

On-sky testing of the C-band cryo-PAF: Pharos2

Michael D'Cruze¹, Keith Grainge¹, Michael Keith¹, Simon Melhuish¹, Mark McCulloch¹, Bob Watson¹, Alessandro Navarrini², A. Melis², G. Naldi², G. Pupillo², G. Comoretto², P. Ortu², A. Ladu², R. Concu², P. Marongiu², A. Poddighe², R. Chiello³ ¹ The University of Manchester, UK email: <u>michael.dcruze@manchester.ac.uk</u> ² INAF-OAC, Cagliari, Italy ³ The University of Oxford, UK

The original Pharos...

- Originally conceived c.20yrs ago as C-band cryoPAF concept receiver, consisting of:
 - \rightarrow 10x11 array of 4—8GHz Vivaldi antennas in each pol
 - \rightarrow 20K LNAs designed in-house
 - → Analogue BF utilising liquid crystal delay lines to form four beams with on-the-fly phase adjustment

- Originally conceived c.20yrs ago as C-band cryoPAF concept receiver, consisting of:
 - \rightarrow 10x11 array of 4—8GHz Vivaldi antennas in each pol
 - \rightarrow 20K LNAs designed in-house
 - → Analogue BF utilising liquid crystal delay lines to form four beams with on-the-fly phase adjustment
- Intended as general tech demonstrator; eventual deployment on LT for C-band obs and integration into eM

MANCHESTER

The origina

- Originally conce consisting of:

 → 10x11 array (
 → 20K LNAs
 → Analogue BF with on-the-fly (
- Intended as gen for C-band obs a

MANCHESTER 1824

The original Pharos...

Pr.

The Pharos2 upgrade

- Pharos2 funded through SKA PAF AIP as demonstrator and pathfinder for potential future SKA-Mid PAFs
- Aim primarily to match single-pixel SEFD for boresight beams; form clean, stable beams off-axis

- Pharos2 funded through SKA PAF AIP as demonstrator and pathfinder for potential future SKA-Mid PAFs
- Aim primarily to match single-pixel SEFD for boresight beams; form clean, stable beams off-axis
- Substantial upgrades, including:
 - -- Lower-loss and spectrally-flat radome from DRAO

r and pathfinder

: beams; form

12

Substantia
 Lower-lc

The Pharos2 upgrade

- Pharos2 funded through SKA PAF AIP as demonstrator and pathfinder for potential future SKA-Mid PAFs
- Aim primarily to match single-pixel SEFD for boresight beams; form clean, stable beams off-axis
- Substantial upgrades, including:
 - -- Lower-loss and spectrally-flat radome from DRAO
 - -- Custom multi-layer IR filter from Simon Melhuish

The Pharos2

- Pharos2 funded tl for potential futur
- Aim primarily to r clean, stable bear
- Substantial upgra
 - -- Lower-loss and
 - -- Custom multi-la

tor and pathfinder

ght beams; form

FIG. 6: A test foam stack of foam disks. In this case the material is Rohacell 51HF. Note the use of staggered *buttons* to separate layers. The P

MANCHESTER 1824

- Pharos2
 for pote
- Aim pri clean, s
- Substar
 - -- Lowe
 - -- Custo

nfinder

orm

20

MANCHESTER

- Aim prima clean, stał
- 4 W 18 Original + Stack 11 16 Stack 21⁺ T_{gm2} 2 W 14 15 W 10 W 12 -0 W 0 W 10 45 50 55 60 65 70 75 80 40 T_{gm1}

Stage Temperatures with Filters

oathfinder

s; form

- Substantia
 - -- Lower-la
 - -- Custom
- FIG. 14: Equilibrium temperatures using the original filter and multi-disk filters, shown over part of the cold head capacity map (magenta – 3 levels of 1st-stage power, blue – 3 levels of 2nd-stage power).

