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Executive Summary

Although it is based on classical potential theory, the mathematical development
presented in this report represents a novel application. The induced magnetisation of a
magnetic source is proportional to the ambient magnetic field and varies in response to
natural geomagnetic variations, such as diurnal changes, storm fields and pulsations. In
contrast, the remanent magnetisation is independent of changes in the ambient field. The
local perturbation of the geomagnetic variations arising from a subsurface magnetic body
can be determined by simultaneous monitoring of geomagnetic variations over the body
and at a remote base station. Total field measurements are insufficient to determine the
relative contributions of remanent and induced magnetisations to the anomaly, except in
a qualitative fashion. Monitoring of all three field components at the on-anomaly and
base stations, however, allows the components of the second order gradient tensor of the
pseudogravitational potential to be determined. This tensor depends only on the source
geometry and the measurement location and is independent of the nature (remanent or
induced), magnitude or direction of the source magnetisation. The tensor is, apart from a
change of sign, the external analogue of the point-function demagnetising tensor.

It is shown that the following information can be obtained from the components of this

tensor without making any assumptions about source geometry or location:

¢ the Koenigsberger ratio (Q), which is the ratio of remanent magnetisation intensity to
induced magnetisation intensity,

¢ the direction of remanence,

» the direction of total (remanent + induced) magnetisation.

This information can constrain magnetic modelling prior to drilling and remove a major
source of ambiguity in magnetic interpretation. In particular, the well-known non-
uniqueness of dip determination when the direction of magnetisation is unknown can be
eliminated. The Q value itself constrains the geological nature of the source and the
remanence direction can discriminate between sources of different ages or magnetic
mineralogy. Thus the information provided by this method can substantially improve
geological interpretation of magnetic anomalies and aid prioritisation of targets.

Furthermore, the direction to the centre of a compact source can be determined directly
from diagonalisation of the tensor. Repeating the procedure at another location within

the magnetic anomaly can uniquely determine the location of a compact source, prior to
drilling,

An alternative approach to remote determination of /2 sity magnetic properties and
source location is to dispense with a remote base station and rely on simultaneous
measurement of time-varying fields and their gradients at a single location within the
anomaly. This procedure has the advantage of logistical simplicity and, most
significantly, greatly ameliorates the requirements for accurate orientation of vector
magnetometers, but requires highly sensitive gradiometers.

A number of mathematical relationships between component anomalies, which have
application to processsing and interpretation of vector magnetic surveys, are derived.



1. Definition of the tensor field A(r)

The mathematical relationships derived in this report are based on standard
magnetostatic theory. Brown (1962) provides a useful treatment of the subject.

Consider a homogeneous body of volume V. 1fit is magnetised along the x-direction,
there is a magnetic anomaly produced outside the body. At a particular point P outside
the body the anomalous magnetic field AB has three components, each of which is
proportional to the magnitude of the magnetisation (Fig.1), i.e.

ABy =ayly,
ABy = ayyly
AB, = azJy,

where the a; are constants (i.e they are independent of J) at each point P, but vary from
place to place.

Similarly, magnetisations along the y- or z-axes produce anomalous components that are
proportional to the magnetisation. By linear superposition, the components of the
anomalous magnetic field can be written:

ABy = ag Iy +agly + ax.dy,

ABy = ayJy +aydy + agd,,

AB, = anldy +azly+ agl;

These equations can be written more succinctly as:

1
or m matrix form as:
Bx axx axy axz| |JTx
By = ayx aYy ayz Jy (2)
Bz azx azy azz||J,

As equation (1) shows, the coeflicients aj; represent a linear relationship between two
vectors. This implies that the ajj are components of a second order tensor A, with

AB= A.J. 3
A(r) is a second order tensor field, which depends only on geometry, i.e. the shape, size

and position of the source, and is independent of the nature (remanent or induced),
magnitude or direction of the magnetisation.
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DEFINITION OF TENSOR ELEMENTS a,

