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Introduction 
 
The CSIRO Division of Materials Science and Engineering is developing sensitive magnetic 
tensor gradiometers, based on high-T SQUID technology, for deployment in the marine 
environment. The applications include gradient measurements as an adjunct to E and B field 
measurements in marine CSEM surveys, UXO detection in  shallow water, and exploration 
for seafloor mineralization. This paper discusses how measurements of quasistatic electric and 
magnetic fields and their gradients in the ocean are affected by electric current flow in the 
conductive medium, which is distorted by insulating capsules that enclose sensors and their 
associated electronics. We also present simple new methods for direct inversion of gradient 
tensor data for the location and magnetic moment vector of compact targets 
 
Electric and magnetic fields in and around an insulating spherical capsule  
 
Electric and magnetic fields within a medium of conductivity σ  are perturbed by the 
measurement process. In particular, sensors located within or around an insulating measure-
ment capsule measure fields that are modified by the diversion of conduction currents around 
the capsule. In air or free space the gradient tensor is symmetric, as well as traceless. In the 
presence of conduction currents the curl of B is non-zero and the gradient tensor is asym-
metric. This raises the question of what is actually measured by magnetometers and 
gradiometers immersed in the electrically conductive ocean. In particular, how does the signal 
measured within a sealed capsule (within which the gradient tensor is symmetric) relate to the 
field components and the asymmetric gradient tensor that existed in the surrounding medium 
prior to insertion of the measurement package?  
 
If a uniform applied electric field gradient is present, the unperturbed field is given by: 
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where xE ˆ00 E=  is the average electric field over a volume symmetrically disposed about the 

origin and the electric gradient tensor 0E∇∇∇∇ = [∂Ej /∂xi] = [Eij] ,(i, j = x, y, z) is symmetric and 

traceless. The corresponding unperturbed potential is: 
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If a spherical cavity of radius a is inserted into the unperturbed current flow, the solution of 
the Neumann boundary value problem for the potential is (Clark, 2009a): 
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The corresponding internal field is: 
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which shows that the average electric field within the cavity is equal to 1.5 times the 
unperturbed field that existed at the location of the cavity centre, prior to its emplacement, 
and that the electric field gradient is constant within the cavity and is amplified by 5/3 
compared to the applied gradient. The anomalous external field due to the cavity has a 
quadrupole term associated with the applied gradient, which supplements the dipole field that 
is associated with the average applied field over the cavity. The corresponding results for the 
anomalous magnetic field components are: 
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At the centre of the cavity the anomalous magnetic field B′ = 0, so the magnetic field at this 
point is equal to the unperturbed magnetic field that existed at the same point in the 
conductive medium, prior to insertion of the measurement capsule. Within the cavity the 
resultant magnetic gradient tensor (the sum of the ambient unperturbed gradient tensor and 
the asymmetric anomalous tensor obtained by differentiating (6)) is symmetric. Second order 
gradients are constant within the cavity. For the case of a uniform applied field, the anom-
alous external electric and magnetic fields are those of an elementary current dipole, with 
moment p = I∆x = −2πj0a

3, immersed in an infinite homogeneous conductive medium, in the 
limit as frequency goes to zero (Kraichman, 1970, p.3-2).  



  

 
Figure 1 shows the electric field along a profile parallel to a uniform applied field, passing 
through the centre of the cavity. E is discontinuous at the cavity boundary. The average value 
of the electric field xE  (given by the potential difference between electrodes at ±x, divided by 

the baseline) is also shown. xE  is independent of the electric field gradient and represents the 

quantity measured by a standard marine electrometer, i.e. 
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Figure 2 shows the variation of the magnetic gradient tensor elements along a vertical profile 
through a spherical cavity, within a horizontal current flow confined to an infinite  horizontal 
slab of thickness equal to five times the diameter of the cavity. The assumed conductivity of 
the seawater is 4 Sm−1 and magnetic gradients are normalised to an  applied electric field of 
1µV/m. Within the current flow, but beyond the influence of the cavity, the only nonzero 
gradient tensor component is Bzy. Within the cavity Bzy = Byz. The influence of the cavity is 
significant out to r ≈ 3a. 
 

Fig.1. Electric field profile, 
parallel to the uniform applied 
field, passing through the 
centre of a spherical cavity. 

Fig.2. Magnetic gradient 
tensor elements along a 
vertical profile through 
the centre of a spherical 
cavity within a horizontal 
current flow distribution 
of limited depth extent. 



In many marine applications electromagnetic sensors are situated near interfaces between 
media of differing conductivity, such as the seafloor or the sea surface. This situation can be 
handled by the method of images, as discussed by Clark (2009a). 
 
