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I ntroduction

The CSIRO Division of Materials Science and Engimggis developing sensitive magnetic
tensor gradiometers, based on high-T SQUID teclgyplior deployment in the marine
environment. The applications include gradient measents as an adjunct to E and B field
measurements in marine CSEM surveys, UXO deteaticshallow water, and exploration

for seafloor mineralization. This paper discusses measurements of quasistatic electric and
magnetic fields and their gradients in the ocearaffiected by electric current flow in the
conductive medium, which is distorted by insulatoagsules that enclose sensors and their
associated electronics. We also present simplemetivods for direct inversion of gradient
tensor data for the location and magnetic momectovef compact targets

Electric and magnetic fieldsin and around an insulating spherical capsule

Electric and magnetic fields within a medium of daoativity o are perturbed by the
measurement process. In particular, sensors logatbih or around an insulating measure-
ment capsule measure fields that are modified byiversion of conduction currents around
the capsule. In air or free space the gradienbteéssymmetric, as well as traceless. In the
presence of conduction currents the cuBa$ non-zero and the gradient tensor is asym-
metric. This raises the question of what is acyualéasured by magnetometers and
gradiometers immersed in the electrically condéctieean. In particular, how does the signal
measured within a sealed capsule (within whichgttaglient tensor is symmetric) relate to the
field components and the asymmetric gradient tetiedrexisted in the surrounding medium
prior to insertion of the measurement package?

If a uniform applied electric field gradient is pemst, the unperturbed field is given by:

E,(r)=E, +0E,r, (1)

where E, = E;X is the average electric field over a volume symizaity disposed about the
origin and the electric gradient tend0E, = [0E; /0x] = [E;] ,(i,] =X, Y, 2) is symmetric and
traceless. The corresponding unperturbed poteaastial

V,(r) =-E,r —%r.EIEO.r. (2)



If a spherical cavity of radiusis inserted into the unperturbed current flow, gbkition of
the Neumann boundary value problem for the poteistiglark, 2009a):
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V(r)=-=E,r —=r.0E,r, (r <a) (3)
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The corresponding internal field is:
3= 5
E(r)=§E0 +§|:|EO.r, (5)

which shows that the average electric field witihie cavity is equal to 1.5 times the
unperturbed field that existed at the locationhaf tavity centre, prior to its emplacement,
and that the electric field gradient is constarthimithe cavity and is amplified by 5/3
compared to the applied gradient. The anomalowesmdtfield due to the cavity has a
quadrupole term associated with the applied gradwemch supplements the dipole field that
is associated with the average applied field owvercavity. The corresponding results for the
anomalous magnetic field components are:

B; = :U%U [(Ezz - Eyy)yz_ ExyXZ+ Exzxy+ Eyz(y2 - 22)]
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At the centre of the cavity the anomalous magrfegid B' =0, so the magnetic field at this
point is equal to the unperturbed magnetic fielt xisted at the same point in the
conductive medium, prior to insertion of the measuent capsule. Within the cavity the
resultant magnetic gradient tensor (the sum oathbient unperturbed gradient tensor and
the asymmetric anomalous tensor obtained by diftexeng (6)) is symmetric. Second order
gradients are constant within the cavity. For tagecof a uniform applied field, the anom-
alous external electric and magnetic fields areehaf an elementary current dipole, with
momentp = IAx = -27j0a>, immersed in an infinite homogeneous conductiveiom, in the
limit as frequency goes to zero (Kraichman, 1978-3).
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Figure 1 shows the electric field along a profitggllel to a uniform applied field, passing
through the centre of the cavify.is discontinuous at the cavity boundary. The ayeralue

of the electric fieldE, (given by the potential difference between elatgsatx, divided by

the baseline) is also showR, is independent of the electric field gradient agyresents the
guantity measured by a standard marine electromeger

(8)
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Figure 2 shows the variation of the magnetic gratdiensor elements along a vertical profile
through a spherical cavity, within a horizontalreut flow confined to an infinite horizontal
slab of thickness equal to five times the diametehe cavity. The assumed conductivity of
the seawater is 4 Stand magnetic gradients are normalised to an egpplectric field of
1uV/m. Within the current flow, but beyond the influenaf the cavity, the only nonzero
gradient tensor componentBg,. Within the cavityB,, = By,. The influence of the cavity is
significant out ta = 3a.



