

Rapid Soil Analysis by Mid-Infrared Spectroscopy Training Course 01. COURSE INTRODUCTION

Anthony Ringrose-Voase May 2018

Agriculture and Food www.csiro.au

Australian Government

Australian Centre for International Agricultural Research

Training course objectives

To train participants in the use of mid-infrared spectroscopy (MIR) to rapidly characterize soil

- Role of rapid soil analysis in a soil survey context
- Operation of MIR
- Calibration of MIR and prediction of soil properties

Course outline

Seminar on "Rapid Soil Analysis by Mid-Infrared Spectroscopy"

- 1. What is MIR spectroscopy?
 - Demonstration of MIR operation (video)
- 2. MIR calibration
 - Demonstration of MIR calibration
 - Demonstration of soil property estimation by MIR
- 3. Role of rapid soil analysis in digital soil mapping
- 4. MIR calibration strategies

Course outline

Hands-on training course

Course outline

1.

- 2. What is MIR spectroscopy? 3. Role of rapid soil analysis in digital soil mapping Setting up MIR spectrometer and software 4. 5. Sample preparation 6. Safety 7. Acquiring MIR spectra from soil specimens 8. Calibration 9. MIR calibration strategies 10. Calibration and optimization Thursday
- 11. Soil property estimation

ACIAR Project SMCN/2016/111 - MIR Spectroscopy Training Course

Monday PM

Tuesday AM **Tuesday PM**

Wednesday

Friday

Course outline

The course will consist of:

- Lectures
 - Background to theory and practice of MIR spectroscopy
 - Seminar
- Instructions
 - Demonstrations of practical aspects of MIR spectroscopy
- Practicals
 - Opportunities for participants to learn-by-doing

Training course objectives

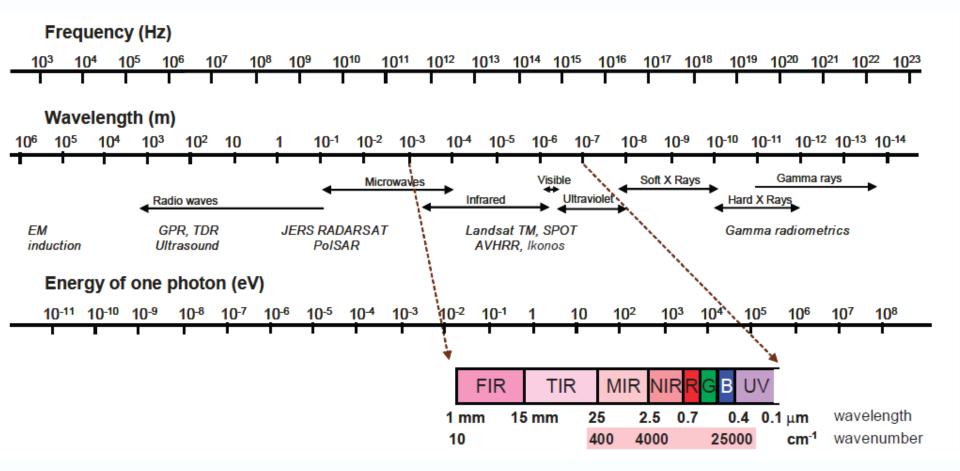
At the end of this course you will be able to:

- Understand the principles of MIR spectroscopy as applied to rapid soil analysis
- Be able to:
 - Prepare soil specimens for MIR spectroscopy
 - Acquire MIR spectra from soil specimens
 - Develop MIR calibrations for different soil properties
 - Predict soil properties from MIR spectra
- Understand the role of MIR spectroscopy in soil survey and land evaluation

Rapid Soil Analysis by Mid-Infrared Spectroscopy Training Course 02. WHAT IS MIR SPECTROSCOPY?