Figure 1



2. Explicit form and properties of the tensor A

In appropriate units, the pseudo-gravitational potential U of the body V is equivalent to
the magnetic scalar potential that would be produced by a distribution of unit magnetic
pole density throughout V. U may be expressed formally as a volume integral:

ue) - [, &, @

r
where r is the distance from the volume element dV to the observation point P (see
Fig.2). The magnetic scalar potential {2 due to the uniform distribution of magnetisation,
J, throughout V is given by Poisson's relationship:
Q= -VU.J. (5)
The anomalous magnetic field due to the body V is therefore:
AB = -VQ = VVU.J (6)
Comparison of eqns (3) and (6) shows that A may be writien explicitly as:
A= VVU. (7)

Equation (7) shows that A is the second order gradient tensor of the pseudo-
gravitational potential. The components of A are:

2
0 “<U
aij = (®)
0xi ﬁxj
Two important properties of A follow from (8):
R U _ s2%U . ©
Yooaxiox; axiaxy O
2u 92U 52U
axx Tayy Tazz ~ 0+ 07240 = V2U = 0. (10)

ox>  ayr  8z2

Equation (10) follows from the fact that U is a potential field, which obeys Laplace's
equation (V2U = 0) outside V. Equations (9) and (10) respectively state that A is
symmetric and traceless. The same analysis may be applied to a point within the
magnetised body, with one significant difference. Inside the body U obeys Poisson's
equation (V2U = -1 in SI; V2U = -4t O¢/G in the Gaussian CGS system), rather than
Laplace's equation, implying that the trace of the tensor N =-VVU is 1 SI (4n Oe/G),
rather than zero. N is in fact the demagnpetising tensor for the internal point (Brown,
1962). Thus -A is the external analogue of the point-function demagnetising tensor.
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PSEUDO-GRAVITATIONAL POTENTIAL U,
MAGNETIC SCALAR POTENTIAL Q
AND ANOMALOUS FIELD AB

U==FE
’ Vv

Q =-VU.J

AB = -VQ = VVU.J
SAB =4T

A =VVU

, - 90U

b Oxox,

Figure 2
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Because the matrix [ ] is symmetric, it can be diagonalised by suitable rotation of co-
ordinate axes. The eigenvectors u; (i = 1,2,3) define three mutually orthogonal axes.
With respect to this new set of Cartesian axes [a;; ] is diagonal:

B1 aj1 0 0| |n
B2|= |0 ap 0| |J2] (11)
B3 0 0 a33] [J3

Because the trace of a symmetric matrix is invariant under rotation of axes, the matrix in
(11) is also traceless, i.e.

a1 T ax t a3 = an *taxp t oazs =0 (12)

In eqn (12), the a; = a;; (1 =1,2,3) are the eigenvalues of the mairix [a;; ], corresponding
to the eigenvectors u;.

Thus for every point external to the magnetic body V, there exist three mutually
orthogonal directions for which the anomalous field is coaxial and proportional to the
magnetisation. With respect to this co-ordinate system, the relationship between
magnetisation and the anomalous field is particularly simple:

AB1 = ailh
AB2 = a2l2 (13)
AB3 = a3l3.

A special case arises if the source is two-dimensional. If the i-axis is parallel to the strike
of the 2D body, J; makes no contribution to the anomaly, because the poles produced at
the “ends” of a body with infinite strike extent are infinitely distant. It follows that for
2D sources:

a] =
=0
AB1 (2D source) {13a)
AB2 = azl»
AB3 = a3lj3

From (13) it follows immediately that a given direction of AB at a given point
determines the direction of J uniquely, provided the eigenvalues of A are all non-zero. If
magnetisation J' produces an anomalous field AB’ that is parallel to AB, then AB' =
MB, for some constant A. Then, from (3):

AB'= A.J=2A.J=A0T),

LAY -AD =0,



which implies that J' = AJ, provided A is non-singular. For 3D bodies the a; are all non-
zero and det(A) = aja,a; is also non-zero. Thus J' = AJ, and therefore J’ and J are
parallel. In other words, parallel anomaly vectors imply parallel magnetisations. In
particular, if the anomaly components produced by remanence and induced
magnetisation are parallel at any measurement point, the remanence is paraliel to the
induced magnetisation and is likely to be of viscous origin, rather than an ancient
component. In the 2D case, one of the eigenvalues is zero and the corresponding
component of magnetisation is indeterminate. From (13a), however, the direction of
magnetisation, projected onto the plane perpendicular to strike, is uniquely determined
by the anomaly vector components within this plane.