In many marine applications electromagnetic senssituated near interfaces between
media of differing conductivity, such as the seaiflor the sea surface. This situation can be
handled by the method of images, as discusseddrk (2009a).

Effect of an élipsoidal cavity

Ellipsoidal cavities can be used to model a wideeta of capsule shapes, whilst con-
veniently allowing analytic solutions. Consideriaxial ellipsoidal cavity, centred at the
origin, with semiaxea > b > ¢ alongx, X;, X3 respectively. In terms of ellipsoidal co-
ordinatesé, 77, { (Kellog, 1953, p.183-184; Stratton, 1941, p.58-59¢ potentialVy
associated with a uniform electric field is:

Vo= -Eor =-(E,), J (€ a)in - 2)E + )
V@ -b) (@ -c)
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Solving the Neumann boundary value problem in sdligal co-ordinates gives for the
internal potential:
EO EO (EO X.
V(E<0)=——22x Xy =t X, (10)
1—D1 1-D, % 1- D,

which implies a uniform internal field given by:

E(£<0)=-0v =[ - J(Eo)xﬁl +(

Y

J(Eo)xz 3, +( : j(Eo)x3 %, (1)

1-D, 1-D,

whereD; (i = 1,2,3) are the demagnetising factors of thesdlid along its major, inter-
mediate and minor axes (Clark et al., 1986). Theadpratising factors sum to unity. Since
D; < D, < D3, an ellipsoidal cavity has an anisotropic resppageept in the degenerate case
where all axes are equal and the cavity is spHetitdess the applied field lies along a
principal axis of the ellipsoid, the internal fiekinot parallel to the applied field, but is
deflected away from the major axis and towardsiieor axis. For a disc-like cavity

D; — 1 asc/a - 0, so the amplification of the applied electrigldi normal to the disc can

be very large within the cavity.

Define R, = \/(s+ a®)(s+b?)(s+c?). The external potential due to an arbitrarily oréeh
ellipsoidal cavity is given by(&>0) =Vi( =0) +Vo(E20) +V3(£ =0), where

v1(520)1=—(Eo)x1x{1 abe/2 =l (Sﬁ)d —(Eo)xlxl{1 el ZA(E)} (12)
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The corresponding external field components arainbtl from (12)-(14) by differentiation:

g = VE20_( ) {1+ abc/2 (a}rabcﬁ((f)xlg}
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Clark et al. (1986) give explicit expressions foe lemagnetising factors, the functidy(g),
B($), C($) and their derivatives with respectdoand the derivativedt/ox;.

The volume of the cavity = 47abd3. If the components of the unperturbed curreowfl
with respect to the ellipsoid axes @192, j3 the corresponding anomalous magnetic field is:
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The magnetic field within the ellipsoidal cavitynsn-uniform, but has a uniform gradient. At
the centre of the ellipsoidal cavity E X, = X3 = 0) the magnetic field is equal to the field that
existed at that point before insertion of the gavitheresultantinternal magnetic gradient
tensor is symmetric and traceless, as requiresi given by:

B101 BS1+IU0D2j3 /(1_ Ds) Blos+:uoD1j2 /(1_ Dz)
G= Bgl +/10D2j3 /(1_ Ds) Bgz Bé)z + /JoDajl /(1_ Dl) ) (24)
Bloa + ,uoDljz /(1_ Dz) Bé)z + ,uoDsjl /(1_ Dl) Bé)a

The values of the resultant gradient tensor elesndepend 0o = [ B”Q], which in turn
depends on the configuration of the unperturbedeatiflow.

