OVERVIEW AND OUTLOOK OF SPACE SURVEILLANCE SYSTEMS AT FRAUNHOFER FHR

PAF WORKSHOP NOV. 2022

© Fraunhofer FHR

Andreas Froehlich et. al

Tasks of Space Missions

SPACE DEBRIS – a growing problem

- 29.000 Objects > 10 cm, of which ~1.400 are active satellites
- \sim 75% of these objects are in LEO
(Height: 200 2.000 km) **E DEBRIS – a growing problem**
 Cesa

0 Objects > 10 cm,

ich ~1.400 are active satellites

~ 75% of these objects are in LEO

(Height: 200 – 2.000 km)
~ 9% of these objects are in GEO

(Height 36.000 km)

~ 00 Objects
	- \blacksquare ~ 9% of these objects are in GEO (Height 36.000 km)
- \blacksquare 750.000 Objects > 1 cm only visible with high performance radar systems such as TIRA
- The number of space debris objects is increasing

 \sim 9% of these objects are in GEO

(Height 36.000 km)
 \sim 750.000 Objects > 1 cm

only visible with high performance radar systems

such as TIRA

The number of space debris objects is increasing

steadily 1 lan 1980 1 lan 2000 1 Jan 2010 1 lan 1990 Reference Epoch

Current space debris population

- All debris are human-made
- Incidents with numerous new debris particles:
	- 2007: A Chinese rocket intentionally destroyed a Chinese weather satellite
	- 2008: A US reconnaissance satellite was destroyed with an American rocket
	- 2009: Collision between a US communications satellite and a Russian satellite
- Horror scenario: Chain reaction ("Kessler Syndrome") 7.5 cm (Fraunhofer EMI)

Effect of impact of a 1-centimeter aluminum ball traveling at 6,500 m/s on a solid aluminum plate with a thickness of

The space observation radar TIRA

TIRA supports all phases of space missions

- **Starts and first operation phase (LEOP)**
- Highly precise trajectory determination
- **Failure analysis**
- **Analysis of collision risks**
- **Monitoring of operations with robots**
- **Intrinsic rotation analysis**
- Supporting "Re-entry" and "De-orbiting" Manoeuvres

The space observation radar TIRA

Technical data

- Target tracking and imaging radar
- Most powerful system in Europe
	-
	-
	-
- **The space observation radar TIRA**
 Example 18 manufold act
 Example 18 manufold ma power), sensitivity: Detection of objects > 2 cm in 1000 km (with Effelsberg: < 1 cm)
- Target imaging radar: Ku-band (16.7 GHz, resolution better than 20

Analysis of damage and proper motion: ADEOS I

- **Total failure of power supply through** demolition of solar panel (24m x 3m x 0.5mm)
- Radar imaging is the only feasible damage assessment possibility!

Detection and Cataloguing of Space Debris **Detection and Cataloguing of Space Debris**
GESTRA – German Space Surveillance Radar
■ Federal government outlines necessity of establishing a national

- competence center for documentation and evaluation of the current situation in space
- Quasi-monostatic pulsed phased array radar in L-band $(^{\sim} 1.3$ GHz)
- Surveillance in orbital heights of 300-3000 km
- Electronic swiveling through HF-based modification of the wave front during transmission or digital beam forming during reception
- Numerous operating modes (surveillance volumes vs. detection

Detection and Cataloguing of Space Debris **Detection and Cataloguing of Space Debris
GESTRA – German Space Surveillance Radar
■ GESTRA consists of:**
■ 2 containary and receiving (BY) and and **Exection and Cataloguing of Space Debris**
 EXPRA – German Space Surveillance Radar
 EXPRA consists of:

■ 2 containers - one receiving (RX) and one

transmitting (TX) unit

■ both subsystems have independent infrastr

GESTRA consists of:

- transmitting (TX) unit
- \blacksquare both subsystems have independent infrastructure (energy, cooling, climate control, etc.)
- size each: 18 m x 4 m x 4 m; weight about 90 t
- each unit (RX&TX) contains:
	- a phased array antenna with 256 individual elements
	- mounted on top of a 3-D positioner

