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-1 Magnetic hysteresis parameters of MD grains

Figure 4.la depicts the intrinsic hysteresis loop for a MD
pyrrhotite grain for the case where the applied field is
parallel to the basal plane of the crystal.

The internal field H, is related to the external (applied)

field He by | |
H, = H - NJ : 1)

where J is the magnetisation and N is, by definition, the self-
demagnetising factor of the grain.

From eq. 1 it follows that He corresponding to a point
(J,Hi) on the intrinsic hysteresis loop can be found by
constructing a line of slope -1/N from (J,Hi) to the horizontal
axis (Néel, 1955). 1In this way we cén obtéin the external
hysteresis loop (J—He)rfrom the intrinsic (J—Hi) loop.

Consider an initially demagnetised grain subjected to a
saturating field in the forward direction which is then reduced

to zero. The grain is then at the point (Jrs,—HiR) on the

intrinsic hysteresis loop, where JrS is the saturation

remanence.

As H, = 0, we have from 1)
“Hig T 7 N g
Jrs - HiR/N -2)

We now assume the intrinsic hysteresis loop is linear in

the region about the coercive force point (0,—Hc), with slope

5.



Therefore from Fig. la

Irs/ l:-HJ'-R - (_Hc):I - Jrs/!-_-l-{c B HiR:] =8
Using 2} we have

Teg = S(H, - NI )
Solving for Jrs

Jpg = H/(W + 1/8) 7 3)

As 8§ +w, Jrs > HC/N, which is the relationship derived by
Néel (1955) and Stacey and Banerjee (1974). As pointed out by
Smith aﬁd Merrill (1982) neglect of the finite slope of the
sides of the hysteresis loop invalidates empirical estimates of
N. Only if § »>> 1/N will N be reliably estimated by Hc/Jrs'
but this condition cannot be justified a priort.

The potential energy of a domain wall in a crystal is a
function of wall position due to interactions with defects such
as dislocations and non-magnetic inclusions. In the absence
of magnetostatic forces, therefore, domain walls will reside in
local potential energy minima, which we will call intrinsic
energy minima. Within potential energy wells thé domain walls
are réversibly displaced from thé intrinsic minima due to the
internal field Hi'. For small wall displacements the induced
magnetisation is linear in Hy and is equal to XiH; o where X3
is the intrinsic susceptibility (see Fig. . 1b).

As a grain is taken around a hysteresis loop, domain
walls are irreversibly displaced from their original positions
to new potential wells. Denote the change in magnetisation

associated with displacement of walls from original positions

to new intrinsic minima by Jir Due to the internal field

-
the walls are reversibly displaced from the intrinsic minima,

and we assume linearity of this induced magnetisation in H, .



Therefore the total magnetisation, J, of the grain is

given by
J = xiHi + Jirr 4}
But H;, = H, - NJ = H, - Ny;H, - NJ;
SoOHp o= (H, - NI )/ (14y,) .5)

By definition when He =0, J = Jr (the observed remanence
of the grain).

Therefore, when He =0,

H, = -NJ_ = -NJ, /(1 + Nx;)

. Jr = Jirr

/(1 + in) ' C O 6)
Substituting (4.6) into (4.5)

7)

Hy = He/(l + NX;) - NJ

r
This is equivalent to eq. 10.2 of Stacey and Banerjee (1974,
p-139).

Denote the observed susceptibility by Xo- BY definition
the induged magnetisation is XoHea and the total magnetisation

J = XOHe + Jr.

From  4)
J =X0He * Jr - XiHy ¥ Jipr
Using .6),7we have
one + Jr = XiHi + Jr(l + in)
.. one = xiHi + inJr = xi(Hi + NJr)
-7} gives
Hy + NI, = H_ /(1 + Ny,)

Sooxg = xg/ (1 + Nyxy) ’ . 8)



Solving . 8) for X
Xy = X/ (1 = Ny,) £.9)
Also
(1 + NXi) = Xi/xo = 1/(1 - NXO) 10)

We now consider the relationship between coercivity of
remanence Hcr and coercive force Hc' Let the poinf on the
intrinsic hysteresis loop from which the grain returns to the
demagnetised state upon removal of the applied field be
(-JD,—HiD). Clearly the cbrresponding external field is
-Hcr.

From .' 1)

. Hcr = HiD + NJD

The slope of the J—Hi curve through the origin is

(approximately) Xy .

A XiHiD

It £follows that

H,. = (1 + in)HiD 11)

From Fig. 1,

8 = Jp/(Hyp = Hy) = xyHyp/(H;p - H)
.. HiD = Hc/(l - xi/S) 0.12)
Substituting - 12) into 11)
Ho, = (1 + Nx;) H_/(1 - x;/8) 13)

As § > =, H =~ (1 + in)Hc, which is the relationship given

by Stacey and Banerjee (1974, p.82).



Substituting .9) into .13) we can relate N and S to

the observable guantities Hcr,Hc and X5

Ho, = H/[1 - x (N + 1/87] 14)

Although in 3Yand . .14) we have two equations involving
the unknowns N-and S, they are not independent and therefore
cannot be solved for N and S. However the model can be checked
experimentally for self-consistency by testing the following
relationships, derived from 3) and 14)

Hop = T H/ WTg = xoH) -15)

It is apparent from the above discussion that empirical
determination of N and S requirés additional information. This
information can be conveniently obtained from alternating field
demagnetisation, or from IRM acquisition curves.

First let us consider AF demagnetisation of saturation
remanence. The peak alternating field required to demagnetise
half the saturation remanence is known as the ﬁedian destructive

field (mdf) of SIRM, and is denoted by Hy .
2

Let U£ be the residual remanence after demagnetisation in
a peak alternating field H . From L7, as the field alternates
between iHe, the internal field of the grains varies between
the limits
- + . - ’ . . - r .
He/(l le) NJr < Hl < He/(l +le) NJr C . 16)

The magnitude of the internal field acting to demagnetise

the grain is therefore |- He/(l + in) - Jr | = He/(l + in) + NJ? .

The internal field corresponding to He = Hli is HiD' Whereas
a bC back-field reverses 50% of the original remanence, thereby
cancelling the residual remanence, an alternating internal

field equal to HiD randomises 50% of the remanence, leaving a



residual remanence of Jrs/2.

We have therefore

H%/(l + Nx;) + NJrs/2 = H,p

S Hp o= (Lo Nyy) (H - NIL_/2)

2

Using 10) and  11)

H = H_. - NJ,../2(1 - Nx.) 1T

The mdf of SIRM is,therefbre always less than the coercivity
of remanence. Tﬁe self—éemagnetisiﬁg factor N can be expressed
in terms of measurable parameters as

N =2(H, - H%)/Eﬁrs + 2% (Hyy - H%i] 18)

The coercivity of remanence acquisition H',,. is defined
as the external field required to produce IRM equal to 0.5Jrs
in an initially demagnetised specimen. During initial IRM
acquisition the applied field is opposed by the self-demagnetising
fields of the grains, whereas DC demagnetisation is assisted by

the self-demagnetising fields. Thus we expect IRM acgquisition

to be more difficult than DC demagnetisation, and consequently

,
H_.,. should be greater than H.p-

To calculate Hér we assume that the internal field

required to irreversibly displace domain walls from their

equilibrium positions in the demagnetised state (Jr = 0, He = 0),

such that Jr after removal of the applied field is 0.5 Jrs’ is
equal to the internal field which can reverse half the saturation
remanence. This is reasonable if the heights of potential

energy barriers separating stable positions of domain walls

are uncorrelated with the wall positions (and hence with the



magnetisation state). Whilst this probably does not apply to
individual grains, particularly if fhe crystal defects are
ordered, it should be true on average for an assemblage of
grains.