Application to removal of noise dueto ocean swells

Particularly in shallow seas, electric and magnigids generated by the magneto-
hydrodynamic action of ocean swells can signifiaobntaminate low frequency marine
electromagnetic measurements. The theory of Wga9é5), which has been well supported
by observations, can be used to calculate therelaagnetic effects of swells. Consider
gravity wave propagation at frequerfcglong the x direction , which produces slowly
oscillating currents parallel to tlyeaxis. The components of the oscillating wave-iretlic
field, By, in the sea water, prior to insertion of the measient capsule, are related to
magnetic gradient tensor elements measured witBpharoidal insulating capsule with a
vertical symmetry axis by (Clark, 2009b):

igB,(f)
4’ f?

igB,(f)| 8mf?z/ig+1
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(B,),(f)=
(25)
(B,).(f)=

wherei =V(-1), g = 9.8 m&?, zis the depth an6 = D,/(1- D,) is a geometric factor related to
the demagnetising fact@r; along a horizontal axis.

When other sources of magnetic field produce nddégradients, this method effectively
isolates the oceanographic magnetic noise and silitote be removed from the measured
magnetic fields using Fourier analysis (Clark, 2000®easured electric fields can also be
corrected for wave-motion noise, by removing thelbnoisee = g y given by:

e =27(8,),/q. (26)



New methodsfor determination of dipole location and moment vector

Another important application of magnetic senserhe detection, location and classification
(DLC) of magnetic objects, such as naval mines, U3l@ipwrecks, and archaeological
artefacts. Apart from their uses in systematic medig surveys, gradient tensor measure-
ments have a specific application to manoeuvragdech platforms that home onto compact
magnetic targets (Wiegert and Oeschger, 2005, 20@&gert et al., 2007). Compact
magnetic bodies can be well represented by a pgiote source, except very close to the
body. A number of methods have been proposed tatiloy dipole targets from magnetic
gradient tensor data (e.g. Wynn et al. 1975; Wild@85; Wynn, 1995, 1997). Methods
based on point-by-point analysis of the eigenveotbithe tensor tend to be adversely
affected by noise in individual measurements ofgtaglient tensor elements. Furthermore,
there is an inherent four-fold ambiguity in obtaigisolutions for dipole location and
orientation of its moment from point-by-point arsil/of gradient tensors (Wynn et al., 1975;
Wilson, 1985), which must be resolved by compasaolgitions from different sensor
locations, rejecting those that are not consiqtéetso-called “ghost” solutions) and retaining
the solutions that exhibit the best clusteringisixg methods of dipole tracking are also not
robust to the contamination of the measured sigpakariable background gradients,
interfering anomalies, instrument drift or depaggiof the target from a pure dipole source.

Nara et al. (2006) have presented a neat solutitimetsingle point dipole location problem
that uses measurements of the anomalous field vatbgradient tensor, if accurate values
of both are available. Along a fixed direction the field vectob is equal to a geometric
factor, depending only on the magnitude and ortertaf m, divided byr. Using this fact it
can be shown that the displacement vector frondijpp@le to the measurement point
independendf the orientation ofn, is given by:

r=-3G7b, (27)

even though each tensor element and vector compondhe RHS of this expression
depends onh . Equation (27) is applicable provided @ds nonzero, so the matrix
representation of the tensor is invertible. Althloidgara et al. (2006) did not treat this aspect,
once the location of the dipole is known, determoraof the moment becomes a straight-
forward linear inversion problem. If the anomaldigdd vectorb is known to sufficient
accuracy, the moment = m(L, M, N) = (m,, m;, m;) can be calculated as (Lima et al., 2006):

r3[ 3o.r
m=— r—b| 28
C[Zr2 } (28)

Similarly, given the location = r(ny, ny, ng) of the dipole, the expressions for its gradient
tensor elements can be rewritten as

_r4Bxx _3nl_5nf n2—5nfn2 n3—5nfr13_
rB,, n,=5nn, n-5nn; -5nnn, [m m,
p=|r'B, |=3CIn,=5n’n, -5nnn, n-5nn; |m |=N/m | (29)
r4Byy nl_5nln22 3”2_5n§ n3_5n22ns _mz m,
r'B.| [ -5nnn, ny-5mn, n,—5nn |



where the LHS and the matik contain only known quantities. This overdeterrdingatrix
equation can be solved in a least squares sensigefoomponents of the moment in terms of
these known parameters:

m=N*p=(N"NJ"N"p. (30)

