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INTRODUCTION 

 
While the measurement of total magnetic intensity (TMI) 
gradients is now fairly common-place, the measurement of the 
full magnetic gradient tensor is still in its infancy (Christensen 
and Rajagopalan, 2000; Schmidt and Clark, 2000; Heath et al., 
2003). However, it is well known that, in principle, any 
quantity such as components or their gradients can be 
calculated if the magnetic field is known with sufficient 
spatial resolution and precision everywhere on a grid above 
the source (Nelson, 1988; Blakely, 1996). 
 

The magnetic gradient tensor offers a number of new 
interpretation schemes to answer specific questions about the 
location and shape of the source. For instance, the first 
invariant  I1 outlines source boundaries and appears to have 
superior resolving power to the analytic signal. This follows 
from its faster fall-off rate. 
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The second invariant I2 preferentially outlines shallower 
features of complex sources, because of its higher fall-off rate 
than I1. 
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Here another interpretation scheme, tensor Euler 
deconvolution, is presented that has the advantage of 
simultaneously mapping the location and geometry of 
magnetic sources.  
 

METHOD AND RESULTS 
 
Tensor Euler deconvolution was introduced by Zhang et al. 
(2000) for analysing and interpreting gravity tensor 
gradiometer data. Its extension to the magnetic tensor is 
ineluctable.  Euler deconvolution as normally applied to TMI 
surveys makes use of the following relationship:  
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where B is the anomalous field and n is Euler’s structural 
index (Blakely, 1996; Schmidt et al., 2004).  The same 
relationships apply to gradients of components,  
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and by extension, to the gradient tensor.  Allowing for an 
arbitrary origin the following matrix equation is arrived at,  
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Since there are four unknowns, n, x, y and z, at least two 
tensors are required for each source to solve (5) in a least-
squares fashion. Two adjacent tensor form a 6 × 3 matrix and 
successive tensors are added to the top and the bottom 3 × 3. 
In practice, as many tensors are combined as possible until the 

SUMMARY 
 
While the routine measurement of the magnetic gradient 
tensor is some way off, in certain circumstances it is 
possible to calculate the gradient tensor from total 
magnetic intensity (TMI) information. Such 
circumstances include anomalies being no more than 
about 20 percent of the local Earth’s field, where the field 
departs from being a true potential field, and adjacent 
lines being well levelled.  
 
Euler deconvolution requires solving at least four 
simultaneous homogeneous equations to yield the 
location in 3D and the Euler structural index of the 
source. Combining two or more adjacent tensors provides 
an over-determined system which allows the covariance 
to be estimated and gives a measure of uncertainty.  
 
This method extracts a wealth of information on the 
location and geometry of magnetic sources. However, the 
method is sensitive to departures of the TMI from being a 
true potential field, for very strong anomalies, in which 
case conversion to a true potential can be performed 
using an iterative method involving calculating 
components from the TMI and projecting the components 
onto the local field direction.  
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variance exceeds some predetermined cut-off. The variance is 
calculated using the method of Hext (1963).   
 
Examples  
 
To test the above concepts two models were used. These were 
a spherical and a prism source. The anomalous magnetic 
components and their gradients, which comprise the gradient 
tensor, were calculated on a regular grid 100 m above for both 
sources. The sphere had a radius of 50 m, and the prism, 
which is vertically extended, had a square cross-section with 
sides of 50 m.  These sources have structural Euler indices of 
3 and 2 respectively.  Note that at low heights, say 10 m, 
compared to the length of the sides (50 m), the index for the 
prism would be complicated, approaching that of a vertical 
contact near the centre of the sides (n ~ 0.5).  However, at 
heights greater than twice the length of the sides the index for 
the prism approaches that of a vertical cylinder, for which n = 
2.   
 
The components were calculated using the algorithms of 
Emerson et al. (1985).  Whereas the gradients comprising the 
tensors for the sphere were calculated by differentiating the 
terms for the components, the gradients for the prism were 
calculated using Fourier filtering (Nelson, 1988).  
 

 

 
Figure 1.  Results for the spherical source showing 
locations where solution were found for the source (top) 
versus the actual solutions using Euler deconvolution of 
the gradient tensor calculated on the same grid (bottom). 
Solutions were found spread along a NW-SE trend 
localising the source to a few tens of metres. The solutions 
are consistent with an Euler structural index for a 
spherical source (n = 3) at 100 m depth.  
 

The locations in the survey area where acceptable solutions 
were found and the results from tensor Euler deconvolution 
for both types of sources are shown in Figures 1 and 2. The 
upper image of each figure shows the survey locations where 
the solutions were found, colour coded according to the Euler 
structural index and contoured according to depth.  The actual 
solutions are given in the lower image of the figures localising 
the source at, or close to, the origin. No solutions with a 
variance below the chosen cut-off were found that indicated 
the source was outside the areas shown in the lower images of 
the figures. Note that the grid for the solutions (a few 10s of 
metres square) is much smaller than the grid for the whole 
survey which was 3.2 km × 3.2 km. In the figures Euler’s 
structural index is plotted as an RGB image, while the depth is 
plotted as contours. At this point it is unknown why 
acceptable solutions are found at observation points spread 
from NW to SE of the sources, however, this seems to be the 
case for both the sphere and the pipe.  
 

 
Figure 2.  Results for the prism (pipe-like) source showing 
locations where solution were found for the source (top) 
versus the actual solutions using Euler deconvolution of 
the gradient tensor calculated on the same grid (bottom). 
As for the spherical source, solutions were found spread 
along a NW-SE trend localising the source to a few tens of 
metres. The solutions are consistent with an Euler 
structural index for a pipe-like source (n = 2) at 100 m 
depth.  
 
The acceptable solutions for the spherical source (bottom of 
Figure 1) fix the centre of the body within a few tens of 
metres of its modelled position. The most reliable solutions 
locate the centre precisely at 0 m north, 0 m east and 100 m 
below.  
The acceptable solutions for the pipe-like source (bottom of 
Figure 2) also fix the centre of the body within a few tens of 
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metres of its position, although solutions are spread in a thin 
NS linear trend up to 20 m south of the epicentre. Given the 
sides of the pipe are 50 m wide this is not a great error.  
 
For both the sphere and the pipe source, drilling vertically 
anywhere within the most reliable solution zone would 
intersect the source body.  
 

CONCLUSIONS 
 
Tensor Euler deconvolution is a useful tool to extract and 
visualise more information from the magnetic field. In the 
future, when airborne tensor measurements will become 
routine, tensor Euler deconvolution will be the first step in 
data analysis. At the present time though, tensor Euler 
deconvolution may be applied to a TMI survey if the survey is 
of sufficient quality. 
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