3. Uniformly magnetised sphere

As a specific example, consider a uniformly magnetised sphere (Fig.3). The pseudo-
gravitational potential is equivalent to that of a point source at the centre, i.e. U= V/r,
where 1 is the distance from the centre to the observation point. Applying (5), the
corresponding magnetic scalar potential is:

.r
Q=7 (14)

where m = JV is the magnetic moment of the sphere.

By (6) and (14), the anomalous field at P is given by:

AB = -m+3(;n.r)r. (s)
r

From (15), the components of A may be written explicitly as:

2x2-y2-72 3y 3xy
I'S TS fs
2_2_.2
3xy 2y —zc—x 3Ixy
[azj] = V — : (16)
j 5 3 5
3z zo 22 x2y
| fS I'S rS |

or more succinctly:

a.. = ——— (16a)

where & i is the Kronecker delta, which has diagonal elements equal to 1 and off-

diagonal elements equal to zero.



1t is evident that A is symmetric and traceless, as required. Referring to Fig.3, it is
obvious that if J is parallel to the radius vector r, then AB is parallel to J, and if J is
perpendicular to r, then AB is antiparallel to J. Thus the eigenvectors of the matrix in
(16) are parallel or perpendicular to r. In terms of the spherical polar co-ordinates

(r,0,9):

n

u;=r, ll2=9, ll3=(l). (17)
The corresponding eigenvalues are:
A%
- (18)
3

Equation (17) implies that the direction to the centre of the sphere can be determined
from the tensor A by diagonalisation.

4, Determination of the tensor A using differential vector variometry

The total magnetisation of subsurface magnetic sources is the vector sum of the induced
and remanent magnetisations. The remanent magnetisation is constant in time, whereas
the induced magnetisation varies with time due to changes in the geomagnetic field.
These geomagnetic variations include diurnal variation, magnetic storm fields and
pulsations. Thus the magnetisation of a source may be written as:

J(t) = J (1) + Jp = kF(t) + Jg, (19)

where k is the effective susceptibility, F is the ambient geomagnetic field, and the
subscripts T and R indicate induced and remanent magnetisations respectively. Equation
(19) assumes that the susceptibility is isotropic, which is a reasonable approximation for
most rocks.

In the vicinity of a magnetic body the geomagnetic field is perturbed by the anomalous
field, AB, which is a function of the total magnetisation J. Thus the magnetic anomaly
itself is a function of time. At each point, AB can be expressed as the sum of a constant
field, which arises from remanent magnetisation plus the induced magnetisation in the
time-averaged geomagnetic field, and a time-varying component, which corresponds to
the magnetisation induced by geomagnetic variations, i.e.

AB(t) = AB_ + 8(AB) = AB(J ) + AB(kSF) ]

~ AB(t)= AJ, + AkSF= A.(J, +kF) + AkSF | (20)

5(AB) = kA.5F



EIGENVECTORS OF [a,] FOR A SPHERE

Figure 3



where 8 is used to indicate temporal variations, while A indicates spatial changes. The
zero subscript indicates time-averaged values or, to a good approximation, the initial
values when measurements start. Figure 4 gives a schematic view of the implementation
of the method.

Equation (20) shows that if AB(t) is measured at any point P in the vicinity of the
magnetic source, whilst 5F is monitored simultaneously at a remote point, then kA at
that point can be determined by matrix inversion. Because k is a scalar, the elements of
the tensor A can be determined at P, within a multiplicative constant. The eigenvectors
of A can therefore be uniquely defined, as can the ratios of the eigenvalues. In particular,
for a quasispherical body the eigenvector corresponding to the largest eigenvalue of kA
points away from the centre of the body.

5. Remote determination of in situ magnetic properties of an anomaly source

In terms of the components (AX, AY, AZ) of AB and the components (X,Y,Z) of F eqn
(20) gives:

O(AX) dn By 4, ||0X
S(AY)| = kKla, a, a,||dY 2hH
O(AZ) a, a, a,||0Z

Using measurements of 6(AB) and 8F, eqn (21) can be solved in the least squares sense
for the elements ka; The eigenvectors of k[a;] define a set of axes for which AB, and

J, are coaxial. With respect to these axes:

(AB,), = a,@,), = <k, 2)

J, _ l:(ABo)] (AB,), (ABD)B:l‘ (23)

k ka, = ka, ka,

10



Thus the direction of the time-averaged total magnetisation J can be determined from
the time-averaged anomalous field AB, and the eigenvalues of the observed tensor kA,
The magnitude of J, /k is also defined by (23), but the intensity of magnetisation is
indeterminate if k is unknown.