The method of Nara et al. (2006) can be extendeahituely determining the dipole location
and moment vector from the gradient tensor andé¢laend order gradient (which is a third
rank tensoBjx) at a measurement point. Along a fixed directigrB; is equal to a geometric
factor, depending only on the magnitude and orteortanf m, divided byr®. From this it is
easily shown that:

(r.0)B, =—4B, (31)

j 7
which gives an invertible linear relationship betwe, and first and second order gradient
tensor elements. The system of linear equatioogasdetermined, so only a subset of the
second order gradients is needed to obtain a uhdgagon. For example, if the gradient

tensor is measured along a profile segment, phtaltbex axis, the dipole location can be

calculated directly from the tensor and its alomgfife derivative, which can be calculated
by numerical differentiation:

= 1-1
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The moment of the dipole can then be determinad frand the gradient tensor as shown
above. Thus the dipole location and moment carmbed from the first and second order
gradient tensors at a single point. This result whsred empirically by Wynn (1995) and
later proved explicitly by him (Wynn, 1997). Howewbhat proof does not provide a method
for determining the location and moment vectorhef dipole. Wynn’'s (1995) method for
inverting the gradient tensor and its along-prafitadients is quite complicated and involves
a computationally intensive numerical search atpani

The second method presented here analyses daatedlllong a profile that passes near a
dipole target. Unlike most other gradient tens@eision techniques, this method can correct
for contamination of the dipole signature by geatafgradients or instrumental drifts, for
example. Full details are given in Clark (2008).

Wilson (1985) showed that the scaled momeaft a dipole, which is a particularly useful
rotational invariant because it is independent afjnetic moment orientation and always
peaks at the closest point of approach, can beletéc directly from the eigenvaludsof

the tensor. A sequence of calculated scaled monadéomg a profile can be deconvolved and
interference terms estimated and removed, butaotjge it is easier and to process a related
quantity, which yields more robust solutions. Defanother invariant that is independent of



the dipole orientation by = v(1/3) = {[V(-122-A113)]/3} *, where/, is the eigenvalue with

the smallest absolute value. For a pure dipoleasigev is proportional to/m/r?. Then at

any point around an isolated dipole sourggn be estimated from the measured eigenvalues.
In the presence of background gradients or intenieg from neighbouring bodies, at
successive points=x; (i =1, 2,..., n) along a straight and level patliingel byy —yo =Y,

v determined from the measured data can be moddted

JCm

= T~ _+a+bx +ox’, 33
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whereC is a constant that depends on the system of @ts/(Y2 + h?) is the slant distance
from the point of closest approach to the dipgrle X, is the point of closest approadhis the
depth of the dipole, a is the base level, anddredinear and quadratic terms that represent
interference from other anomalies. The deconvolupi@blem is to solve for the unknown
parameterso, S m, a, b, c. This is equivalent to conventional Wewhezonvolution (e.g. Ku
and Sharp, 1983) of the TMI anomaly of a thin sheet

Once the origin ok and slant distance are determined and the scajetkmt,z4, and distance
to sourcer;, at successive points are known, the measuredegtadnsor elements can be
modelled by:

BY) = —%[2L)g3 +AM'SE —3LS?X ~M'S*|+a, +b,x +C, 02, (34)

with similar terms for the other four independearigor elements, where the distances along
the profile,x;, are now with respect to an origin at the pointlosest approachyl' = MY-Nh

is the direction cosine of the slant component a§netization and a quadratic interference
term is assumed for each component. The deconwalptioblem is to solve for the unknown
parameterg, M, N, Y, h and the interference termg &;, G;. This is carried out in a similar
way to the deconvolution of the invarian{Clark, 2008). At this stage it is recommended to
remove the interference terms from the measuresbteziements and recalculate the eigen-
values and/. Using the new estimatesxaf S, mthe deconvolution of the tensor elements can
be repeated. The process is generally rapidly agewe, the revised interference terms
become small and the source parameters becomepmemisely determined.
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