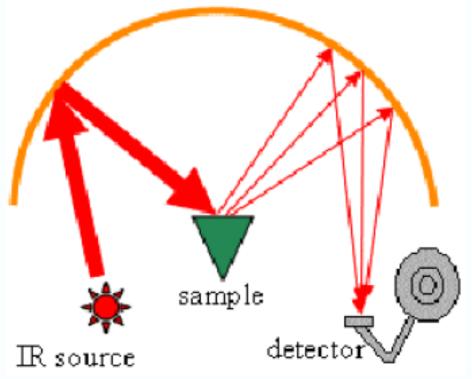
Anthony Ringrose-Voase May 2018

Agriculture and Food www.csiro.au

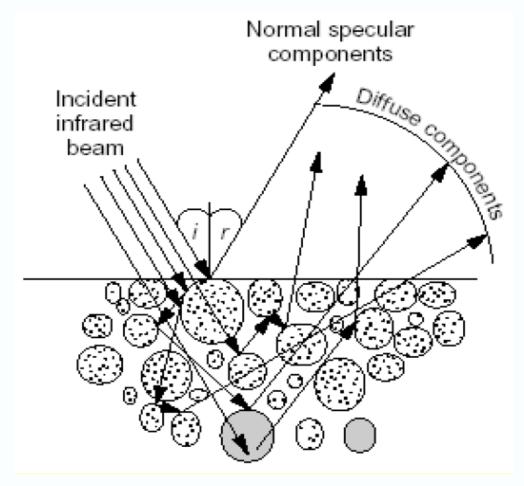


Australian Government

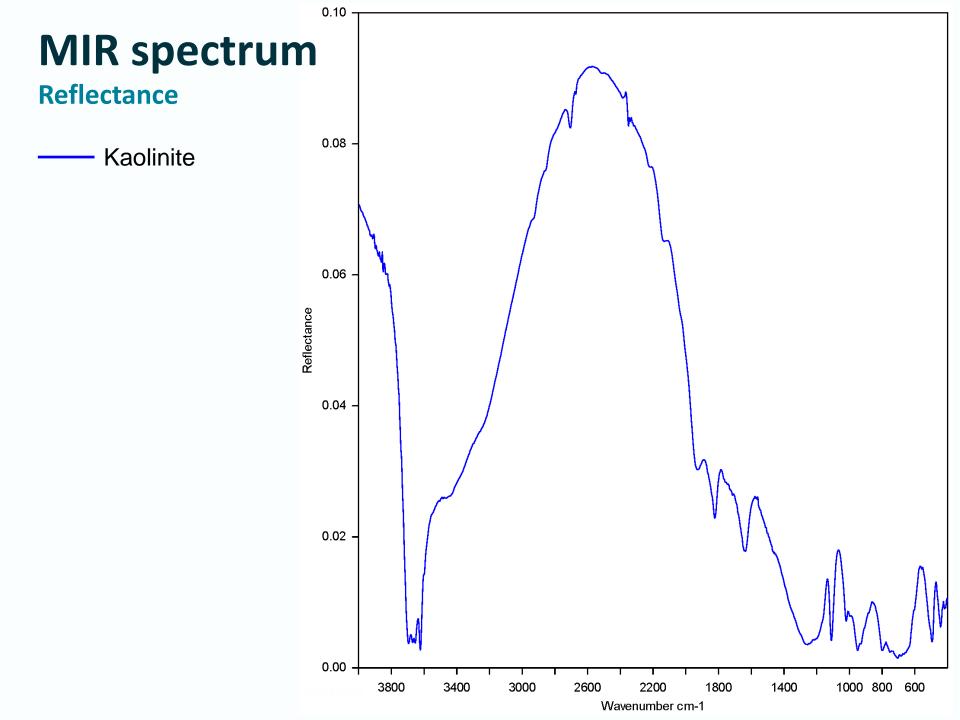
Australian Centre for International Agricultural Research