Alternatively we may ‘consider the approximation that the
effective fiela acting on grains with domains separated by
180° walls is the field component parallel to the domain
magnetisatién. This premise is reasonable for applied fields
insufficient to remove domain structure (i.e. within the
region of magnetisation by domain wall displacement). Then,
for a randomly oriented assemblage of identical giains the
internal field required to reverse 50% of domain magnetisations
will be independent of the initial magnetisation state. This
argument follows.from the principles discussed by Chikazumi and
Charap (1978, Ch. 12). | |

We therefore have, from = 7)

Hip = HL /(1 + Ny;) - NT__ /2
. Hé& #.(1 + in) (HiD +'NJrs/2)
from whiéh we obtain, using = 10) and . .11)
HY = Hyy + NI__/2(1 - Ny,) 19)
From 'l7) and 19)
Hé} -H,,. = NJrs/Z(l - Nxo) =H,, - H%, . 20)
o Hé; + H% = 2HCr .21)
Eqg. 21 is a theoretically derived relationship which

is empirically supported by the data of Dankers (1981) for
dispersed haematite, magnetite and titanomagnetite powders.

The relationship automatically holds for non-interacting SD




grains as Hc'r#Hcr*H!_i for this case (Wohlfarth, 1958)}. Thus
eq. 21 should be approximately satisfied for grains ranging
from SD to large MD sizes.

The relationships befween obsexvable hysteresis properties
and the fundamental parameters N and S given by 3), 8),

14), 15), and 17 - 20) are derived assuming the
applied field is parallel or antiparallel to the domain
magnetisations. In the case of MD titanomagnetites the above
relationships should apply gquite closely as the domain
magnetisations tend to be aligned by the applied field and
the hysteresis properties are dominated by domains which are
approximately aligned with the applied field. For example,-
the saturation remanence for a randomly oriented assemblage
of magnetite grains will be 0.87 of the value for an assemblage
of grains with domains aligned parallel to the field
(Chikazumi and Charap, 1978, p.251).

However, the rélationships between hysteresis parameters
will be significantly modified for a randomly oriented
assemblage of pyrrhotite grains as the magnetisation in fields
less than *20kG will be essentially confinea to the basal
plane.

We will denote the hysteresis properties of a randomly

oriented assemblage by 3& ’ HE etc. Let 9 be the angle

S
between the [00I] axis and the applied field H. The self-
demagnetising factor in £he basal plane is N and is assumed
to be isotropic.

In the basal plane Xg = xi/(l + in). The observed
susceptibility of a grain at angle & to the field is

xo(e) = xosinze. The susceptibility of the assemblage is



therefore

: /2
- _ : = f o 2a et =
Xo = Xo sin2g —J[ X, sin?e.sine de 2x,/3 22)
o

O

where we have integrated over a hemisphere. We have neglected
the contribution of susceptibility along [@0{] as this is two

orders of magnitude smaller than X3

e X T 2xi/3(l + in) 23)
To calculate the saturation remanence we neglect under-
saturation of the small fraction of grains with [00I] axes

lying in a narrow cone about H. The component of remanence

parallel to H of a grain atrangle 6 is then Jrssine.

: w/2
- —_ _n—-—= . e 2
NS . J, cSiné Jrs“L sin2e de

Il

ST ﬂJrs/4 . 24)

The maximum error due to undersaturation of grains which
have basal planes nearly perpendicular to H can be estimated

as follows.

 All grains with 8 » 6, = sin_l(Hsat/H) will be saturated,

where H__, is the saturating field within the basal plane.

The remanence attributed to these undersaturated grains in
- 8

the above integration is J °

s 2 - _ .
Jrs sin<0 de JrS(B0 51n60coseo)/2.

o

The error in J__ is less than this. For example H = 2H
rs sat

gives an upper limit to the error of 6%. H = 3HSat gives an

error of less than 2%.

In order to calculate the coercivity parameters of a
randomly oriented assemblage of non-interacting grains we
invoke the principle that the observed external hysteresis

loop is the superposition of the external hysteresis loops of
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individual grains or, in other words, the external hysteresis
loops of a grain at angle 8, integrated over all orientations.

Because only the component of ﬁ in the basal plane is
effective in taking a grain around its hysteresis loop, the
coercive force of a grain at angle 6 is given by Hc(e) = Hc/sine,
provided the grain has first been saturated in the forward
direction (Fig. 2a). Since Hc(e) > Hc the coercive force of
the assemblage will be greater than Hc, the basal plane
coercive force. Although the grains with basal planes almost
perpendicular to B Wili be-undersaturated (for instance as
6 + o0, Hc(e) approaches zero - not infinity as would be predicted
-from the formula Hc/sine), the contribution of these grains to
the magnetisation is negligible, as was seen above. ‘

Following saturation of the assemblage in the forward
direction the reverse field which reduces J to zero is by
definition H = _ﬁé' Define 01 by Hc(el) = ﬁé. Thus J(8;) = 0
when H = -H_(81) = _ﬁé .

The slope of the intrinsic hysteresis loop in the vicinity

of the coercive force point is S.

S J(8) = 5 [H (8) - Hi(elﬂ- (when H = -H )
- | =5 f?—ﬁESinB - NJ(8}) - (—ﬁésineli]
J. J{(e) = sH, [sine, - sine] - NS J(6)
solving for J(0): J(6) = SH, [sin®, - sing]/(1l + NS) 25)
Integrating over all orientations /2
J =J(8)sine = [Sﬁc/(l + NS) | (sin®,- sind)sin2ede

= sii, [wsingy/4 - 2/3] /(1 + NS)
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The condition J = 0 gives sine; = 8/3w.

<. H, = Hc/51n81

3ﬁHc/8 = l.lSHc 26)
Although this estimate of ﬁe is an upper limit the error is

clearly not large as we expect ﬁe > Hc.
From - 3), . 24) and  26)

Jeg = Zﬁe/B(N + 1/8) 27)

We now consider the coercivity of remanence ﬁer of the

assemblage. Following saturation, let J(8,) = 0 when H = H__.

Then H_.sin6, = Hc , Or siné, = Hc/Hc/Hcr.

For H = -H__: J(8) = sﬁcr [sine, - sind]/(1/ + NS)

The remanence is given by

Jr(B) = J(e) - Jind(e) )
S J.(e) = Sﬁer[éinez - sing]/(l + NS) + x; ﬁcrsinB/(l + Nx;)
)2 )
3. =,§ 3. (0)sine - sinede = SH,, [rsine,/4 - 2/3]/(1 + NS)
0
- + 2y H L /3(1 + Nx;) 28)
Substituting sing, = Hc/ﬁér into 28)

J, = 2H__ [x;/(L + mx;) - 8/(1 + NS)[/3 + TSH_/4 (1 + NS)
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The condition 3¥ = 0 gives, taking into account 13)

ﬁﬁr = (1 + Nx;) (3%H_/8)/(L - x;/8) = 1.18H__

SOH, = (1 + Nxg) B /(L - x;/8)

which is identiczl in form to 13).