Effect of an ellipsoidal cavity 
 
Ellipsoidal cavities can be used to model a wide variety of capsule shapes, whilst con-
veniently allowing analytic solutions. Consider a triaxial ellipsoidal cavity, centred at the 
origin, with semiaxes a > b > c along x1, x2, x3 respectively. In terms of ellipsoidal co-
ordinates ξ, η, ζ  (Kellog, 1953, p.183-184; Stratton, 1941, p.58-59)  the potential V0 
associated with a uniform electric field E0 is: 
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Solving the Neumann boundary value problem in ellipsoidal co-ordinates gives for the 
internal potential: 
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which implies a uniform internal field given by: 
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where Di (i = 1,2,3) are the demagnetising factors of the ellipsoid along its major, inter-
mediate and minor axes (Clark et al., 1986). The demagnetising factors sum to unity. Since  
D1 ≤ D2 ≤ D3, an ellipsoidal cavity has an anisotropic response, except in the degenerate case 
where all axes are equal and the cavity is spherical. Unless the applied field lies along a 
principal axis of the ellipsoid, the internal field is not parallel to the applied field, but is 
deflected away from the major axis and towards the minor axis. For a disc-like cavity  
D3 → 1 as c/a → 0, so the amplification of the applied electric field normal to the disc can  
be very large within the cavity. 
 

Define .))()(( 222 csbsasRs +++=  The external potential due to an arbitrarily oriented 

ellipsoidal cavity is given by V(ξ ≥ 0) = V1(ξ ≥ 0) + V2(ξ ≥ 0) + V3(ξ ≥ 0), where 
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The corresponding external field components are obtained from (12)-(14) by differentiation: 
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Clark et al. (1986) give explicit expressions for the demagnetising factors, the functions A(ξ), 
B(ξ), C(ξ) and their derivatives with respect to ξ, and the derivatives ∂ξ/∂xi.  
 
The volume of the cavity τ  = 4πabc/3. If the components of the unperturbed current flow 
with respect to the ellipsoid axes are j1, j2, j3 the corresponding anomalous magnetic field is: 
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The magnetic field within the ellipsoidal cavity is non-uniform, but has a uniform gradient. At 
the centre of the ellipsoidal cavity (x1 = x2 = x3 = 0) the magnetic field is equal to the field that 
existed at that point before insertion of the cavity. The resultant internal magnetic gradient 
tensor is symmetric and traceless, as required. It is given by: 
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The values of the resultant gradient tensor elements depend on G0 = [ 0

ijB ], which in turn 

depends on the configuration of the unperturbed current flow. 
 
Application to removal of noise due to ocean swells 
 
Particularly in shallow seas, electric and magnetic fields generated by the magneto-
hydrodynamic action of ocean swells can significantly contaminate low frequency marine 
electromagnetic measurements. The theory of Weaver (1965), which has been well supported 
by observations, can be used to calculate the electromagnetic effects of swells. Consider 
gravity wave propagation at frequency f along the +x direction , which produces slowly 
oscillating currents parallel to the y axis. The components of the oscillating wave-induced 
field, Bw, in the sea water, prior to insertion of the measurement capsule, are related to 
magnetic gradient tensor elements measured within a spheroidal insulating capsule with a 
vertical symmetry axis by (Clark, 2009b): 
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where i =√(−1), g = 9.8 ms−2, z is the depth and G = D1/(1− D1) is a geometric factor related to 
the demagnetising factor D1 along a horizontal axis.  
 
When other sources of magnetic field produce negligible gradients, this method effectively 
isolates the oceanographic magnetic noise and allows it to be removed from the measured 
magnetic fields using Fourier analysis (Clark, 2009b). Measured electric fields can also be 
corrected for wave-motion noise, by removing the swell noise e = ŷye  given by: 
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New methods for determination of dipole location and moment vector 
 
Another important application of magnetic sensors is the detection, location and classification 
(DLC) of magnetic objects, such as naval mines, UXO, shipwrecks, and archaeological 
artefacts.  Apart from their uses in systematic magnetic surveys, gradient tensor measure-
ments have a specific application to manoeuvrable search platforms that home onto compact 
magnetic targets (Wiegert and Oeschger, 2005, 2006; Wiegert et al., 2007). Compact 
magnetic bodies can be well represented by a point dipole source, except very close to the 
body. A number of methods have been proposed for locating dipole targets from magnetic 
gradient tensor data (e.g. Wynn et al. 1975; Wilson, 1985; Wynn, 1995, 1997).  Methods 
based on point-by-point analysis of the eigenvectors of the tensor tend to be adversely 
affected by noise in individual measurements of the gradient tensor elements.  Furthermore, 
there is an inherent four-fold ambiguity in obtaining solutions for dipole location and 
orientation of its moment from point-by-point analysis of gradient tensors (Wynn et al., 1975; 
Wilson, 1985), which must be resolved by comparing solutions from different sensor 
locations, rejecting those that are not consistent (the so-called “ghost” solutions) and retaining 
the solutions that exhibit the best clustering.  Existing methods of dipole tracking are also not 
robust to the contamination of the measured signal by variable background gradients, 
interfering anomalies, instrument drift or departures of the target from a pure dipole source. 
 