- Pharos2 funded through SKA PAF AIP as demonstrator and pathfinder for potential future SKA-Mid PAFs
- Aim primarily to match single-pixel SEFD for boresight beams; form clean, stable beams off-axis
- Substantial upgrades, including:
 - -- Lower-loss and spectrally-flat radome from DRAO
 - -- Custom multi-layer IR filter from Simon Melhuish
 - -- 2—3K LNAs from Low Noise Factory... only array core illuminated

The Phar

MANCHESTER 1824

- Pharos2 fun for potentia
- Aim primari clean, stable
- Substantial (
 - -- Lower-los
 - -- Custom m
 - -- 2—3K LN/

OFISICA

The Pharos2 upgrade

- Pharos2 funded through SKA PAF AIP as demonstrator and pathfinder for potential future SKA-Mid PAFs
- Aim primarily to match single-pixel SEFD for boresight beams; form clean, stable beams off-axis
- Substantial upgrades, including:
 - -- Lower-loss and spectrally-flat radome from DRAO
 - -- Custom multi-layer IR filter from Simon Melhuish
 - -- 2—3K LNAs from Low Noise Factory... only array core illuminated
 - -- Replacement of ABF with INAF-supplied SKA-LOW prototype DBF unit configured for four beams

ISTITUS

The University of Manchester

2018—9: Initial testing

 First outdoor tests performed using ABF prior to delivery of INAF WS & DBF, immediately showing the benefit of the new LNAs...

• First outdoor 1 & DBF, immed

y of INAF WS \s...

- 2018—9: In
- First outdoor tes & DBF, immediat

very of INAF WS LNAs...

MANCHESTER

2018—9: Initial testing

- First outdoor tests performed using ABF prior to delivery of INAF WS & DBF, immediately showing the benefit of the new LNAs...
- Application for several weeks' time on 25m Pickmere Radio Telescope granted by eMERLIN during 2020 VLBI Session 1 (Feb—Mar).

MANCHESTER 1824

- First outdoor t & DBF, immed
- Application for granted by eN

ISTITUE O

2018—9: Initial testing

- First outdoor tests performed using ABF prior to delivery of INAF WS & DBF, immediately showing the benefit of the new LNAs...
- Application for several weeks' time on 25m Pickmere Radio Telescope granted by eMERLIN during 2020 VLBI Session 1 (Feb—Mar).
- Lots of challenges:
 - -- Recommission prime focus operation
 - -- Cryo, power, LO + maser ref. signal, install fibres etc.
 - -- No real certainty as to mechanical limitations re: installation & focusing
 - -- eM took some convincing re: restoration of telescope following test period...

2019-20: Ground testing

• INAF deliver WS & DBF autumn 2019, enabling ground testing

2019—20: (

• INAF deliver WS

2019-20

• INAF deliver W

ound testing

2019—20: Ground testing

- INAF deliver WS & DBF autumn 2019, enabling ground testing
- Outfitting of focus box complete, inc. packaging & shielding of control & comms hardware:
 - -- strong focus on minimising RFI in component selection
 - -- media converters triple-shielded

2019.

MANCHESTER 1824

- INAF d
- Outfitt & com
 - -- stror
 - -- medi

P

2019-20: Ground testing

- INAF deliver WS & DBF autumn 2019, enabling ground testing
- Outfitting of focus box complete, inc. packaging & shielding of control & comms hardware:
 - -- strong focus on minimising RFI in component selection
 - -- media converters triple-shielded
- Obs plan assembled:
 - -- Bulk of testing against Cyg A, Cas A, also 3C sources, NGC7027 etc.
 - -- Also consider spectral line sources e.g. W3OH, M42

2019-20: Ground testing

• Former SKADS mount recommissioned and populated focus box mounted, enabling AzEl control; DBF operating from nearby hut.

 Former SKADS m mounted, enablis

ed focus box nearby hut.

2019

MANCHESTER 1824

• Former SI mounted

OFFEICA

 Former SKADS m mounted, enabli

ed focus box nearby hut.
MANCHESTER

2019-20: Ground testing

- Former SKADS mount recommissioned and populated focus box mounted, enabling AzEl control; DBF operating from nearby hut.
- Hot/cold load tests showed curious disparity between ABF & DBF TRx...