Substituting 23) into 30) gives

ﬁcr = 2ﬁc/ 2 - 33{0 (N + 1/8)]

In order to obtain an expression for the coercivity of
remanence acquisition ﬁér of the assemblage we assume the

initial magnetisation curve obeys Rayleigh's relations up to

= . - T’
Jr JrS/Z. Therefore He Hcr

J . (8) = (1/2)n [H(8)]% = (1/2)n (H] sino)?

Where n is the Rayleigh coefficient, which is obtainable from
the relationships pertaining to the basal plane

Jp = J.g/2 =(1/2)n ()2

- ry2
Soom Jrs/(Hcr)

. = = £y 2 a2
From 32) and 33): Jr(e) (l/2)JrS (Hér/Hcr) sin<a

= _ e T o,
S, (1/2}Jrs (Hcr/Hcr) sin®9 (3ﬂJrS/32)(Hcr/Hcr)

29)

30)

. 31}

32)

33)
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L] . > el -— — ey — - _'

From the definition of Ho, v I, =3,./2 = nJ /8 when H, = H/_

.. ] r —

S (H L /HD) 4/3

g’
cr = 1.15 H!
cr

Substituting 19) into 34)

Hér = 1.15 (Hcr + NJrs/Z(l - Nxo))

Using 3) Ec':r = 1.15 E{cr + NH_/ (2 (N+1/S) (1-Nx,) )]

Substituting © 26} and .29) into 36)

Hy = (1.15/1.18) |H,, + NE_/(2(N+1/5) (1-Nx) 1]

Also, from - 23), 24), 26) and .35)

H = 0.98 h{cr + 3NJrS/(4—6NxO)]

- - ITr _-— ~ =~ _ -
SoOTHL - H . = 3NT_/(4-6NY)

: - — or - - v T’ — —_
Solving for N: N = 4(H) - H,.)/[37., + 6x (H - H_,)]

Thus the within-basal plane self-demagnetising factor N

is in principle determinable from the observed hysteresis

34)

-35)

36)

.37)

38)

39) .

.40)
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arameters H'
P Hcr ' Yer

. Ers and ;6 .
The parameter S may then be calculated from 27) as
s = 20,37, - N
However S is difficult to determine accurately as it
depends on the difference of two similar guantities.
Measurements of ﬁ; are biased toﬁards the softer'gfains and
the consequent underestimation can lead to large errors in S.

For the randomly oriented assemblage the relationship

corresponding to 15) is identical in form, viz:

Hoy = JpgHe/ (Tpg™XoH,) 42)

ocC

For a randomly oriented assemblage the median destructive
field of SIRM depends on the mode of AF demagnetisation. For
a fixed peak field, tumbling demagnetisation is more effective
than 3-axis demagnetisation, which in turn is more effective

than single-axis demagnetisation (McFadden, 1981). 1In the

case of tumbling demagnetisation all grains are exposed to

r

the peak field. Therefore in this case y = H% .
From 17): ﬁ% = H_, - NJ__/2(1-Nx,)
Using 22), = .24) and 29):
jﬁ% = (8/3 ) [E_, - 3NT__/(4-6Nx_ )]  (tumbling) 43)
Substituting ~ 39) into 43)
H = 0.85 (2H,

- H.) (tumbling) 44
We now consider single-axis demagnetisation of SIRM,

where the demagnetisation is along the SIRM direction. Only

the field component in the basal plane of a grain is effective

in demagnetising the grain. Calculation of the effective mdf

of the assemblage in this case requires a model for the

coercivity spectrum of the grains or, equivalently, knowledge
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of the average slope (the incremental susceptibility) of the
minor hysteresis loops around which the grains are taken
during AF demagnetisation.

Fig. 2b illustrates this point. Initially as the
effective externgl field He-+—ﬁ%sine, the grain descends
the side of the saturation loop and the magnetisation decreases
from Jrs to J,(6). The grain then travels around the minor
loop with average élope ¥, the magnetisation varying between
Jl(e)} and Jz(ﬁ) as the effecti;e épplied field varies between
the limits iﬁ%sine. AIn general ﬁe expect y to depend on the
initial magnetisation Jl(e) of the minor loop, and hence on §.
If y is constant apd equal to_xi, cpnsideration of similar

triangles in Fig. .2b gives for the field component Hl/n

required to reduce the SIRM to 1/n of its initial value:

H Vn = Hcr(l—-Vn). This corresponds to a linear demagnetisation

curve and a uniform AF coercivity spectrum. In particular for

this case H% = Hcr/2 gnd H% = Hcr/z. Real demagnetisation
curves are generally concave upwards and approximately
exponential in form, implying x is not constant.

However, since we have established that the ratios
o T or ’ : :
HC/HC, H‘cr/Hcr and Hcr/Hcr are almost equal, averaging 1.17,
it is reasonable to expect that ﬁ; is slightly more than H, by

2 2

about the same factor. Therefore the relationships - 20) and

21) should hold approximately for randomly oriented

assemblages.

2. H . + H% & ZHCr {single—axis) " ..45)
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From 44) and 45) we have

ﬁ%(tumbling)/ﬁ%(single-axis) = 0.85 46)

We now consider the approach to saturation of a randomly
oriented assemblage. Within the basal plane the approach of
the magnetisation to technical saturation goes approximately
as J, [1-b/HZ] (Chikazumi and Charap, 1978, p.275), where b
is related to magnetocrystalline anisotropy constants. Assuming
all grains are in the fange of rotation magnetisation where
this relationship is obeyed, the magnetisation of a grain at
angle ® to H is Js[i—b/(Hsine)gj.

Integrating over all orientations gives

J =3, (“ﬂ@ - b/H2s8in?6]sin?040 = J_[n/4 - wb/2H7]

Yo .

The saturation magnetisation of the assemblage is

J551n9 = ﬂJs/4

S d =731 - 2b/uZ] 47)

It follows immediately from .47) that b = 2b .48)

2 Magnetic hysteresis parameters of SD grains

The hysteresis properties of SD grains which have an easy
plane of magnetisation havé been discussed by Dunlop (1971)
with regard to fine-grained haematite. He.considers the
cases of uniaxial, trigonal and triaxial (hexagonal) anisotropy
within the basal plane. The results for uniaxial anisotropy
pertain to SD pyrrhotite, the orthorhawbic a-axis defining the

easy direction of magnetisation.

Magnetocrystalline anisotropy dominates the basal plane
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anisotropy of SD pyrrhotite, shape and.strain anisotropies
being relegated to a secondary role. The maximum shape
anisotropy K. = nJé = 3 x 10%erg/cmd for needle-like grains,
whereas for a stress ¢ of 10° dyne/cm? the strain anisotropy
K = x¢ ~ 10" erg/cm3. These values compare with

K, ~3x 10° erg/cm3 for magnetocrystalline anisotropy.

In section .1 we considered the case where the applied
field is insufficient to pull the grain moments out of the
basal plane and this assumbtion will also apply to the
discussion of SD grains. For pyrrhotite the anisotropy

field along [00l] is given by H

A m2K3/JS ~ 60kG, so the

assumption is justified for hysteresis properties measured in
fields up to “10kG. Dunlop (1971) also treats the alternative
extreme where the grain moments are pulled out of the basal
plane into perfect alignment with the field.

SD pyrrhotite grains have zero low field susgeptibility
along the a-axis and negligible susceptibility along the
c~axis. _The susceptibility along the b-axis is found by
minimising the total energy (magnetostatic + magnetocrystalline)
for a field H along the b-axis. Denote the azimuﬁhal angle
of the gfain magnetic moment Within the basal plane, measured
from the a-axis, by ¢. The stable position of the moment is
then obtained by differentiating E = K;sin2¢ - HJ sin$, and eguating
to zero.