Nara et al. (2006) have presented a neat solution to the single point dipole location problem 
that uses measurements of the anomalous field vector and gradient tensor, if accurate values 
of both are available. Along a fixed direction r̂ , the field vector b is equal to a geometric 
factor, depending only on the magnitude and orientation of m, divided by r3. Using this fact it 
can be shown that the displacement vector from the dipole to the measurement point 
independent of the orientation of m, is given by: 
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even though each tensor element and vector component on the RHS of this expression 
depends on m̂ . Equation (27) is applicable  provided detG is nonzero, so the matrix 
representation of the tensor is invertible. Although Nara et al. (2006) did not treat this aspect, 
once the location of the dipole is known, determination of the moment becomes a straight-
forward linear inversion problem. If the anomalous field vector b is known to sufficient 
accuracy, the moment m = m(L, M, N) = (mx, my, mz)  can be calculated as (Lima et al., 2006): 
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Similarly, given the location r = r(n1, n2, n3) of the dipole, the expressions for its gradient 
tensor elements can be rewritten as 
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where the LHS and the matrix N contain only known quantities.  This overdetermined matrix 
equation can be solved in a least squares sense for the components of the moment in terms of 
these known parameters: 
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The method of Nara et al. (2006) can be extended to uniquely determining the dipole location 
and moment vector from the gradient tensor and the second order gradient (which is a third 
rank tensor Bijk) at a measurement point. Along a fixed direction r̂ , Bij is equal to a geometric 
factor, depending only on the magnitude and orientation of m, divided by r4. From this it is 
easily shown that:  
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which gives an invertible linear relationship between r, and first and second order gradient 
tensor elements. The system of linear equations is overdetermined, so only a subset of the 
second order gradients is needed to obtain a unique location. For example, if the gradient 
tensor is measured along a profile segment, parallel to the x axis, the dipole location can be 
calculated directly from the tensor and its along-profile  derivative, which can be calculated 
by numerical differentiation: 
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The moment of the dipole can then be determined from r and the gradient tensor as shown 
above. Thus the dipole location and moment can be found from the first and second order 
gradient tensors at a single point. This result was inferred empirically by Wynn (1995) and 
later proved explicitly by him (Wynn, 1997). However that proof does not provide a method 
for determining the location and moment vector of the dipole. Wynn’s (1995) method for 
inverting the gradient tensor and its along-profile gradients is quite complicated and involves 
a computationally intensive numerical search algorithm.  
 
The second method presented here analyses data collected along a profile that passes near a 
dipole target. Unlike most other gradient tensor inversion techniques, this method can correct 
for contamination of the dipole signature by geological gradients or instrumental drifts, for 
example. Full details are given in Clark (2008).  
 
Wilson (1985) showed that the scaled moment µ of a dipole, which is a particularly useful 
rotational invariant because it is independent of magnetic moment orientation and always 
peaks at the closest point of approach, can be calculated directly from the eigenvalues λi of 
the tensor. A sequence of calculated scaled moments along a profile can be deconvolved and 
interference terms estimated and removed, but in practice it is easier and to process a related 
quantity, which yields more robust solutions. Define another invariant that is independent of 



the dipole orientation by ν = √(µ/3) = {[√(−λ2²−λ1λ3)]/3} ½, where λ2 is the eigenvalue with 
the smallest absolute value. For a pure dipole signature ν  is proportional to √m/r2. Then at 
any point around an isolated dipole source ν can be estimated from the measured eigenvalues. 
In the presence of background gradients or interference from neighbouring bodies, at 
successive points x = xi (i = 1, 2,..., n) along a straight and level path, defined by y − y0 = Y,  
ν  determined from the measured data can be modelled as: 
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where C is a constant that depends on the system of units, S = √(Y² + h²) is the slant distance 
from the point of closest approach to the dipole, x = x0 is the point of closest approach, h is the 
depth of the dipole, a is the base level, and b, c are linear and quadratic terms that represent 
interference from other anomalies. The deconvolution problem is to solve for the unknown 
parameters x0, S, m, a, b, c. This is equivalent to conventional Werner deconvolution (e.g. Ku 
and Sharp, 1983)  of the TMI anomaly of a thin sheet.   
 
Once the origin of x and slant distance are determined and the scaled moment, µi, and distance 
to source, r i, at successive points are known, the measured gradient tensor elements can be 
modelled by: 
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with similar terms for the other four independent tensor elements, where the distances along 
the profile, xi, are now with respect to an origin at the point of closest approach,  M′ = MY−Nh 
is the direction cosine of the slant component of magnetization and a quadratic interference 
term is assumed for each component. The deconvolution problem is to solve for the unknown 
parameters L, M, N, Y, h and the interference terms aij, bij, cij. This is carried out in a similar 
way to the deconvolution of the invariant ν (Clark, 2008). At this stage it is recommended to 
remove the interference terms from the measured tensor elements and recalculate the eigen-
values and ν. Using the new estimates of x0, S, m the deconvolution of the tensor elements can 
be repeated. The process is generally rapidly convergent, the revised interference terms 
become small and the source parameters become more precisely determined.  
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