From (19) we have:

Ie

* (24)

(V)

-J g
k

Equations (23) and (24) determine the direction of J; and the magnitude of Jg /k. The
Koenigsberger ratio Q can also be determined using (24) because:

e _ [JR/k[I

Q
K[E| [

(25)

Therefore the following properties of the source can be determined from measurements
of 8(AB) and 6F, without making any assumptions about the source geometry:

* the direction of the total magneftisation,
e the direction of the remanent magnefisation,

o the Koenigsberger ratio ().

6. Application of differential vector variometry to drill targetfing

Figure 5 illustrates the application of measurements of the tensor kA to targetting a
compact magnetic source. In this context, a compact source is one for which the dipole
field is the dominant component of the multipole field arising from the source. In
practice, this requires that the longest axis of the body is smaller than the the distance
from the centre to the observation point P. At P the eigenvector corresponding to the
positive eigenvalue of kA points away from the “centre of magnetisation”. Thus the
drilling direction from P to intersect the source is determined. If the measurements are
repeated at a different point P’ that is also within the anomaly, the location of the centre
of the source is uniquely defined.

11
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DRILL TARGETTING FOR COMPACT SOURCE

Figure 5
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7. Generalisation to gradiometry

The relationship between the gradient of the anomalous field and the source
magnetisation may be obtained from (3):

V(AB)= VA.J. (26)
In terms of components:

_ 9(4B)

bik o,

. Oa;; .
L = Zax J; (i,j,k=xy,2), 27
1

k

where by is the gradient tensor of the anomalous field. The analogous relations to (20)
for the gradient tensor are:

V(AB)[t] = V(AB,) + S[V(AB)] = V(AB)[J ] + V(AB)[kSF] )

g

- V(AB)[t]= VA.J. + VA.k3F= VA.(J, +kF.) + VA koF (28)

S[V(AB)] = kVA.6F

o

The temporal variation in the components of the gradient tensor can be obtained from
(20) and (27), or directly from (28):

— 65(&)1 — 62%‘1 — Zaaij aaij

o h:
bx = 05, "ok, 0 3ox,

81, = kx - 5F,. (29)

e

Equation (29) implies that simultaneous monitoring of V(AB) and F allows XV A to be
determined. It suffices to monitor time variations for one row of the field gradient tensor,
e.g. 0(AB)/0z , together with 8F to determine A/0z, which is a symmetric traceless
tensor, Diagonalising 0A/0z enables J | /k to be determined, in an analogous manner to
that of section 6. Determination of the other properties follows directly,

14



8. Relationships between component anomalies

From the foregoing theory we can derive some useful relationships between anomaly
components arising from particular directions of magnetisation. Denote the i-component
of the anomalous field arising from the j-component of magnetisation by ABy(J;). From
(3) and (9):

ABx (]Y) - a = g = ABy (Jx)
Iy N " U

AB.(J) _ , _ . _ AB() | (30)
J. I«

ABZ (Jy) _ _ _ AB}I (JZ)

— T Ay T Ayz T T -
Jy J.

Furthermore, from (3) and (10):

ABx(Jx) + ABY (Jy) + ABZ(JZ) —
Jx Iy I

0, (31)

Equivalent relationships to (30) and (31) have been derived, in a less direct fashion, by
Affleck (1958). The relationships of (30) allow anomalies at, for example, the
geomagnetic equator to be related to those at the magnetic poles. As an illustration, for
an inductively magnetised source of given geometry the vertical component anomaly at
the equator has identical form to the horizontal component anomaly at the pole. At any
location, a remanently magnetised source, with vertical resultant magnetisation, has a
horizontal component anomaly that is identical in form to the vertical component
anomaly of a horizontally magnetised source of the same shape.