This gives sing = HT /2K,

The induced magnetisation component parallel to H is
J551n¢.

— 1 = 2
.. Xp J351n¢/H Js/2K1 49)
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In order to calculate the susceptibility of a raﬁdomly
oriented assemblage, it is simpler to consider a fixed grain
and a randomly oriented field direction. If ﬁ makes an angle
9 with the c-axis the component of ﬁ along the b-axis is
Hsinesing , where 4§ is the angle from the a-axis to the basal
plane projection of ﬁ, as above. The induced magnetisation
along the b-axis is then businesin¢ and the component of
induced magnetisation along ﬁ is then businesin¢ + sinesing.
Therefore the effective susceptibility along the direction
(6,4) is xbsinzﬂsin2¢.

By symmetry it is only necessary to integrate over a

hemisphere, giving

2 ~w/2 _
x = (1/2%) J f xbsin2esin2¢d9d¢
Yo o) '
- T = = 2
oo x = xb/3 J5/6K1 50)

When H is along the b- or c-axis the grain exhibits no
hysteresis. The total energy of a grain magnetised initially

along [100] with a back field H along [100] is E=K;sin2j + HJ_cos¢.

Consideration of conditions for stable equilibrium gives for
the critical field required to reverse the magnetisation,
H, = 2K1/J5' The coercive force ﬁé of the randomly oriented

assemblage is approximately Hc/2.
.. H, = Kl/JS ' ~.51)

Substituting numerical values (JS = 93G, K;= 3 x 10%erg/cm3)
into 50) and 51) gives x = 4.8 x 10 3 and ﬁé = 3,200 Oe.

Dunlop (1971) gives the following expression for ﬁEr

H . = 1.29K;/J 52)
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3 Self-demagnetisation of MD Grains

Theories of hysteresis and thermoremanence of MD grains
have hitherto relied on certain assumptions concerning the
effects of self-demagnetisation (e.g. Néel, 1955; Stacey and
Banerjee, 1974). Although the self-demagnetising field of
inhomogenously magnetised Qrains is non-uniform, én averaged
back-field has been implicitly considered to control the
properties of the grains, and self-demagnetising factors
derived for uniformly magnetised ellipsoids which approximate
the (generally irregular) shapes of the grains have been used
for quantitative analysis. The ellipsoidal approximation is
justified for SD grains, as an equivalent ellipsoid can be
found with axial ratios such that the total magnetostatic
energy (self-energy plus potential energylin the applied field)
is always equal to that of a uniformly magnetised irregular
grain of the same volume (Brown and Morrish, 1957). However
this result does not hold for inhomogeneous magnetisation.

Merrill (1977, 1981) has criticised conventiocnal MD
theories and has shown that, far from being constant and
uniquely determined by grain shape, the'effective self-
demagnétising factor must Vary with the maghetisatiqn and be
highly sensitive to domain structure. For example, the
magnetostatic energy density for a platy two domain grain
magnetised along the short axis decreases as the oblateness
of the grain increases - behaviour which is precisely opposite
to that for a uniformly magnetised grain. The effective
self-demagnetising factor is a minimum when the grain is in

the demagnetised state, approaching the value applicable to
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SD grains as the applied field increases and the domain wall
moves towards the edge of thergrain.

However, as the number of domains in a grain becomes
large the self—demégnetiéing factor approaches that for a
uniformly magnetised grain of the same shape. It is
intuitively reasonable that, as free magnetic poles of opposite
sign at thergrain surface become more intimately intermixed,
the averaged self-demagnetising field becomes essentially
determined by the nett surface pole density or, which comes
to the same thing, by the bulk magnetisation. It is for this
reason that shape anisotropy of 5D grains is a meaningful
concept, in spite of the gross inhomogeneity of magnetiéation
on an atomic scale, and maghetometric measurements on macroscopic
ellipsoidal specimens of permeable materials conform closely
to theory, although the magnetisation is non-uniform on a
microscopic scale.

It follows that conventional shape-dependent demagnetising
factors may be a reasonable approximation for sufficiently
large Mﬁ grains, but will fall down for grains containing only
a few domain walls. Particulérly for small MD grains, additional
complications concern pbssible inadequacy of averaged values
of N if magnetisation proceéses are controlled by local fields
acting on domain walls and interdependence of domain wall
displacements involving co-operative behaviour.

Support for these arguments can be found both in
experimental measurements on MD grains and in some rigorous
theoretical results. Besnus (1962) determined the magnetisation

curve for a large pyrrhotite crystal in the form of a sphere



21

3.9 mm in diameter. For the initial magnetisation curve

the results imply an empirical value of 41/3 for N, in

agreement with the value for uniform magnetisation; Because

the self-demagnetising factor is also 4w/3 when the grain is
saturated, N must have a minimum value at some intermediate
field strength, when there are only a few domain walls remaining.

Kooy and Enz (1960) derived the surface density of
magnetostatic energy for an infinite plate containing lamellar
domains of alternating polarity, magnetised normal to the
plate. The theory was substantiated by measurements on a
thin platelet of barium hexaferrite. From the theoretical
expression for magnetostatic energy it is easily shown that
N approaches 47 as the width of the domains becomes small
compared to the plate thickness. This theory has been
generalised by Craik and McIntyre (1969).

We now turn to the problem of empirical estimation of
self-demagnetising factors for dispersions of MD grains.
Smith and Merrill (1982) have shown that attempts (e.q.
Parry, 1980) to estimate N from the relationships Jrs = Hd/N
and Hcr = Hc/(l-ng) are, firstly, not indépendent and,
secondly, are inaccurate if the sides of the saturation
intrinsic hysteresis loop depart significantly from the
vertical. |

The theory developed in Section 1l offers a method
for estimation of an average value of N for an assemblage of
MD grains. It must be stressed that a number of assumptions
are involved in the derivation of eq. 40 which may lead

to inaccuracies in values of N deduced from experimental
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data. We have assumed that a2 single value of N is applicable
to a grain in the initially demagnetised state, along the
critical magnetisation curve up to J = Jré/z and in the
vicinity ofAthe coercive force point. Although this is not
strictly true the variations shouid be small for grains
containing many domains. For small MD grains the-empirical
value of N will represent some scrt of average around the
hysteresis loop. We have also assumed linearity of reversible
magnetisation in applied field and we have neglected curvature
of the sides of the hysteresis loop.

The experimental data offer-support for approximate
validity of these assumptions. Values of n estimated from
IRMs acquired in 50 - 100 oe using eq. 2" are only slightly
lower than those determined in the range 0 - 10 oe, even
though Rayleigh's relations are only strictly satisfied in
fields whichrare smali compared to Hc. This is consistent
with linearity of reversible magnetisation from 0 to "100 oe,
and possibly beyond. The close agreement between measured
and calculated values.of H.or (Table ~ 6') confirms -eq. 42
and demonstrates self-consistency of the theory. The
agreement between eq. 45 and the experimental results
(Table 6%) also gives general support to the assumptions of
the theory, but in particular lends credence to the argument
relating HiD and Hér . It shcould be noted that the ratio
(Hér - Hcr)/(HCr - H%) is a more sensitive indicator of
discrepancies between theory and experiment and for some
specimens (notably R12, R14 and R16) this ratio departs

significantly from the predicted value of unity.
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An experimental result which is not in very good accord
with the theory involves the relationship between median
destructive fields for tumbling and single-axis demagnetisation.
The empiricai yalues of Hé/H% are about 0.6, significantly
less than the value of 0.85 predicted by eq. 46.