Further detection concepts and projects GESTRA EU-SST & GESTRA networks

- the energy reflected away can be collected by a bi-static sensor configuration as implemented by EUSST (lower graph)
- alternatively, larger search volumes can be "scanned" simultaneously
- more accurate tracks can be calculated by combining multiple sensor contributions **STRA EU-SST & GESTRA networks**
the energy reflected away can be collected by a bi-static sensor
configuration as implemented by EUSST (lower graph)
alternatively, larger search volumes can be "scanned"
simultaneously
more
- the sensitivity of the overall system is significantly increased by
bi- or even multi-static arrangement of the sensors
- high-precision synchronization and appropriate signal processing are required for implementation

Further detection concepts and projects GESTRA TX2

Further detection concepts and projects GESTRA network configurations

Improvement of the minimum detectable RCS in dB at 1,000 km altitude for different GESTRA network configurations.

- C1: GESTRA
- **C2: GESTRA + GESTRA EUSST**
- C3: GESTRA + GESTRA EUSST / GESTRA TX2
- C4: GESTRA + GESTRA EUSST + GESTRA TX2
- Attention: RCS values are normalized to the minimum detectable RCS of GESTRA (0 dB)
- **Results:**
	- C2: Detection power increases by up to 2.3 dB
	- C3/C4: Detection power increases by up to 6,3 dB
(c) Configuration C3
- Detection of targets that are up to four times smaller

Cryo-Cooled 37-Element Phased Array Radar Receiver

Components:

-
- **Receiver**

Components:

1 RF-Unit-Cell

2 2-Stage Cryocooler

3 Vacuum Vessel **Receiver**
2 2-Stage Cryocooler
2 2-Stage Cryocooler
2 Vacuum Vessel **Receiver**

Components:

1 RF-Unit-Cell

2 2-Stage Cryocooler

3 Vacuum Vessel

Diameter 1.5 m
-

Diameter 1.5 m

Cryo-Cooled 37-Element Phased Array Radar Receiver **dar Receiver**
Vaccum Vessel with Cryocooler
1 Sumitomo Cryocooler
2 Vacuum Vessel **dar Receiver**
Vaccum Vessel with Cryocooler
1 Sumitomo Cryocooler
2 Vacuum Vessel
3 50K-Stage **dar Receiver**
Vaccum Vessel with Cryocooler
1 Sumitomo Cryocooler
2 Vacuum Vessel
3 SOK-Stage
4 4K-Stage **dar Receiver**

Vaccum Vessel with Cryocooler

1 Sumitomo Cryocooler

2 Vacuum Vessel

3 50K-Stage

4 4K-Stage

5 Copper-Shield **dar Receiver**
Vaccum Vessel with Cryocooler
1 Sumitomo Cryocooler
2 Vacuum Vessel
3 SOK-Stage
4 4K-Stage
5 Copper-Shield
6 Vacuum Barrier **dar Receiver**
Vaccum Vessel with Cryocooler
1 Sumitomo Cryocooler
2 Vacuum Vessel
3 50K-Stage
4 4K-Stage
5 Copper-Shield
6 Vacuum Barrier
7 Copper Rod **Samillar Receiver**

Vaccum Vessel with Cryocooler

1 Sumitomo Cryocooler

2 Vacuum Vessel

3 SOK-Stage

4 4K-Stage

5 Copper-Shield

6 Vacuum Barrier

7 Copper Rod

8 Radom

Vaccum Vessel with Cryocooler
1 Sumitomo Cryocooler
2 Vacuum Vessel
3 SOK-Stage
4 4K-Stage
5 Copper-Shield
6 Vacuum Barrier
7 Copper Rod
8 Radom
9 Vacuum Pump Interface Vaccum Vessel with Cryocooler
1 Sumitomo Cryocooler
2 Vacuum Vessel
3 SOK-Stage
4 4K-Stage
5 Copper-Shield
6 Vacuum Barrier
7 Copper Rod
8 Radom
9 Vacuum Pump Interface
10 Lower Flange