From (31) it follows that bodies that are symmetric about a vertical axis, inductively
magnetised at the equator, have horizontal component anomalies that are half the
amplitude and opposite in sign to the vertical component anomaly over an identical body
at the pole. At any location, if such bodies are remanently magnetised, the horizontal
component anomaly associated with, and parallel to, a horizontal resultant magnetisation
is opposite in sign and half the amplitude of the vertical component anomaly associated
with vertical resultant magnetisation.

15



Some useful relationships between component anomalies, which are applicable to
processing and interpretation of vector magnetic surveys, follow directly from potential
field theory. From (6):

l9)
ABx - _En (32)
. JAB,) 92U 52U 4B, (33)
Yy Oydx Ixdy &
Similarly,
HAB,) _J(AB,) |
& &
A(AB,) _ J(AB,) g 4)
74 &
J(AB,) _ J(AB,)
& &

From (10), or directly from the Maxwell equation V.(AB) =0, it follows that:

. X4B,) JAB)) 4B (35)
R il

Equations {31)-(35) show that spatial derivatives of anomalous field components are not
independent. Measurement of some gradient components can define the /ocal values of
other components uniquely. This provides a tighter constraint on undersampled
component data than can be provided by a single component survey (e.g. a conventional
total field survey) that is used to calculate component anomalies. The local spatial
derivatives of anomlous components can be used to aid interpolation between survey
lines and to calculate vertical gradients. For example, if the survey traverse is along the
x-axis, measurement of three component data determines the x-derivatives of AB. The
transverse (y-) and vertical (z-) derivatives of AB, are immediately given by (33)-(34).
This information can be used to interpolate AB, between lines and to produce a vertical
derivative profile. If the vertical derivatives of ABy and AB, are measured in addition to
the three components along the traverse, all local transverse and vertical derivatives are
determined. This can aid gridding, particularly if the line spacing is slightly too wide to
adequately sample the field. Vertical derivatives are useful for emphasising shallow
features and defining geological boundaries.
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9. Status of the method

The natural ambient field varies due to diurnal variation, pulsations and magnetic storm
activity. In conventional magnetic surveys these variations are monitored at a base
station, so that a first-order removal of their effects on the survey data can be carried

out. However, the induced magnetisation of magnetic bodies varies in phase with the
ambient field, producing small local perturbations of the regional geomagnetic variations.
These local perturbations can be measured by monitoring geomagnetic variations at two
locations simultaneously, one location within the magnetic anomaly associated with a
magnetic body and the other location away from the zone of influence of the body. These
effects were first observed as long ago as 1962 (Ward and Ruddock, 1962; Goldstein
and Ward, 1966), using Rubidium vapour total field sensors.

More recently, Parkinson and Barnes (1985) detected the amplification of geomagnetic
variations caused by the Savage River magnetite deposit, using three-axis fluxgate
magnetometers. By assuming that the remanent magnetisation of this deposit is
predominantly viscous remanence directed parallel to the induced magnetisation, these
authors concluded that the Koenigsberger ratio of the Savage River orebody is ~0.4. A
theorem, due to the present author, that parallel anomalous field vectors, resulting from
remanent and induced magnetisation, imply parallelism of these magnetisation
components, was required to draw this conclusion. This theorem was included as an
appendix in the paper by Parkinson and Barnes (1985).

This theorem provided the basis for the further development of the theory that is
presented in this report. Practical implementation of the method has involved overcoming
numerous iechnical difficulties, some of which remain recalcitrant. A companion report
(Schmidt and Clark, 1997) details the outcomes of the two year AMIRA project P446.
For the first time, remote determination of in sifu magnetic properties and source
location using differential vector magnetometry have been demonstrated in the field
during the course of P446. The field trials suggest that the alternative, gradiometer-
magnetometer configuration that was discussed in section 7 may be the most practicable
option for further development of the method. The most feasible technology for
implementation of the alternative method appears to be newly developed high-
temperature SQUID sensors.