2019–20: Ground testing

2019-20: Ground testing

- Former SKADS mount recommissioned and populated focus box mounted, enabling AzEl control; DBF operating from nearby hut.
- Hot/cold load tests showed curious disparity between ABF & DBF TRx...
- Nevertheless, TSys c.25K informs SEFD = 250Jy target on 25m Pickmere telescope.

• Initial focusing tests showed adjustment required...

- Initial focusing tests showed adjustment required...
- "First light" achieved using Cyg A to calculate SNRMax weights at Filter D sub-band centre (6.5GHz), followed by azimuthal sweep

- Basic plan for three weeks' testing. Initial focusing tests showed adjustment required...
- "First light" achieved using Cyg A to calculate SNRMax weights at Filter D sub-band centre (6.5GHz), followed by azimuthal scan
- Clean beam formed, but...
 - -- Strong gaussianity even down to first minimum
 - -- FWHM wider than expected
 - -- SEFD x2 higher than expected...
- Attempts to test further scuppered by compressor failure.

- Five days remaining to gather as much useful obs as possible...
- Form some beams off-axis...

; possible...

2020: The Pickm

Five days remaining to ε²

17

9

0.75

0.50

C WOIZAN

ISTITUS

ful obs as possible...

2020: The Pickm

Five days remaining to ε^²

ful obs as possible...

Λ

5

- Five days remaining to gather as much useful obs as possible...
- Form some beams off-axis using Cyg A...
- Amplitudes look encouraging... test beams against Cas A

Cas A beams, elevation, 20200307

Offset, arcmin

NAF ISTITUS

40

- Five days remaining to gather as much useful obs as possible...
- Form some beams off-axis using Cyg A...
- Amplitudes look encouraging... test beams against Cas A
- We have beams!
 - -- Central beams well-formed, strongly gaussian but with higher sidelobes than expected
 - -- Off-axis beams suffer considerable degradation in sensitivity and profile
 - -- Elevation beams show particularly uneven sidelobes

- Clutching at straws to explain low sensitivity...
- Gain variations...?

10-7

10-8

10-9

10-10

10-11

10-12

Power

2020. The Pickmere Test 10-5 10-5

The University hester

- Clutching at straws to explain low sensitivity...
- Gain variations...?
 →Nope.
- Test TSys direct using Moon
 - \rightarrow Fills beam
 - → Almost constant 216K load across lunar disc
 - →Direct comparison of DBF-acquired sensitivity with "offline beamforming"

OFISICA ST ST

PNOIZAN

ā

 <u>https://portia.astrophysik.uni-</u> kiel.de/~koeppen/JS/LunarRadioMaps.html

- Clear disparity between online and offline BF sensitivities.
 - ightarrow sensitivity tests must be made using offline BF
 - \rightarrow go back and apply weights offline to raw voltage obs...

- Clear disparity between online and offline BF sensitivities.
 - \rightarrow go back and apply weights offline to raw voltage obs...
 - \rightarrow 20–30% improvement c.f. online BF, but still below target 250Jy
- Final tests: spectral lines
 - \rightarrow demo line capability e.g. W3OH 6.67GHz maser...

- Clear disparity between online and offline BF sensitivities.
 - \rightarrow go back and apply weights offline to raw voltage obs...
 - \rightarrow Similar 20–30% improvement, but still below target 250Jy
- Final tests: spectral lines
 - → demo line capability e.g. W3OH 6.67GHz maser...
 - \rightarrow obs of weaker lines more challenging
 - → Tests noise and bandpass quality across relatively long periods

- Choose Orion KL (M42) and H/He recombination lines in Filter D
 - \rightarrow source readily visible from Pickmere
 - \rightarrow 400Jy source swamps minor systematics
 - \rightarrow spectral line physics well-understood