The theory of Section .1 should therefore be regarded as
semi-quantitative. It offers an explanation of the empirical

relationship H35 < H < Hér for MD grains, and allows at least

cr
an order-of-magnitude empirical estimate of N. This is
particularly important because rigorous alternatives appear
to be lacking (Smith and Merrill, 1982).
| Dankers (1981) did not consider self-demagnetisation in
analysing his experimental results. Instead he invoked
magnetostatic interactions between grains to explain the
relationship 45) which he found to apply to MD magnetite
and titanomagnetite. This was by analogy with the case of

interacting SD particles (for which Hy <H, ). However Dankers'
2

r
explanation is based on an erroneous interpretation of the
local field acting on a grain (see Brown (1962, pp. 38-42)

for discussion of local fields). Furthermofe for particular
magnetite grain size fractions H . tends to decrease and Hy
tends to increase with packing density, whereas increasing
the magnetite content should increase Hér/H% if grain inter-
actions are responsible for the behaviour described by . 45).
The work of Luce (1980} also suggests that the role of inter-
actions in rock magnetism may have been commonly exaggerated.

On the other hand, the experimental results are readily
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explained on the basis of self-demagnetisation because higher
packing densities lower the effective self-demagnetising factor
{Morrish and Watt, 1957). From - 20} and 10) 7
H,. _ H, = NJ__(1 + Nx;)/2 which clearly decreases monotonical;y
as N decreases with higher packing density.

Applying eq. . 18 to the data of Parry (1980). we deduce
N = 3 for magnetite grains ranging from 220um to l.5um. This
ig in good agreement with the wvalues calculated by that author
on the basis of theoretical relationships given by Stacey and
Banerijee (1974), which explicitly assume S = «. The reason
for this agreement is that xi‘“l for MD magnetite, S>>x; and
therefore N + 1/5 = N. For the case of pyrrhotite, however,
neglect of the finite slope of the intrinsic hysteresis loop
around the coercive force point leads to large errors in
estimation of N.

Estimates of N, S and S/Xi for each of the sized pyrrhotite
specimens are given in Table 1. Except for the coarsest
grains 1/S is comparable to, or exceeds, N and the simplified
theory of Stacey and Banerjee (1974) clearly breaks down. Errors
in the cited values are difficult to estima£e. Values of N
greater than "4 for the coarsef grain sizes seem rather high,
although they do not exceed conceivable bounds. If the
assumptions of Section 1 were totally uhrealistic there
would be no reason for eq. 40 to yield sensible values for
N. This in itself gives some confidence in the reasoning of
Section 1. For the cases where N is ill-defined due to
departures from ideal behavicur (specimens R12 - R16) the
upper values are preferred as they are more consistent with

values for the other specimens.
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S is almost certéinly overestimated because of the
tendency for HC to be biased +towards the softer grains in
an assemblage. This effect is most severe for the coarser
grain sizes, and becomes much less significant for S<<l

(e.g. for specimens R12 - R17).
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4 Domain Structure in monoclinic pyrrhotite

Besnus (1959, 1966) has described the domain structure.of
large cryétals of monoclinic pyrrhotite as revealed by the
Bitter pattern technique. Natural crystals are almost
invariably twinned ; consisting of approximately equal
proportions of lamellar twins (~3um thick) with orthorhombic
symmetry parallel to the basal plane of the pyrrhotite structure.
The twins are stacked along the c-axis with an angle of 120°
between the a-axes of successive members, producing an overall
hexagonal symmetry for the crystal. Each twin is subdivided
into rod-like magnetic domains parallel to the easy direction,
separated by 180° walls which contain the a- and c- axes.
Closure domains are rare. This simple domain structure is
readily understood on the basis of the strong uniaxial basal
plane anistropy and the relatively low spontaneous magnetisation
of pyrrhotite.

Soffel (19?7, 1981) has described domain structures in
small pyrrhotite grains (<2um ~ 200um). Because of the low
magnetosériction of pyrrhotite, domain structure was clearly
revealed by magnetic colloid distribution (Bitter patterns)
on mechanically polished surfaces. Special techniques such
as ionic polishing to obtain strain-free surfaces were
unnecessary. A.simple domain structure cohsisting essentially
of parallel rod-like or sheet-like domains was observed down
to the critical SD size of ~1.6um. Observation of wall
movement in applied fields revealed a wide range of critical
fields for different domain walls within grains. Higher
coercivities, corresponding to pseudo single domain (PSD)

effects, were associated with walls whose motion is impeded
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by non-magnetic inclusions or surface irregularities.

Halgedahl and Fuiler (1981) studied domain structure in
polycrystalline pyrrhotite. The domain pattern was found
to depend on the method employed to demagnetise the specimen.
Following AF demagnetisation a simple structure was obsefved
with rod-like or sheet-like domains separated by straight
parallel 180° walls. However, after thermal demagnetisation
the pattern was less regular, the 180° walls were somewhat
undulatory and individual domains were truncated by irregular,
extremely mobile walls which could be displaced in a few oersteds.
The 180o walls, on the other hand, require fields of several
tens of oersteds to be visibly displaced. This work provides
an excellent illustration of the long recognised fact that
magnetic properties of materials depend on the path by which
the initially demagnetised state is attained.

We now proceed to calculate domain wall width and energy
in pyrrhotite. A 180° wall in pyrrhotite consists of parallel
planes, normal to the orthorhombic b-axis, separated by b/4 =Aa/2.

In successive planes the spins rotate progressively
out of the basal plane, maintaining antiparallelism in
alternate layers along the c-axis. This gradual rotation of
spins out of the easy plane incurs a considerable increase of
magnetocrystalline anistropy energy but avoids production of
free poles within the wall, and is therefore favoured over
rotation of spins within the basal plane (which would have
magnetisation with non-zero divergence, thereby increasing

the magnetostatic energy).
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Adopting the approximation of constant small increments
e in angle from the basal plane in successive planes of spins
(cf. Stacey and Banerjee, 1974, pp. 53-55), the excess exchange
energy of a line of n spins of magnitude § is Jeszazn== Jeszwz/n
where Je is the exchange integral.

Each layer of the wall coﬁsists of a rectangular array
of spins with lattice constants v3A and C/2, 8o unit area of
the wall contains 1/(v3A.C/2) = 2/V/3AC spins.