-
-
-
-
- 5 Copper-Shield
-
-
-
- Vacuum Vesser Minter, yeelooner

1 Sumitomo Cryocooler

2 Vacuum Vessel

3 50K-Stage

4 4K-Stage

5 Copper-Shield

6 Vacuum Barrier

7 Copper Rod

8 Radom

9 Vacuum Pump Interface

10 Lower Flange 1 Sumitomo Cryocooler

2 Vacuum Vessel

3 50K-Stage

4 4K-Stage

5 Copper-Shield

6 Vacuum Barrier

7 Copper Rod

8 Radom

9 Vacuum Pump Interface

10 Lower Flange
-

Some simulation results

Maximum deformation along the Z axis was 10.45 mm

-> To reduce this value, either the thickness of the vacuum vessel can be increased or the 4 stand feet can be scaled higher

Temperature distribution in the LNA area was between 23.5 and 29.7 K and in the antenna area between 108.4 and 134.2 K -> Temperature differences can be reduced by increasing the cross-sectional area

 \triangleright Based on the simulation results, optimizations can be made and incorporated into the hardware structure

A. Froehlich et al 2022 IOP Conf. Ser.: Mater. Sci. Eng. 1240 012102

Conclusion

- Showed Space Debris is a rising problem for our infrastructures and services
- TIRA allows to support all stages of space missions
- GESTRA family a novel phased array systems for detection and catalogue space debris
- New concepts of GESTRA systems such as GESTRA Networks or cryocooled receivers improve the performance further

Thank you for your attention

Thanks to all colleagues from Fraunofer

Contact:

Andreas Froehlich

andreas.froehlich@fhr.Fraunhofer.de

Cryo-Cooled 37-Element Phased Array Radar Receiver **Radar Receiver

RF unit cell:

1 50K-Plate

2 4K-Plate Radar Receiver

RF unit cell:

1 50K-Plate

2 4K-Plate

3 Cooper Rod for RF-Cables Radar Receiver

RF unit cell:**

1 50K-Plate

2 4K-Plate

3 Cooper Rod for RF-Cables

4 Copper Spacer **READ FRECEIVER

2 AK-Plate

2 AK-Plate

2 AK-Plate

3 Cooper Rod for RF-Cables

4 Copper Spacer

5 LNA (Low noise amplifier) 7 Radar Receiver**
 RF unit cell:

1 50K-Plate

2 4K-Plate

3 Cooper Rod for RF-Cables

4 Copper Spacer

5 LNA (Low noise amplifier)

6 LNA Fixing Plate (Copper) **READ TRECEIVET

READ FORMALE:**

1 SOK-Plate

2 4K-Plate

3 Cooper Rod for RF-Cables

4 Copper Spacer

5 LNA (Low noise amplifier)

6 LNA Fixing Plate (Copper)

7 Copper Stands **7 Radar Receiver**
 RF unit cell:

1 50K-Plate

2 4K-Plate

3 Cooper Rod for RF-Cables

4 Copper Spacer

5 LNA (Low noise amplifier)

6 LNA Fixing Plate (Copper)

7 Copper Stands

8 Patch-Antenna

-
-
-
-
- RF unit cell:

1 SOK-Plate

2 4K-Plate

3 Cooper Rod for RF-Cables

4 Copper Spacer

5 LNA (Low noise amplifier)

6 LNA Fixing Plate (Copper)

7 Copper Stands

8 Patch-Antenna

9 Cavity RF unit cell:
1 50K-Plate
2 4K-Plate
3 Cooper Rod for RF-Cables
4 Copper Spacer
5 LNA (Low noise amplifier)
6 LNA Fixing Plate (Copper)
7 Copper Stands
8 Patch-Antenna
9 Cavity
10 GFK-Spacer RF unit cell:

