System Design for the Effelsberg CryoPAF Backend

Niclas Esser nesser@mpifr-bonn.mpg.de Max-Planck Institute for Radio Astronomy (MPIfR)

Phased Array Feeds and Advanced Receivers Sydney, Australia, November 2022

What is the Effelsberg CryoPAF Backend?

- Processes PAF data to science-ready products
 - o VLBI
 - Spectroscopy
 - Pulsar timing & search
- High-performance computing
 - Commercial off-the-shelf (COTS) hardware
 - Accelerators GPU & FPGA
 - High speed networking
- Follows the EDD backend approach
 - Containerized services
 - System deployment & provisioning

System Overview

Key Specs

- 2x 128 PAF rezeptors
 - Dual-polarized
 - cryogenically cooled
 - 2.4-4 GHz (S-band)
- Digitization
 - Expected 2.6 GSPS
 - Maximum 4 GSPS
- Beamformer
 - 128 beams (integrated)
 - 2 x 16 dual-pol beams

CAMNet & SNet

CAMNet

- Control and monitoring interactions between backend components
- Existing infrastructure (1 GbE)
- Used protocols
 - KATCP
 - $\circ \,\, \text{SSH}$
 - \circ HTTP
- System deployment
- System provisioning

Storage Network & BeeGFS

- Fast mountable file system
- Access from all backend nodes
- Infiniband (200 Gb/s)
- Spinning disks
 - 400 MiB/s write speed
 - 0 18TB
- Up to 60 disks per node
 - 23.3 GiB/s w/r speed (IB bottleneck)
 - 1.08 PB

High Speed Data Network (Dnet)

- 4 x Mellanox SN4700
 100/200/400GbE
 128/64/32 Ports
- SPEAD Protocol
 - RDMA with ibv
 - Multicasting
- Network Topology
 - fully-connected
 - flexible band subscription (CBF)
 - Stream MUXing

Correlator & Beamformer Node

Server Setup

GPU Concept

- 2 NUMA node server system
- 2x100 Gb/s per NUMA
- Correlator uses Tensor Core Library [J. Romeln]
- Tensor Core based beamformer

FPGA Concept

- 8x Alveo U55c cards per server
- 2x 100 Gb/s interface per card
- Firmware written in HLS (Y. Men)
 - Beamformer in place
 - $\circ\,$ Correlator pending

Correlator & Beamformer Node

Comparison

Both Concepts are still in evaluation

The FPGA concept is outstanding when a single card is able to process the data of both 100 GbE interfaces (not verified yet). Otherwise the GPU concept is preferred, because of its flexibility and general purpose.

Pro

GEFORCE RTX

	Expected	Full scale	Expected	Full scale
Power	16 kW 17520 kWh/a (12,5%)	25.6 kW 28032 kWh/a	36 kW 39420 kWh/a (12.5%)	62 kW 67890 kWh/a
Size	 40 HU; 1.78 m	64 HU; 2,85 m	72 HU; 3.20 m	124 HU; 5.52 m
Est. cost	€ 386,999	€ 619.198	€ 310,482	€ 534.719

Science Modes on the GPP Nodes

The EDD backend already supports various processing pipelines for different science modes.

Beamformer streams								
,	Channelized voltage beams		Full Stokes Beams		Stokes Beams		Channelized voltage beams	
VLBI		Spectro	Spectroscopy		Pulsar & Transient Search		Pulsar Timing	
1 / 2 / 4 / / 256 MHZ		1 kł	1 kHz		2 MHz		1Hz	
2 x 8 VDIF Digital down conversion, direct sampling, 2 bit re-quantization, metadata merge		12	128 HDE5		128 DSDEITS		< 8 EITS	
		HD	1015		FSRIIIS		FSRITIS	
		Metadata zoom ban selection integr	Metadata merge, zoom bands, band selection, further integration		Metadata merge, data formatting		Coherent dedispersion, phase folding	

EDD Pipeline Implementation

All shown pipelines are implementations of the EDDPipeline class and follow the EDD state model. They are also defined as Ansible roles to provide dockerized services.

