gate length InP-based pHEMT
- LNAs based on this technology are used in Yebes Astronomical Observatory and ESA ESTRACK
- MMIC process is possible

Low Noise Amplifier With 7-K Noise at 1.4 GHz and 25 °C. Sander Weinreb et. al 2021.

3. Transistors Characterizing and Modelling in ARIG

1. Probe Station Measurement System

Lakeshore 4 K cryogenic probe station

Signatone room temperature probe station

2. DC Measurement at 290K, 15K and 4K environment temperature

2F50um

4F25um

2F50um

4F25um

2F50um

4F25um

3. DC Measurement at 290 K and SSEC model extraction

> W4F50 um transistor

> D4F50 um transistor

> Small Signal Equivalent Circuit

Small signal equivalent circuit of a field effect transistor. Gilles Dambrine, 1998

- Ld, Ls and L: three-terminal pad inductance
- Cpg and Cpd: gate and drain pad capacitance

Extrinsic elements

Small-signal equivalent circuit of a MESFET and the physical origin of the circuit element. Inder J.Bahl, 2009

- Cgs: gate to source capacitance
- Cgd: feedback capacitance
- Ri: gate to source resistance
- Rds: drain to source resistance
- Tau: delay time Intrinsic

Intrinsic elements

4. A 4 - 14 GHz MMIC LNA Design

- WIN PP10-10 Technology
- Three stages MMIC LNA with Two 8 x100 um and one 4x100 um transistors
- Size: 2.01mm * 1.80mm

- Gain: > 35 dB
- Noise temperature: 36 K (20 % bandwidth) and under 40 K (50 % bandwidth)

1824

- Characterisation WIN and Diramics transistors while a gradient temperature changes from 4 K to 290 K. WIN's transistors include PP10-10 and PP10-20 technology.
- 2. Developing noise measurement system and extraction transistors' noise model from 4 K to 290 K environment.
- 3. WIN PP10-20 pHEMT transistors characterisation and modelling
- 4. LNAs design for radio telescope: MMIC LNAs designed using WIN technology and discrete LNAs designed using Diramics transistors.

The University of Manchester

Thank you! Any questions?

University of Manchester

16/11/2022

The University of Manchester

APPENDIX

University of Manchester

16/11/2022

> S parameters measurement result

Unbiased condition: Vds = Vgs = 0 V

Frequency range: 0.1 ~ 20 GHz

- Pinched condition: Vgs = -1.0 V, Vds = 0 V
- Biased condition: Vgs = -0.5 V Vds = 1.5 V and 2.0 V

The University of Manchester

> S parameters measurement result

- Unbiased condition: Vds = Vgs = 0 V
- Pinched condition: Vgs = -0.4 V, Vds = 0 V
- Biased condition: Vds = 0.6 V, Vgs = 0, 0.05, 0.1, 0.15 and 0.20 V
- Frequency range: 0.1 ~ 20 GHz