1 50K-Plate

2 4K-Plate

3 Cooper Rod for RF-Cables

4 Copper Spacer

5 LNA (Low noise amplifier)

6 LNA Fixing Plate (Copper)

7 Copper Stands

8 Patch-Antenna

9 Cavity

10 GFK-Spacer 1 50K-Plate

2 4K-Plate

3 Cooper Rod for RF-Cables

4 Copper Spacer

5 LNA (Low noise amplifier)

6 LNA Fixing Plate (Copper)

7 Copper Stands

8 Patch-Antenna

9 Cavity

10 GFK-Spacer
-
-
-
-
-

Preparing and Optimizing of 3D-Simulation Model

Simulation Model and Project Scheme

Intermal Model

Streat flow of the cables

■ Thermal Model

• Heat flow of the cables

• Heat transfer through thermal radiation and the state of the structure that the structure fact to the structure structur

Simulation Model and Project Scheme

I Mechanical Model

Mechanical Model

- Fixed storage on the 4 feet of the vacuum vessel
- Atmospheric pressure in external surfaces

Simulation Model and Project Scheme

Modal Analysis
 Determination of the eigenfrequencies by the eigenvalue equation

Harmonic Analysis
 Response of the system at the determined natural frequencies
 Response of th Simulation Model and Project Scheme

Modal Analysis
 In Determination of the eigenfrequencies by the eigenvalue equation

Harmonic Analysis
 Exponse of the system at the determined natural frequencies
 Exponse Spec Simulation Model and Project Scheme

Modal Analysis
 A Determination of the eigenfrequencies by the eigenvalue equation
 $(-\omega_1^2 \{M\} + [K])$

Harmonic Analysis
 A Response of the system at the determined natural freq Simulation Model and Project Scheme

_{odal Analysis}

Determination of the eigenfrequencies by the eigenvalue equation

Modal Analysis

Harmonic Analysis

- \blacksquare Response of the system at the determined natural frequencies
-

Response Spectrum

- Determination of the deformation for a given response spectrum
- At a maximum angular velocity of $5 \degree$ /s
- Determination of the eigenfrequencies by the eigenvalue equation

(-ω

Harmonic Analysis

 Response of the system at the determined natural frequencies

 Newton stimulating force

Response Spectrum

→ Determination o e system at the determined natural frequencies

ulating force

of the deformation for a given response spectrum

angular velocity of 5 °/s

ngular acceleration of 5 °/s2 results in a total acceleration of
 $a_{ges} = \sqrt{a_r^2 + a$

$$
a_{ges} = \sqrt{a_r^2 + a^2_t} = 61.31 \frac{mm}{s^2} \qquad .
$$

 $(-\omega_i^2 \quad [M] + [K]$

- -

$$
PSD = \frac{a^2_{\text{ges}}}{\Delta f} = 21.57 \text{ mm}^2 \text{s}^{-4} / Hz
$$

Mechanics Model

Mechanical Model

Deformation

Deviation due to feet fixation on the vacuum vessel

**Result and Evaluation
hermal Simulation
hermal Simulation**

Thermal Simulation

Thermal Simulation

Grafische Elemente

Kästen, Dfeile, Verbindungen und Linien (Auswahl) ! DIESE FOLIE AUS FINALER PRÄSENTATION LÖSCHEN !

 folgende Elemente können hier per Rechtsklick kopiert und an gewünschter Stelle in der neuen Präsentation per Rechtsklick wieder eingesetzt werden:

Farben

! DIESE FOLIE AUS FINALER PRÄSENTATION LÖSCHEN !

- folgende Farben können über die Powerpoint-Farbauswahl hier aufgenommen und damit in der neuen Präsentation angewendet werden:
- Überschriften / Fließtext / Quellenangaben / Bildunterschriften / Grafikauszeichnungen
- Grafikauszeichnungen
- Aufzählungen / Nummerierungen erster Ebene / grafische Elemente
- Grafiken

Fonds hinter Grafiken