- Choose Orion KL (M42) and H/He recombination lines in Filter D
 - \rightarrow source readily visible from Pickmere
 - \rightarrow 400Jy source swamps minor systematics
 - \rightarrow spectral line physics well-understood
- Start from Draine 2011 free-free absorption coefficient...

$$\left(\frac{\kappa_{\rm ff}}{{\rm cm}^{-1}}\right) = \frac{4}{3} \left(\frac{2\pi}{3}\right)^{1/2} \frac{e^6}{m_e^{3/2} \sqrt{kT} h c \nu^3} [1 - e^{-h\nu/kT}] Z_i^2 n_i n_e \langle g \rangle ,$$

... derive equation for line intensity

$$\frac{T_L}{T_C} \Delta v_{\rm km/s} = \frac{10530}{\langle g \rangle} \frac{\nu_9}{T_e} \frac{1}{1+0.08},$$

- Expect H99a and H100a lines 5% of 400Jy continuum
 - \rightarrow easily detectable.
 - → Beta, Gamma, Delta lines also available, also He alpha, beta

- Expect H99a and H100a lines 4—5% of 400Jy continuum
 - \rightarrow easily detectable.
 - → Beta, Gamma, Delta lines also available, also He alpha
- Considerable effort required to subtract remaining bandpass...
 → LSq cubic spline chosen with extreme care re: overfitting

D WOIZAN ON

- Expect H99a and H100a lines 4−5% of 400Jy continuum
 → easily detectable.
 - \rightarrow Beta, Gamma, Delta lines also available, also He alpha
- Considerable effort required to subtract remaining bandpass...
 → LSq cubic spline chosen with extreme care re: overfitting
- Results show line intensities very close to expectation

2020: -
• Expect H
\rightarrow easily
\rightarrow Beta

Line	Beam	T_L/T_C (%)	T_e (K)
H100 α	0	5.17 ± 0.26	$\frac{8000\pm420}{100}$
	1	$\textbf{4.89} \pm \textbf{0.25}$	8400 ± 430
	2	5.07 ± 0.26	8000 ± 420
	3	5.08 ± 0.25	8050 ± 400
H99α	0	5.33 ± 0.27	8000 ± 400
	1	$\textbf{5.29} \pm \textbf{0.27}$	8000 ± 400
	2	5.37 ± 0.28	$\textbf{7900} \pm \textbf{400}$
	3	5.30 ± 0.27	8000 ± 400

5...

Consider
 → LSq cı

Table 1 – Measured line-to-continuum ratios of the H α lines, and electron temperatures determined therefrom; these compare well with the literature values.

• Results s

Line	Beam	T_L/T_C (%)	N(He)/N(H) (%)
	0	$\textbf{0.49} \pm \textbf{0.14}$	9.80 ± 0.50
He100 α	1	$\textbf{0.50}\pm\textbf{0.11}$	10.50 ± 0.55
	2	0.48 ± 0.16	9.65 ± 0.50
	3	$\textbf{0.48} \pm \textbf{0.14}$	9.80 ± 0.50

Table 2 – Relative helium abundance determined from the 100α lines. The measured values compare well with the Poppi et al. 2007 literature value of 10.0 ± 0.8 %.

- Expect H99a and H100a lines 4−5% of 400Jy continuum
 → easily detectable.
 - → Beta, Gamma, Delta lines also available, also He alpha
- Considerable effort required to subtract remaining bandpass...
 → LSq cubic spline chosen with extreme care re: overfitting
- Results show line intensities very close to expectation...
- Ratios of line intensities also very close to theory
 → very encouraging result
 → demo of noise reliability at arbitrary points across bandpass

1027		11000	D	01
	Lines	Menzel 1969 ratio	Beam	Observed ratio
2020:	2		0	1.012±0.086
Expect	H100 $lpha/$ H99 $lpha$	0.9780	1	$0.970 {\pm} 0.071$
\rightarrow easil			2	1.005 ± 0.100
\rightarrow Beta	-		3	$1.010 {\pm} 0.092$
			0	$2.515 {\pm} 0.085$
	H125 eta /H143 γ	2.820	1	2.603±0.078
			2	2.908±0.099
\rightarrow LSq (3	2.552±0.084
			0	$2.444{\pm}0.078$
Results	H143 γ /H157 δ	2.101	1	2.172±0.071
			2	2.241±0.071
Ratios (3	2.233±0.078

.