Range of electromagnetic radiation available for rapid soil measurement

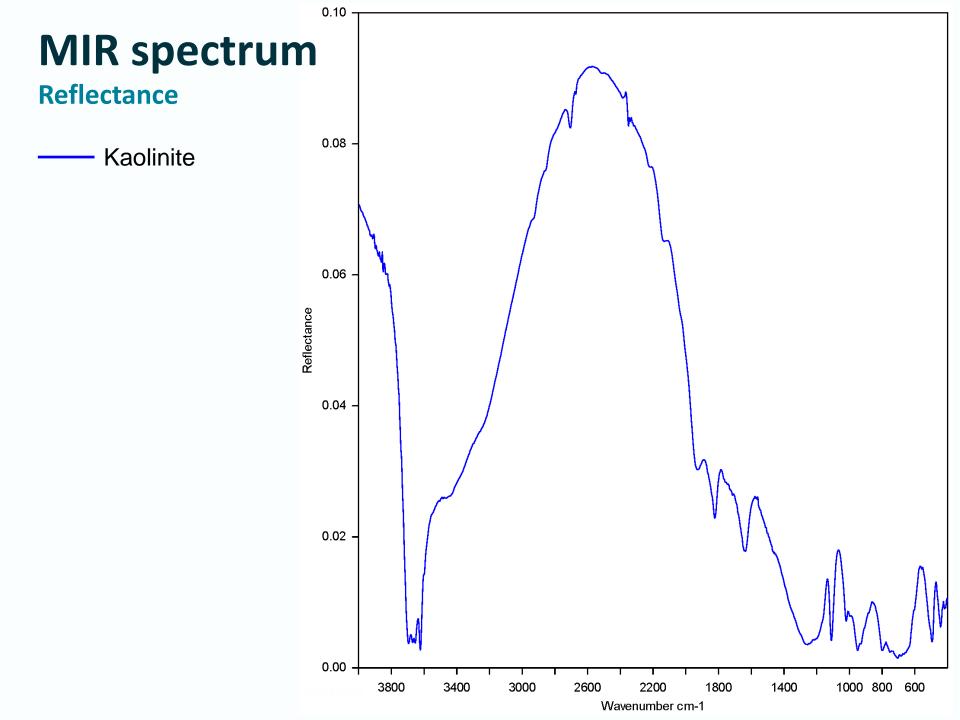
CSIRC

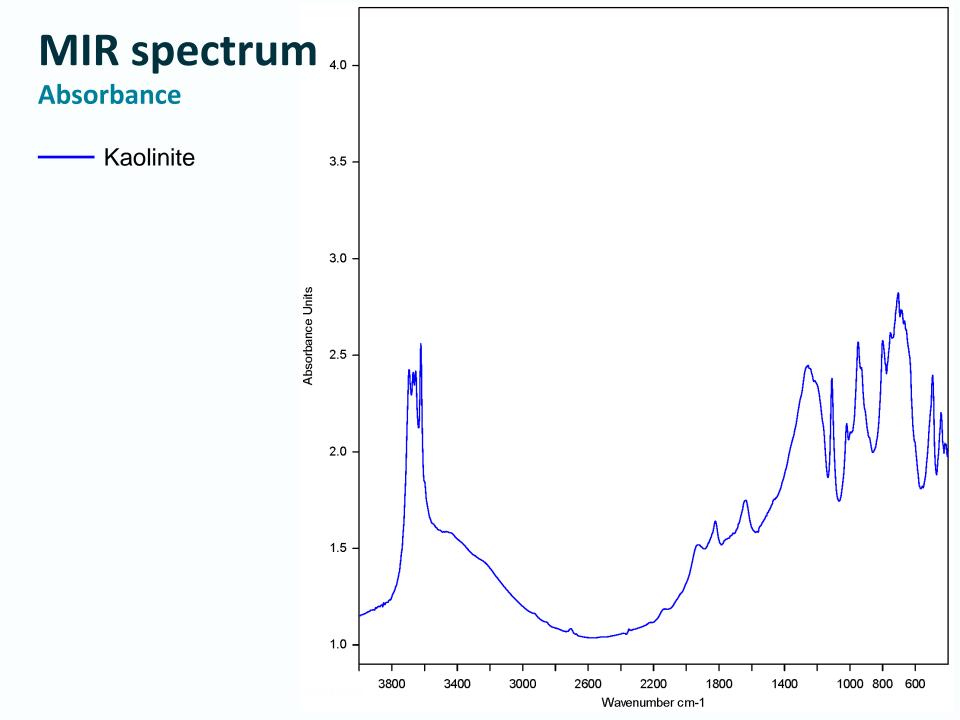


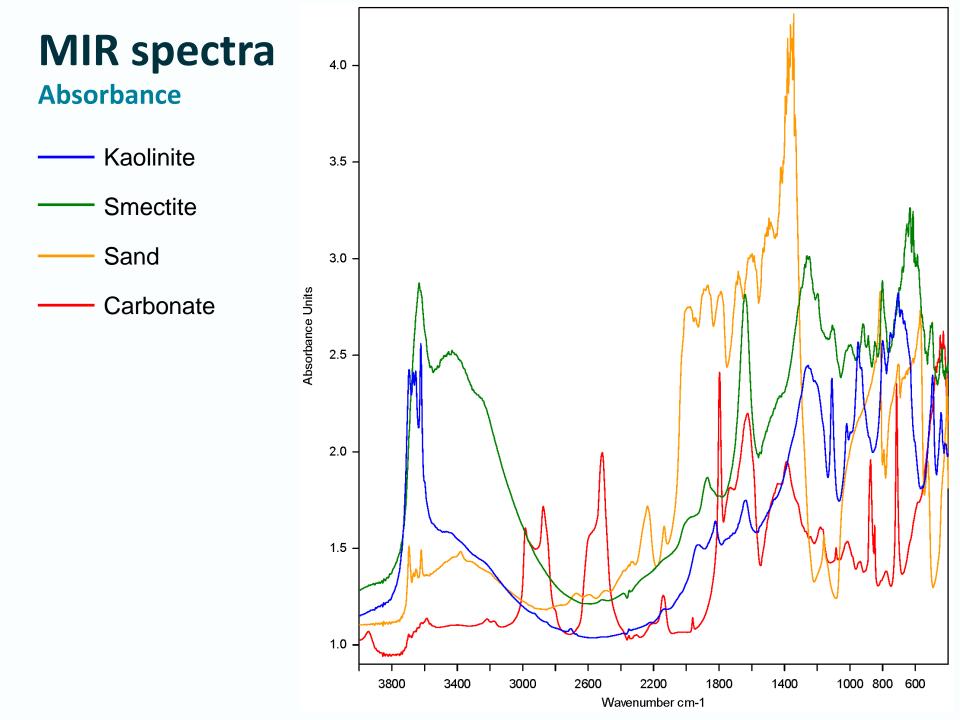
- Infrared light is shone at a finely ground soil specimen
- Infrared light is scattered and reflected by soil
- Reflected infrared light is measured by a detector