The exchange energy per'unit area of wall is therefore

— 2.2
Eg, = 2J.8% /¥3 nAC (53)

. The anisotropy energy density at any point within the
wall is K3 sin?y + K,sin%y, where ¢ is the angle between the
spins and the easy direction. Averaging throughout the wall

the anisotropy energy per unit volume of the wall is therefore

M

K = (l/ﬂ)f (KgSinqu + KqSil‘lq\b) dy =(4K3+ 3Kr+)/8
O

The anisotropy energy per unit area is then

E s = (4K3 + 3Ky)/8 ° (nA/2) = nA(4K; + 3Ky4)/16 54)

Differentiating the total energy with respect to n and

equating to zero gives

n = (4n/n) [2J_82/CY3 (4K3 + 3Ky 17 55)
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The domain wall thickness § = na/2

S8 = 6.8 [J_S2/C (4K3 + 3K,)17 56)

The wall energy per unit area is

P
= ) = 2 2
Y ox T Eaniso (n/g) [2T7 5% (4K3 + 3K,)/C7¥3]
1,
.z y=1.7 [Je52(4K3 + 3Ky)/C17* 57)

Taking J_/k = 20K, k = 1.38 x 10 !¢ erg/K, §=1.2, C = 6x10 8cm
and 4K3 + 3Ky = 2 x 107 erg/cm® gives 6 = 4 x 10 7em = 40AU
“and vy = 1.9 erg/cm?. The wall is therefore quite thin
(n= 24, 8 = 12A) due to the large magnetocrystalline anisotropy.
The wall energy is typical of ferro- and ferrimagnetic substances.
The critical SD size dC is given by (Stacey and Banerijee,
1974, p.59)

o 2
dc o l.3y/JS 58

Substitution of numérical values gives dc = 2.9um for
pyrrhotite. Soffel (1977) found empirically d, = 1l.6um,
which corresponds to y = 1 erg/cm?2. 1In vieﬁ of all the
uncertainties surrounding theoretical estimation of dc the
agreement between theory and experiment is satisfactory.

Now let us consider a cubic grain of side d containing
n’ lamellar or rod-like domains. The magnetostatic energy
per unit cross-section area Em of a large grain with lamellar
or checkerboard domain structure is proportional to the

domain width d, = d/n" (Chikazumi and Charap, 1978, p.211).
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S B = wd/D’ | 59)

where o is a constant dependent on the domain geometry. There
are n'-1 domain walls each with wall energy yd?. Therefore

the domain wall energy per unit cross-section area is given

by

Em = (n'"-1)yd2/42 =~ n'y . 60)
The total surface density of energy E is

E = Em + Em = {(ad/n’) + n'y .61)

The value -cf n’ which minimises the total energy for given

grain size is found by differentiating E with respect to n’ and

equating to zero, giving

n' = (ed/y)* 62)
' L
L. do = d(y/cd)” = (Yd/u)% 63)
From 63) we expect the domain width in MD grains to

vary approximately as the square root of the grain size. The

empirical relationship between n’ and d found by Soffel (1977)

is in reasonable agreement with 62) . Taking the mean size
of grains containing 10 domains as 50um gives
n = 1.4(51;i
(dimensions in um) 64)
= ( 7d%
d, = 0.

5 Coercive force and intrinsic susceptibility

The susceptibility and coercive force of a randomly

oriented assemblage of stable SD grains are given by 50)
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and : 51) respectively. In MD grains domain wall displacement
contributes to the intrinsic susceptibility along with domain
rotation and the obsérved susceptibility is controlled by
self-demagnetisation of the grains.

Coercive force in MD grains is due to energy barriers
which impede domain wall movement and is therefore inversely
correlatedrwith susceptibility.

Theories of coercive force in MD materials fall into two
categories: strain models and inclusion models. In strain
models H, is correlated with magnetostriction A, whereas in
_ inclusion models H, is dominantly controlled by magnetocrystalline
anistropy. |

Although there are many variants of these basic types of
model the general features of MD theories of coercive force
are well illustrated by the dispersed field models of Néel
(1946, 1949). The energy of a domain wall is envisaged to
vary with position due to fluctuations in direction and
magnitude of Jg associated with inhomogeneously distributed
stresses'and non-magnetic inclusions. The expressions given
are

— N 22 gl [ - 2 5
Strain: H_ = 0.19A2s2f'[1.39 + ln(l+21TJS/IKl) l/lKiJs 659

L
Inclusions: H_ = 2 |K|f10.39 + 1n(1+2nJ§/|K[)21/wJs 66)
where f' is the volume fraction affected by stress

variations of magnitude S, and £ is the volume fraction of

inclusions.
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The logarithmic terms in 65) and .66} differ from

the final equations derived by Néel (1946) in that, for the
cases considered by him, the arguments of the logarithms are
much greater than one and the additive term of unity could
be neglected,-whereas we require the more general form. The
order of magnitude of the numerical constants in these
equations is not significantly affected by the different
approximations applicable to iron and nickel, on the one
hand, and pyrrhotite on the other.

Substitution of numerical values (A=10"3%, s=10% .dyne/cm?,
K=K3=3x10® erg/cm3, J,=93G) into 65) and 66) gives
H, = 0.1f' and Hc = 8200 £ respectively. Clearly strain models
cannot account for the coercive force of MD pyrrhotite, even
when rather high internal stresses are assumed. On the other
hand relatively small volume fractions of inclusions can
explain the observed éoercive force of MD pyrrhotite. The
pinning of domain walls by non-magnetic inclusions in
pyrrhotite has been directly demonstrated by Soffel (1977).

Although the calculations above can give the correct
order of magnitude for the coercive force of bulk materials
they do not take into account the dependence of fluctuations
of wall energy density with wall area, and hence with grain

size. Experimentally it is found that H, = da™", where

n = 0.8 for pyrrhotite grains smaller than about 100um.
Stacey and Banerjee (1974, pp.66-69) show that
n = .{l-m), where { is related to domain geometry and m

depends on the distribution of the crystal defects which

control the coercive force. The parameter [ varies from
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zero if domain size is independent of grain size to a maximum

of two if lamellar domains extend right across the grain,
whereas m varies from 0.5 if the defects are randomly
distributed to 1 for a perfectly ordered array of defects.
If we assume lamellar domain structure, we have m= 0.6
suggesting that the inclusions which are responsible for Hc
are more or less disordered in pyrrhotite.

The intrinsic susceptibility Xp parallel to the b-axis
of an untwinned pyrrhotite grain is given by 49) as
932/6x10° = 1.44x102. Due to.self—demégnetisation, in MD
~grains this is reduced to an effective value xb/(1+Nxb).
The contribution of domain moment rotation to the observed
susceptibility of a random assemblage is one third of this,
or xb/3(1+Nxb); Similarly the contribution of domain wall
displacement to the observed susceptibility is xa/3(l+Nxa).
N is assumed to be isotropic within the basal plane. Since

the susceptibility along the c-axis is negligible, we have

Xo = [xg/(1+Nx,) + x/(1+Nx,)1/3

from which we obtain

(Untwinned) x, = [3%, = xu/ (14Nx) 1/ 11-N(3X, =,/ (1+Nx)) ]

Thus we can determine x_, from i;.

Large grains may possess a triad twin structure with

equal proportions of 120° twins. In this case the intrinsic

susceptibility due to wall displacement is isotropic within

67)

-68)
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the basal plane and is equal to X; = {(1/3) (xa+2xac052120°) = xy/2-

Similarly xg = Xb/2. The isotropic intrinsic susceptibility

within the basal plane is therefore Xy = (xa+xb)/2. From 23)
we have
3x,/2 = xy/(1+Ny;) = (xa+xb)/(2+N(xa+xb)) | 69)

which gives

{Triad structure)_xé = 6}6/(2-3N§;) = Xp 70)

Calculated wvalues of Xg for the specimens containing only
MD grains, based on data in Tables Z*and 1, are given in
Table 2. 1In all cases Xy * Xpr implying that magnetisation
processes in low fields are dominated by domain wall displacement,
particularly for the larger grains. The calculated values of
Xa are slightly lower if a triad twin structure is assumed than
if the grains are assumed to be untwinned.