Very Table 3 – Comparisons between example line ratios, showing good agreement between
 dem theoretical values using the Menzel 1969 approximation, and the observed values in ss each beam.

• Explanation for low sensitivity...? Look back to Simons et al. 2006 array design paper...

• Explanation for low sensitivity...? Look back to Simons et al. 2006 array design paper... compare with theory (Goldman 1998)

- Explanation for low sensitivity...? Look back to 2006 paper... compare with theory (Goldman 1998)
- Simply, ASTRON array poorly optimized for Pickmere dish

 → Weights heavily focused on single central element, possibly explaining strongly gaussian beam shape and low sensitivity
 → need larger f/D to overilluminate dish, enabling weights calculation to distinguish between on-source and off-source phases

Conclusions

- Successfully formed stable beams using Pharos2 Rx and iTPM DBF
 → Sensitivity 30—50% lower than expectation with online beamforming
 - → offline beamforming shows better results, closer to eM SEFD...

Conclusions

- Successfully formed stable beams using Pharos2 Rx and iTPM DBF
 - \rightarrow Sensitivity x2 lower than expectation with online beamforming
 - → offline beamforming shows better results, closer to eM SEFD...
 - \rightarrow should have spent more time exploring other filters; obs under heavy time pressure
- Clear need to optimize array for antenna design
 - \rightarrow At 6.5GHz clearly sub-optimal
 - \rightarrow Lower frequencies show better illumination but radome cuts in, SEFD still >400Jy

Conclusio

- Successfully f 5 → Sensitivity
 → offline bea 4 → should hav
 heavy time pi 3 -
- Clear need to \rightarrow At 6.5GHz \rightarrow Lower frec SEFD still >40

3.5

 ^{-3.0} nd iTPM DBF eamforming
 ^{-2.5} > eM SEFD... s; obs under

-1.0 dome cuts in,

- 0.5

- 1.5

Conclusio

- Successfully f 5 → Sensitivity
 → offline bea 4 → should hav
 heavy time p 3 -
- Clear need to \rightarrow At 6.5GHz \rightarrow Lower frec SEFD still >40

OFISICA Id ITPM DBF eamforming eM SEFD... s; obs under

IST/

Jome cuts in,

- 3.0

- 2.5

- 2.0

- 1.5

- 0.5

0.0

Conclusio

- Successfully f 5 → Sensitivity
 → offline bea 4 → should hav
 heavy time p 3 -
- Clear need to \rightarrow At 6.5GHz \rightarrow Lower frec SEFD still >40 o

id iTPM DBF
 eamforming
 eM SEFD...
 s; obs under

Jome cuts in,

- 0.5

- 1.5

- 1.0

Conclusic

- Successfully ¹ ⁵ ⁻
 → Sensitivity
 → offline be; ⁴
 → should ha heavy time p ³
- Clear need to \rightarrow At 6.5GHz 1 \rightarrow Lower free SEFD still >4(0

nd iTPM DBF
 Deamforming
 o eM SEFD...
 rs; obs under

dome cuts in,

- 0.5

- 1.0

Conclusions

- Successfully formed stable beams using Pharos2 Rx and iTPM DBF
 - \rightarrow Sensitivity x2 lower than expectation with online beamforming
 - → offline beamforming shows better results, closer to eM SEFD...
 - \rightarrow should have spent more time exploring other filters; obs under heavy time pressure
- Clear need to optimize array for antenna design

 → At 6.5GHz clearly sub-optimal
 → Lower frequencies show better illumination but radome cuts in, SEFD still >400Jy
- Future: Pharos2 concluded; publication soon!
 - → Need to lower costs: LNAs £5k each! Can't populate 250 elements