Under the hood the pipelines make use of CLI-programs

e.g. psrdada, mkrecv, mksend, dspsr

Pre-Processing

Post-Processing / Science Modes

Just a plugin for the EDD framework

- HPC code / CLIs in cpp/
- EDD Pipeline implementations, utilities & scripts in cryopaf/
- Definition of the services in roles/
- Ansible collection defined by galaxy.yml and requirements.yml
- Makes use of other EDD plugins (e.g. VLBI)

Merge branch 'devel' into 'master' Niclas Esser authored just now

README
 MIT License
 Cl/CD configuration
 Add CHANGELOG
 Add CONTRIBUTING
 Add Kubernetes cluster
 So Configure Integrations

Name	Last commit	Last update
🗅 срр	Revised .gitlab-ci.yml	2 months ago
🗅 cryopaf	File structure changes, renaming, pyproject.t	3 days ago
🖹 doc	File structure changes, renaming, pyproject.t	3 days ago
🗅 roles	File structure changes, renaming, pyproject.t	3 days ago
🗅 test	File structure changes, renaming, pyproject.t	3 days ago
♦ .gitignore	File structure changes, renaming, pyproject.t	3 days ago
😝 .gitlab-ci.yml	Update .gitlab-ci.yml file	1 day ago
♦ .gitmodules	Renamed fodler structure	3 months ago
CICENSE	File structure changes, renaming, pyproject.t	3 days ago
M* README.md	File structure changes, renaming, pyproject.t	3 days ago
<mark>{}</mark> galaxy.yml	File structure changes, renaming, pyproject.t	3 days ago
pyproject.toml	File structure changes, renaming, pyproject.t	3 days ago
	Update requirements.yml	1 minute ago
🚔 test.py	File structure changes, renaming, pyproject.t	3 days ago

Testing & CICD

- Using the GitLab runner
- Define the CI pipeline
- Executed on commits and on a daily basis
- Direct feedback with test driven development

build_base	build	unittest Image: state s	Integrationtest	profile benchmark_beamform benchmark_correlator	doc make_doc
Build docł (with dep	ker images vendency)	testing units (e.g. GPU-kernels, utility module)	Test pipelines by injecting test data sets, compare against reference	Benchmarking of performance critical code	Create the documen- tation

Third party software EDD infrastructure tooling

Orchestration Software for EDD Backend Deployment

Versioning System, CI/CD Pipelines, Documentation, Software Management

Large, fast & distributed storage system used for high speed file IO-operations

Containerized & isolated EDD services e.g. processing pipelines, controllers

Long-term storage database for sensor data of individual EDD components

Database for volatile metadata e.g. product information, telescope data

Alerting system

Monitoring system for sensor data, system status, configuration

Outlook

References

https://www.mpifr-bonn.mpg.de/7081564/digitizer-and-channelizer-for-the-cryopaf
 https://gitlab.mpcdf.mpg.de/nesser/paf_edd/
 https://gitlab.mpcdf.mpg.de/mpifr-bdg/mpikat
 https://gitlab.mpcdf.mpg.de/mpifr-bdg/edd_provisioning
 https://gitlab.mpcdf.mpg.de/mpifr-bdg/edd_provisioning

- Proposed the system design for the CryoPAF backend @ Effelsberg
 - Networking
 - Processing nodes
 - Science modes and data products
- We do not reinvent the wheel, but we improve it
 - reuse of existing EDD soft- & hardware
 - comprehensive third party tooling
 - test driven development

Niclas Esser nesser@mpifr-bonn.mpg.de Max-Planck Institute for Radio Astronomy (MPIfR)

Phased Array Feeds and Advanced Receivers Sydney, Australia, November 2022