The guality Xch is practically independent of grain size
from ~“7um to ~80pm. A simplified model of domain-wall dis-
placement (Stacey and Banerjee, 1974, pp.73-74) leads to the

expression

| xch = (n"/v) Ath/w 71)

where n’/v is the number of favourably oriented domain walls

of area A, and t is the average separation of the energy

minima.
From Table 2, Xch ~12. Substituting this into 71)
with n' = 10 for a 50pm grain gives t~2um and with n’ =1 for

a 2ym grain gives t ~” 0.8um. These values for the typical
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spacing of energy minima are an order of magnitude larger than
for magnetite (~0.15um). In magnetite energy barriers to

wall motion appear to result from superposition of ihteractions
between the wall and a partially ordered array of dislocations,
each of which produces an energy well comparable in width to

a domain wall (Stacey and Banerjee, 1974, pp.57-62). The
difference in t for pyrrhotite and magnetite presumably
reflects a difference in the mechanism controlling coercive
force. It seems that the non-magnetic inclusions or zones of
anomalous spontaneous magnetisation which pin domain walls

in pyrrhotite may be quite large, up to several microns

across.

The discreteness of stable domain wall positions gives
rise to the Barkhausen effect (the manner by which initial
magnetisation curves pf ferromagnetics are not smooth, but
consist instead of a number of small discontinuous 3jumps).
Barkhausen discreteness is impbrtant in small pyrrhotite
grains as it produces a strong PSD moment. The average
displaceﬁent of the wall from the mid-point of a TD grain,
which is the position corresponding to zero nett moment, is
t/4 (Stacey and Banerjee, 1974,'9.62). If we consider a
cubic 2um pyrrhotite grain with a single domain wall, the
average PSD moment due to Barkhausen discreteness is
27 At/4 = 1.5x10 ¥ emu, which is 20% of the moment the grain
would have if it were uniformly magnetised and is comparable
to the moment of a 1.2um cubic SD grain.

By comparison the moment of the domain wall itself, which
is directed along the c-axis perpendicular to the Barkhausen

moment, 1is approximately ZJSAS/n (Stacey and Banerjee, 1974,
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pp.60-61). Numerical substitution gives 1.2x10 1?emu for
the wall moment, which is therefore negligible compared to

the Barkhausen moment along the a-axis.

6 Palaecomagnetic stability of pyrrhotite

Because of the”rélatively large coercive forcg of
pyrrhotite grains smaller than'IOOpm_we expect remanence
cafried by fhese grains to be very stable at ambient temper-
atures. In thérabsence of an applied field the remanencé of
an assemblage of identical_grainé approaches zero exponentially

with time constant T given by (e.g. Dunlop, 1976)
T = (l/2fo) exp (E/kT) 72)

where f_ is a frequency factor of the order of 10'0Hz and E
is the energy barrier between stable states. Eq. 72} is
cominated byrthe exponential factor and fo' which is a
weakly wvarying function of volume, temperature and coercive
force, can be regarded as effectively constant.

For -SD grains E is the energy barrier between easy
directions of magnetisation. For SD pyrrhotite grains of
volume v, E = (K;+K:)v.=3.8 x 10°v. The SPM threshold size
at 300K Eor spherical grains can be calculated by setting
T = 1s in 72). Solving for v gives 2.6 x 10"18cm3;
corresponding to dspm = 1.7 x 10 ®cm {(0.027um).

Precise knowledge of f_  is unnecessary as choosing £, = 1012Hz,
for example, gives dspm = 1.8 x 10 %cm, which is only

slightly different from the value above. Similarly changing

1 somewhat makes little difference +to the calculated dspm‘
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However grains only slightly larger than the SPM threshold
size are very stable. For instance for 0.04um grains
T~ 10200g,

For the case of MD grains E = v is

HC/Z, where v

acth act

the volume éffected by a single thermal activation event
" (bunlop, 1976}. A TD grain 2um across has t ~ 0.8um, so
Vioep ® 0.8 x 107 %x 4 x 1078~ 3 x 1012 cm®. Taking

Jg = 93G, H, = 800 oe and substituting into 72) gives a
huge value for t. Massive coarse grained pyrrhotite is
much softer with,typiéally,Hc ~ 10 oe. However, even

assuming Vv

act is no larger for this material than for small

MD grains, 72) shows the remanence is unaffected by thermal
agitation at ambient temperatures over geological time.

This conclusion must be dfastically modified at higher
temperatures. Because of the relatively low Curie temperature
("3250C) of pyrrhotité and the.rapid decrease in JS,Kl,Ké and
H, as the Curie pbint is approached, pyrrhotite is easily
reset by loﬁ grade thermal events. Considering again
sphericai 0.04um grains which are very stable at 300K, K, +K,
is ~0.9 x 10% erg/m3 at T = 523K (250°C) (Besnus, 1966),
giving 1~ 7 x 107s, or about 2 years. Clearly regional
metamorphism attaining ~250°C would completely reset any

palaeomagnetic signal carried by these grains.
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The survival potential of primary NRM as a function of
regional metamorphic gréde is summarised in Table 3. The
table shows, for example, that for a primary remanence to
have'survived prehnite facies metamorphism at 200°C for 106
yearsrthe laboratory unblocking temperature must be greater
than 260°C.

Biocking contours for reménence carried by pyrrhotite
are shown in the thermal activation nomogram (Fig. 3).
This‘diagram is analogous to those of Dunleop and Buchan
(1977) for magnetite and haematite. The contours are derived
for SD grains by assuming a grain volume and calculating
values of t corresponding to chosen values of T, using
eq. 72. Each contour corresponds to a different grain
size. The temperature variation of Js, K1 and K, for
monoclinic pyrrhotite are taken from Besnus (1966).

The left of the diagram where the contours have shallow
slope (the B field) corresponds to grains which are easily
reset at temperatures well below the original blocking
tempéraéure. Time is the dominant resetting factor in the
B region, which is therefore characterised by viscous
remanence.

By contrast, the A region (where the contours are steep)
corresponds to thermally stable magnetisation. Temperature,
not time, is most effective in resetting magnetisations in
this region of the diagram. In the A region the laboratory
unblocking temperature of magnetisation is a good indicator
of the acquisition blocking temperature, whereas in the B

region the laboratory unblocking temperature is much higher
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than the temperature:at which the magnetisation was acgquired
(assuming a prolonged acquisition period).

However monoclinic pyrrhotite is chemically unstable
above ~250° and natural remanence acguired on
cooling will-generally be thermochemical in nature. Thus
the greater portion of the A region in Fig. 2 is not
applicable to remanence carried by monoclinic pyrrhotite.
Furthermore primary remanence cannot survive regional

~metamorphism above lower pumpellyite facies (T<250°C) .

7 Remanence intensity and Koenigsberger ratio

For an assemblage of randomly oriented identical uniaxial
SD particles the thermoremanence acquired on cooling from

above the blocking temperature T, to room temperature in a

B
low field H is given by (Stacey and Banerjee, 1974, p. 107)

(SD) Tppy = V Jg Jg (Ty) H/3KTy . .73)

Consider the case v = 3 x 10 % cm? for which T, = 590K

- = "
and J_ (Tg) = 6G. Then Joo, = 3 x 1076 x 93 x 6H/(3 x 1.38 x

10 ¥ x 590) = 0.7H. Thus the intensity of TRM acquired in
0.5 oce is 0,35G.
] -18

Similarly for v = 4.7 x 10 ca o, TB = 400K and JTRM =

0.2H. Therefore the TRM intensity of rocks containing only
SD pyrihotite grains should fall in the range 0.1f - 0.35f,
where f is the volume fraction of pyrrhotite.

