PAFAR2022 – Nov. 15-17, 2022

A combination of PAF and spherical reflector to obtain large FoV

Jin Chengjin, Wang Jun, Stefan Heyminck, Peng Bo and Zhuyan NAOC and MPIfR

FAST: active surface + light focus suspention

The 19-horn receiver on FAST

Reflection from a Spherical Reflector

Large Spherical Reflector + PAF receiver

r < 150

150 < r < 250

0-deg zenith angle

30-deg zenith angle

Spherical surface + PAF receiver

- Efficiency
- System Noise Temperature
- FoV Field of View
- Technical feasibility

The "focal" field distributions across a 10 X 10m region

Efficiency of the Spherical reflector + PAF receiver

- Zenith angle : 0 degree
- PAF receiver
 - Element size: 12 cm
 - Edge taper: 4.4dB @ 56.4 deg
 - Square array: 85 X 85
- Efficiency : 79.3%

(normalized to a 300m aperture)

Received Energy vs. Size of PAF(1.4GHz)

r (m)

The distribution of received energy across the PAF array

Efficiency of the Spherical surface + PAF at various zenith angle and off-axis angle

- Zenith angle: 0 40 deg
- Off-axis angle: -1 ~ 1 deg
- Efficiency > 50% at 45-deg zenith angle
- The efficiency at 40-deg is 14% lower than that at 0-deg zenith angle.
- In the case of FAST, the corresponding reduction in efficiency is ~ 25%. This imply that this spherical surface + PAF combination may work at higher zenith angle

FoV of FAST vs. the Spherical surface + PAF

Far-field pattern of spherical surface + PAF under

off = $0.2 \deg$

0

off = $0.8 \deg$

0

0.5

0.5

1

Tsys of the Spherical surface + PAF receiver

Tsys under Conjugate Field Matching mode

- Zenith angle: 0 degree
- Off-axis angle: 0.3 dgree

Tsys at various off-axis angle when zenith angle is 0 deg

The far-field pattern of PAF under CFM mode (zenith angle = 40 deg)

Zenith angle: 0 deg

Zenith angle: 40 deg

Tsys at various off-axis angle when zenith angle is 40 deg

Off-axis: 0 deg

Off-axis: 0.3 deg

Off-axis: 1 deg

T_an = 5.97 K T_an = 6.04 K T_an = 6.67 K

Focus cabin of the FAST

- 6 cables to the tower
- AB axis to set the orientation of the platform
- Stewart stabilizer to correct for the residual errors

20

20

Focus cabin suspension for the spherical surface + PAF

- 6 cables to the tower
- AB axis to set the orientation of the platform
- Dynamic Beam-forming
 - Position and Orientation: Measured
 - Beam-forming: Dynamical

21

The effect of tilting the PAF receiver

The efficiency as a function of the position and tilting angle of the PAF receiver

- Efficiency as a function of the position of PAF with tilting angle of +/- 5 degree.
- Within +/- 0.5m and +/- 5 degree tilting angle, the efficiency changes very little.
- Dynamic beam-forming may be feasible. Stewart stabilizer may not be needed.

All-metal Vivaldi element

8 X 8 Vivaldi array

- Vivaldi size: 96mm
- •Height: ~130mm

The Vivaldi array and the embedded S11

Mutual coupling among the feeding ports

Edge – Other elements

Central – Others elements

Far-field patter of a single element

Embedded far field pattern of the Vivaldi element

Simulated efficiency vs. offset angle (deg)

FAST (Active surface) vs. Fixed surface + PAF

	Active Surface + Single Pixel Feed	Fixed Spherical surface + Large PAF receiver
Reflector	Complicated structure High construction cost High operation and maintenance cost Limitation of highest frequency	Simple structure Low construction cost Low operation and maintenance cost
Receiver	Simple (SPF, horn array) Small scale PAF	Complicated Large scale PAF
Sensitivity and FoV	Sensitivity: Good FoV: suffered from coma effect	Sensitivity: Good FoV: no obvious coma effect, limited mainly by the size of PAF

Future Plan

- Site selection
- Investigation on the feasibility study of the large PAF
 - Modular PAF array
 - Ambient temperature receiver vs. cooled receiver
 - Data transmission
 - Calibration, beam-forming, data storage, etc.

Thank you for your attention!

PAF is put at different positions

The on-axis efficiency vs. the position of PAF

- The efficiency increases gradually when the PAF moves from 160-164m below the center of the spherical surface.
- Beyond 164m, the efficiency decreases more rapidly.

The efficiency as a function of the position of the PAF and off-axis angle

- As the PAF moves from 160-164m below the center of the spherical surface, the on-axis gain increases, but the gain at the edge of FoV doesn't change very much.
- When the PAF is put 163m below the center of the sphere, the gain at the edge is 22% lower than that at the center of the FoV.
 - Dynamic beam-forming may be preferred.

Relative size of the reflector and PAF receiver

单个Vivaldi馈源反射损耗的优化

• 3D模型

Vivaldi阵列中的馈电单元的S11

Name

XY

m1 0.00 1 0.80 -25.787 Curveulnfbio m2 00 -16.6051 1 dB(@(0(1_Ypp1/))) Setup Setup WSW 00, W='1 26 room W='100mm' m3 500 -21.4642 1.4 m4 1.6 0 -20.3786 -- dB(S()1_Y37,p1_Y37) Set.p1 : Sw sep hr=90mm' W='100mm -5-0.00 -1010.00 dB(S(p1, Y, p1_Y)) m2 -2 020.00 -2 52 500 -3030.00 1100 1120 1 180 00.80 1140 1 160 2200 Freq(GHz)

X YXP Toot 1

HFSSDesignin1

• VV