Apart from research applications of this method, there are important applications to
exploration. The in sifu magnetic property information can constrain magnetic modelling
prior to drilling and remove a major source of ambiguity in magnetic interpretation. In
particular, the well-known non-uniqueness of dip determination when the direction of
magnetisation 1s unknown can be eliminated, reducing the chances of drilling down-dip.
The Q value itself constrains the geological nature of the source and the remanence
direction can discriminate between sources of different ages or magnetic mineralogy.
Thus the information provided by this method can substantially improve geological
interpretation of magnetic anomalies and aid prioritisation of targets. Furthermore, the
direction to the centre of a compact source can be determined directly from
diagonalisation of the tensor. Repeating the procedure at another location within the
magnetic anomaly can uniquely determine the location of a compact source, prior to
drilling.
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10. Conclusions

The anomalous magnetic field, AB, due to a uniformly magnetised source is linearly
related to the magnetisation vector, J, i.e. AB= A .J, where A is a second order tensor
field, with nine components, which depends only on geometry, i.¢. the shape, size and
position of the source, and is independent of the nature (remanent or induced),
magnitude or direction of the magnetisation. A is explicitly given by: A= VVU ,
where U is the pseudogravitational potential of the magnetic source. Thus A is the
second order gradient tensor of the pseudogravitational potential. This tensor is, apart
from a change of sign, the external analogue of the point-function demagnetising tensor.
A is symmetric and traceless, which reduces the number of independent components to
five. Furthermore, the matrix of components of A can be diagonalised. The eigenvecors
of [A] define three mutually orthogonal directions along which AB and J are coaxial.

The induced magnetisation of a magnetic source is proportional to the ambient magnetic
field and varies in response to natural geomagnetic variations, such as diurnal changes,
storm fields and pulsations. In contrast, the remanent magnetisation is independent of
changes in the ambient field. The local perturbation of the geomagnetic variations arising
from a subsurface magnetic body can be determined by simultaneous monitoring of
geomagnetic variations over the body and at a remote base station.

It is shown in this report that:

o Total field measurements are insufficient fo determine the relative contributions of
remanent and induced magnetisations to the anomaly, except in a qualitative fashion.

e Monitoring of all three field components at the on-anomaly and base stations,
however, allows the components of kA to be determined, where k is the susceptibility
of the source.

e Determination of the principal components (eigenvalues) and eigenvectors of kA
provides information about the relative contributions of remanent and induced
magnetisations to the anomaly. '

¢ The following information can be obtained from the components of kA without
making any assumplions about source geometry or location:

- the Koenigsberger ratio (Q), which is the ratio of remanent magnetisation
intensity to induced magnetisation intensity,

- the direction of remanence,

- the direction of total (remanent + induced) magnetisation.

This information can constrain magnetic modelling prior to drilling and remove a major

source of ambiguity in magnetic interpretation. Applications include:

» Eliminating the well-kniown non-uniqueness of dip determination when the direction
of magnetisation is unknown, reducing chances of drilling down dip.

¢ Deiermination of Q value, which constrains the geological nature of the source, by
discriminating, for example between magnetite-bearing and pyrrhotite-bearing
sources,

¢ Remote palacomagnetism - remanence direction can discriminate between sources of
different ages or magnetic mineralogy.

18



Thus the information provided by this method can substantially improve geological
interpretation of magnetic anomalies and aid prioritisation of targets. A direct
application to drill targetting of compact sources (for which the anomaly is dominated by
the contribution of the dipole moment) is based upon the theoretical response of a
sphere. The direction to the centre of a compact source can be determined directly from
diagonalisation of the tensor. Repeating the procedure at another location within the

magnetic anomaly can uniquely determine the location of the centre of the source, prior
to drilling.

An alternative approach to remote determination of in sifu magnetic properties and
source location is to dispense with a remote base station and rely on simultaneous
measurement of time-varying fields and their gradients at a single location within the
anomaly. This procedure has the advantage of logistical simplicity and, most
significantly, greatly ameliorates the requirements for accurate orientation of vector
magnetometers, but requires highly sensitive gradiometers.

A number of mathematical relationships between component anomalies, which have
application to processsing and interpretation of vector magnetic surveys, are derived in
this report. It is shown that spatial derivatives of anomalous field components are not
independent. Measurement of some gradient components can define the Jocal values of
other components uniquely, This provides a tighter constraint on undersampled
component data than can be provided by a single component survey (e.g. a conventional
total field survey) that is used to calculate component anomalies. The local spatial
derivatives of anomlous components can be used to aid interpolation between survey
lines, particularly if the line spacing is slightly too wide to adequately sample the field,
and to calculate vertical gradients, which are useful for emphasising shallow features and
defining geological boundaries.
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