The corresponding Koenigsberger ratios are very high:

Qrgm = Jppw/kKH = 40 - 150 (using k = 4.8 x 10 3),
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Chemical remanence, on the other hand, has intensity

(Stacey and Banerjee, 1974, pp. 131-132)

- .
(SD) JCRM JS H ln (ZfO'r)/BKl = 0.2H 74)

with cOrrésponding Koenigsberger ratio ~40.

Stacey andrBanerjee (1974, pp. 107-106, 133} have also
presented a simplified theory of TRM and CRM in largé MD
grains. Although the theory has flaws it is adequate for
order of magnitude estimates of TRM and CRM intensities.

Within the basal plane the magnetisation acquired is:

{MD) JTRM = JSH/NJS(TB)(1+Nxab) 75)

Where Xab is the intrinsic susceptibility within the
basal plane. Hopkinson peaks on k-T curves and thermal
demagnetisation data for coarse-grained pyrrhotite samples
indicate that the blocking temperatures for MD grains lie

mainly between 250°C  and 300°C. This implies JS/JS(TB) ~3.

Taking N = 4 and Xap = 0.05 gives JTRM"O.GH or JTRM ~0.3G

for H =-0.5 oe.

For a randomly oriented assemblage Jpp, ~ 0.4H. The

RM

corresponding Koenigsberger ratio is Q = 0.4/(0.05 x 2/3)

TRM

= 12. Observed susceptibilities of coarse-grained pyrrhotites
range up to “0.1, corresponding to Xap = 0.38 {(for N=4)

Although this might seem to lower J the blocking

TRM,
temperature, and therefore JS/JS(TB) may be higher. Syono

et al. (1962) found for a large single crystal ijM = 1,0H.

CRM intensity is smaller than TRM intensity by the

ratio JS(TB)/JS. We have therefore JCRM,xo'lG for H = 0.5 oe,

and QCRM==4.
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Smaller, and therefore harder, MD grains will have
specific intensities and Koenigsberger ratios intermediate
between those given here for large MD and SD grains.

It is apparent from the above discussion that theory
can readily account for the intense remanence and high
Koenigsbergéf ratiosrexhibited by many pyrrhotité-bearing

rocks,
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TABLE 1 EMPIRICAL SELF-DEMAGNETISING FACTORS

Specimen N (oe/G) 8 (G/oe) S/xi
NRC1 ' ' 5.3 - -
NRC2 | 5.5 6.8 150
NRC3 | 5.5 - ' -

. NRF - 5.6 1.4 52
R4 4.7 0.75 25
RS - 4.1 - 0.48 19
R12 2.7-3.7 0.23-0.29 11-14

 R14 0.9-3.2 0.14-0.21 7.3-11
R16 0.5-2.5  0.09-0.11 5.5-6.5
R17 3.0 0.10 6.1
R18 3.9% . 0.07% 3.7¢%
Notes:

(i) S is calculated from 4l)and'is undefined when

%Hc/3Jrs < N (NRCl1l and NRC2)

(ii) When the data is in good agreement with edq. 20, N
: l o’ - I . uo= o’ — o
is calculated as 2(Hcr _ H%)/3[Jrs + XO(Hcr H%)]

(iii) when ~ 20) is not well satisfied by the data {for R12,

Rl4, R16) two values of N are obtained by substituting
(ﬁér - ﬁEr) and (ﬁér - ﬁ%) into 40). S and S/x,; are
then calculated for the corresponding values of N,
using 41) and 23).

*R18 contains SD and SPM grains. Therefore the value of N

calculated from MD theory will not represent a true self-

demagnetising factor.



TABLE 2 INTRINSIC SUSCEPTIBILITY DUE TO WALL DISPLACEMENT

Specimen X, X 102 X, % 102 XoHq
NRCl (83) 9.90 8.44 ' 13.3
NRC2 (83) 8.72 7.58 12.2
NRC3 (83) 8.46 7.40 ©11.0
NRF  (44) 4.17 3.99 8.8
R4  (42) 4.78 4.55 11.0
R8  (32) . 3.60 3.52 10.1
R12 (20) - 2.76 2.73 10.4
R14 (15.5) 2.60 2.58 ~13.3
R16 (11.1) = 1.94 1.92 12.9
R17 (6.9) 1.84 1.83 15.1
Notes:
(i) X, is calculated from 68) and xé from .70},

in both cases taking the preferred value of N

from Table 1.

(ii) Specimen R18 is omitted as_domain wall displacement
does not contribute to magnetisation processes in
SD grains.

(iii) Mean grain sizes in microns are given in parentheses.



TABLE 3 SURVIVAL POTENTIAL OF PRIMARY NRM

Heating temperature* Metamorphic grade
(°c)
100 | . zZeolite
h 150 Zeolite
200 Prehnite

*

108 yéars.
(TB)min

primary NRM.

(TB)min
(°c)

195
225

260

Temperature attained during metamorphic heating for

= minimum laboratory unblocking temperature of



Fig. 1(a) 1Intrinsic hysteresis loop for a multi-
domain pyrrhotite grain. The external
and internal fields lie within the basal
plane, Symbols are defined in the text.

1(b} Potential energy, E(x), of a domain wall
of unit area in a multidomaiﬁ grain. The
energy arises from interaction of the wall
with crystal defects and is a function of
position. 1In the absence of an internal
field the wall 1lies at an'intrinsic energy
minimum. When an internél field, Hi' acts
on the wall it moves.to an equilibrium
position given by ZHiJ = dE/dx . If the
field is then removed the wall drops back
into the neares£ intrinsic energy minimum,
having undergone an irreversible displacement
corresponding to change of magnetisation
J.. .. The sense of the domain magnetisations

1xrxr

and the field are indicated by arrows.
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Fig. 2(a) External hysteresis loops for multi-
_doméin Pyrrhotite grains with the applied
field He in the basal plane (9 = 900) and
obligque to the basal plane (B<90°).

2(b) Idealised depiction of AF demagnetisation
of saturation remanence. The grain initially
descends the left-hand branch of the saturation
hysteresis loop, the magnetisation decreasing
frgm Jrs to J; , and thén traverses the

minor hysteresis loop with average slope X.

As 'the amplitude of the alternating applied
field is decreased to zero, smaller minor
hysteresis loops are traﬁersed (not shown)
until the magnetisation of the grain
converges onto the centre of the minor
loop, which lies on the line of slope

-1/N through the origin.
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Fig. 3 Thermal activation nomogram for mon-

clinic pyrrhotite. The contours join
time;temperature conditions of equal
probability of thermally activating a
magnetic grain. The B field répresents

the region where time is relatively

effective in resetting a rapidly acquired
remanent magnetisation acquired at consider-
ably higher temperature, whereas in the A
field a magnetiéation is unblocked only

at temperatures approaching those in

which the remanence was acquired.. Conversely
a rémanent magnetisation corresponding to

the B field which was acquired over a
geologically long time (a viscous PTRM)

will only be unblécked in the laboratory

at a temperature well aboﬁe the temperature
of acquisition. In the A region the
temperature of acquisition and the laboratory
unblocking temperature are similar, irrespect-
ive of the duration of acquisition.

The dashed lines enclose the region within
which monoclinic 4C pyrrhotite is unstable
with respect to 1C pyrrhotite + pyrite,

precluding acquisition of remanence.
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