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@ Our applied guantum computing landscape
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@ A simple optimization problem

Four people: Xavier (x), Yolanda (y), Wanda (w), Zeke (z)
Two rooms: 0 and 1
Relations: x-y — friends, y-w — enemies, w-z — friends

Objective: Locating people in 2 rooms such that friends
are in the same room and enemies are not in the same
room

Numerical (binary) notation: x=0 — Xavier in room 0, x=1
= Xavier in room 1, etc.
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X-Y constraint: x+y-2xy. Same room 0, different room 1.
That is, the objective function takes a lower value when
Xavier and Yolanda are in the same room, and a higher
value when they are in different rooms.

W-Z constraint: w+z-2wz.
Y-W constraint: negative of the above —y-w+2yw.

Unconstrained objective function of the problem: x+y-
2XY +W+Z-2WZ —y-W+2YyW = X+Z-2Xy-2WZ+2yw

Optimal placement of people are achieved by adjust the
binary values of x, y, w, z such that the objective
function takes the minimum value.

QUBO — quadratic unconstrained binary optimization

Mathematically equivalent to Ising spin-glass
formulation (0, 1) -> (-1, 1)

Physical spins 1T, 4

Different weight for different constraints: : Lagrange
multiplier or penalty factor

Each room must have 2 people: g*(x+y+z+w-2)?

Each room can have no more than 2 people:
g*(x+y+z+w+p-2)? - slack variables p

Combinatorial optimization



@ DCM for lattice-style material microstructure modelling

Data-constrained modelling (DCM, http://research.csiro.au/dcm is a method for determining the 3D distribution
of materials with X-ray CT scans & statistical physics.
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Objective function

Volume fraction of material composition m in voxel n (multi-bit “Ising” spin s)
Number of neighbouring voxels at distance k
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Internal energy of voxel n. It is related to its own compositions and neighbouring voxels

Typical size of the problem is N=10003 (academic, a billion) or N=40003 (industrial, 64 billions) voxels.

Challenges include converging to local minima and computational efficiency — billions of voxels for a material
sample.

A problem is divided into sub-volumes for implementation on quantum annealers which have limited number of
qubits.

A sub-volume problem is expressed as Ising spin-glass / QUBO format for implementation on a quantum
annealer
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@ Community acceptance

 Advanced
features are
attractive

* Discounted price
IS more attractive

* Free offering is
even more
attractive

There's no such thing as a free lunch.

* Design complexity is free with
additive manufacturing (3D
printing)

» Limitations in cost, productivity,

porosity defect, distortion, fatigue
life, corrosion resistance, ...

* Parallel processing is free with
quantum computing. e.g.,
0.1ms to get a solution from a
guantum annealer regardless
of problem size
» High qubit noise (~1%), limited

number (<6,000) of qubits in a D-
Wave Advantage QPU

http://research.csiro.au/aqc



http://research.csiro.au/aqc

@ Classical versus qua

* Programmable machine to
manipulate physical quantities
(observables): commonly electric
voltage / current / fluid

Bit:O0or1

Binary & independent

Billions or trillions of logical gates
Error rate: 1018




@ (Combinatorial) Optimiza

Simulated annealing (quantum inspired)

Simulated annealing vers

* Formulate the problem as computing the ground state of a Hamiltonian
* Ising spin-glass or QUBO — quadratic unconstrained binary optimization
*  Perform multiple computations and select the solutions with the lowest energy
*  “Independent / randomized” initial conditions for each computations
*  Commonly used computing platform: Python with QPU cloud access
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ISVIa)|(_iI??(um entropy and minimum energy — minimizing free energy F=
- H/KT

Start at high T and gradually lower it
Classical logical gates

Typical time per solution: 10 seconds
Different implementations

NEC vector annealer (100k qubits, Fujitsu Digital Annealer, Hitachi
CMOS Annealer, Toshiba simulated bifurcator, ...

Local minima limited



@ Impact of qubit noise and local minima

Solving a complex optimization problem may require large number of qubits /
operations.

Every qubit may be required to operate correctly to obtain a correct answer.
In an ideal world, a computation is relatively insensitive to the problem size.
High noise level for a physical qubit — order of 0.1-1%.

Probability for correct answer decreases exponentially with the number of
qubits. 100 qubits: 0.991%% = 0.37; 1000 qubits: 0.991°°° = 4/100000; 10000
qubits: 0.9910000 = 2 x 1044,

Even if it converges to a minimum, it may only give a sub-optimal solution (local
minima) rather than a true optimal solution (global minimum).

Main stream thinking: using many (~ 1000) physical qubits to construct an error-
corrected logical qubit

http://research.csiro.au/aqc
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@ CSIRO SEMO technology & software

* An imperfect result from a quantum computer (such as a quantum annealer or
simulator) is often not completely wrong. It contains (valuable) information about
the correct answer (the true optimal solution).

* Using classical computing to mitigate errors — after measurements at completion
of quantum computation.

* CSIRO has developed a patent-pending quantum computing spin-error mitigation for
optimization (SEMO) technology to address the qubit noise and (to a degree) the local minima
problems for solving combinatorial optimization problems with quantum/simulated annealers.

* The technology has been implemented as a SEMO Python dynamic module software — SEMO.pyd, with user-adjustable
level of approximation.

* Four additional (essential) Python code lines are required to use SEMO:
from SEMO import SEMO as SEMO
semo = SEMO (“xxxxxxxx—203d-42d2-al1l86-6£f07c51c5d9c")

>

>

» semo.SetupQUBO (qubo coefficients) or
semo.Setuplsing (linear coefficients,quadratic coefficients)

>

>

>

semo.DoErrorMitigation(variables, spins, energies)
semo.Help ()
del semo

*  SEMO module is available now for CSIRO internal evaluation and testing



@ CSIRO SEMO technology evaluation with DCM on DWS Advantage

e Case study: binary image segmentation with data-constrained modelling (DCM, http://research.csiro.au/dcm).

*  Randomly generated 3D cubit blocks (13 — 10%) and with neighbouring coupling constant 0.1.
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@ Summary

* Quantum annealing is for solving optimization problems

Fundamental format is Ising spin-glass and QUBO (quadratic
unconstrained binary optimization)

Optimization objective function includes a weighted sum of constraints

A range of problems can be formulated as the fundamental format

Quantum annealers and quantum-inspired simulators are commercially
available with 1000s to 100ks qubits

* Qubit noise and local minima are limiting factors

* CSIRO has a patent-pending solution for qubit errors and “local minima”
issues



e Thank

Dr. Sam Yang
CSIRO Manufacturing
Principal Research Scientist

t: +61 3 9545 2759

e: sam.yang@csiro.au

w: http://research.csiro.au/aqc
e: appliedqguantumcomputing



mailto:tony.murphy@csiro.au
mailto:sam.yang@csiro.au
http://research.csiro.au/aqc
mailto:appliedquantumcomputing@csiro.au

	Slide 1: Applied Quantum Computing overview  - Quantum Annealing (QA) for optimization and Materials
	Slide 2: Contents
	Slide 3: Our applied quantum computing landscape
	Slide 4: A simple optimization problem
	Slide 5: DCM for lattice-style material microstructure modelling
	Slide 6: Community acceptance
	Slide 7: Classical versus quantum computers
	Slide 8: (Combinatorial) Optimization computation: Simulated annealing versus quantum annealing
	Slide 9: Impact of qubit noise and local minima
	Slide 10: CSIRO SEMO technology & software
	Slide 11: CSIRO SEMO technology evaluation with DCM on DWS Advantage
	Slide 12: Summary
	Slide 13