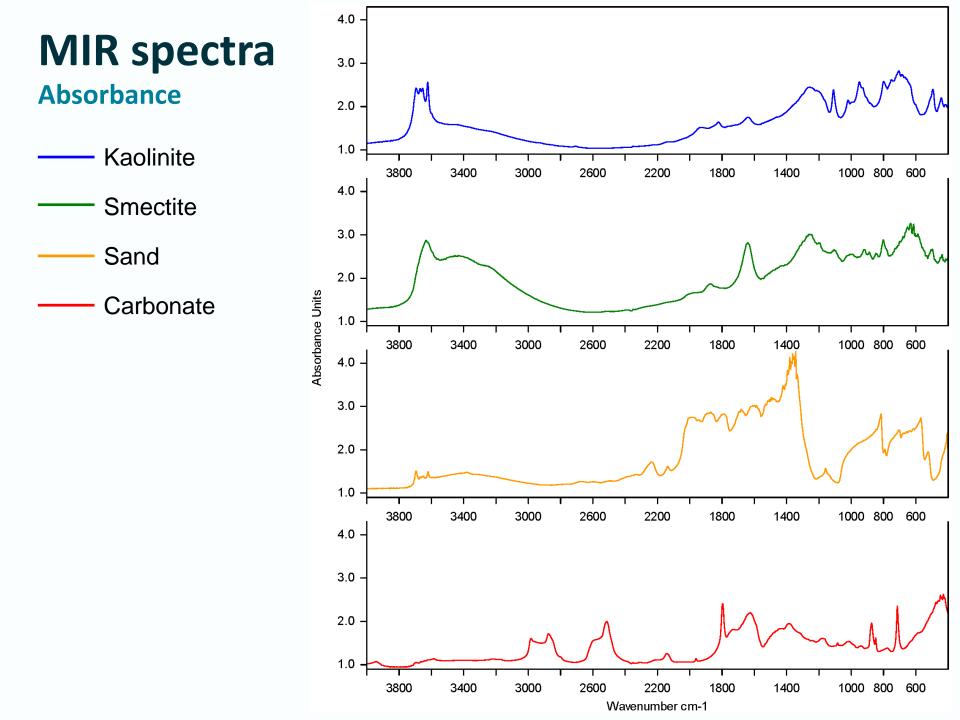


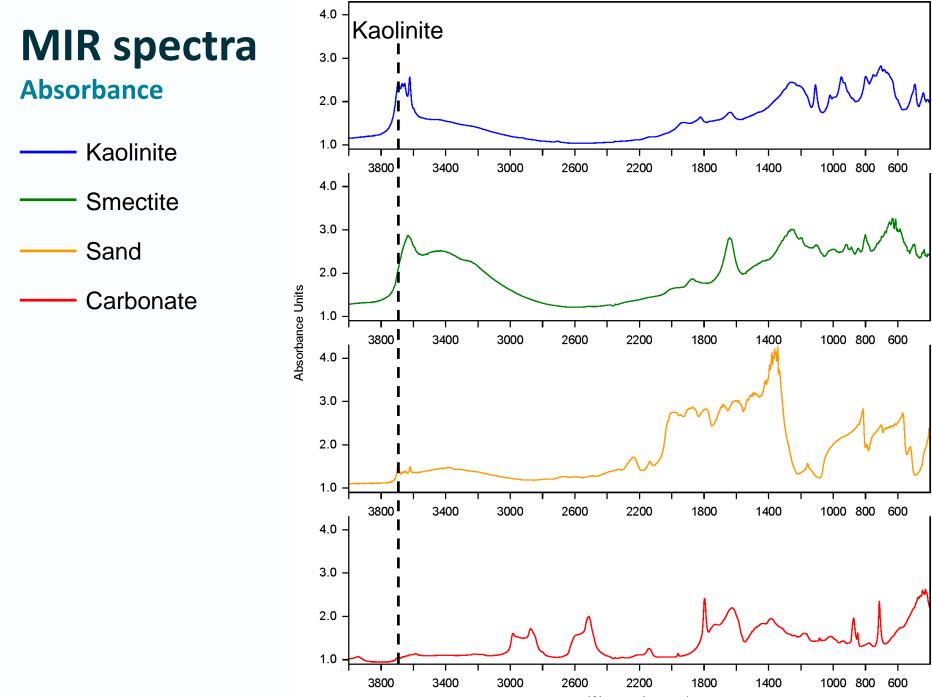
Needs dry fine soil particles

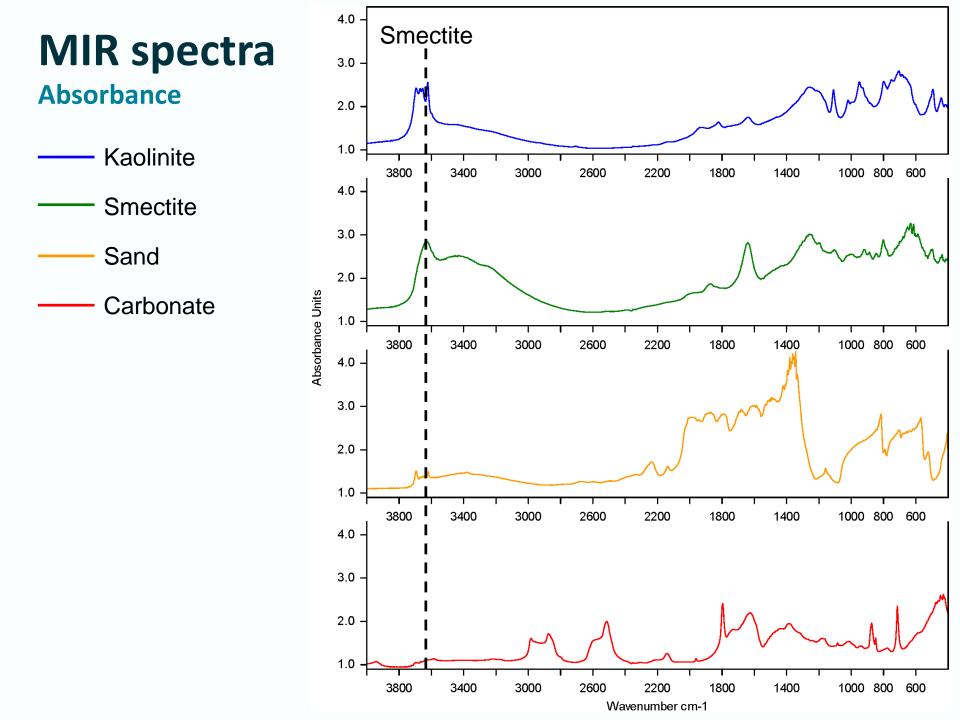


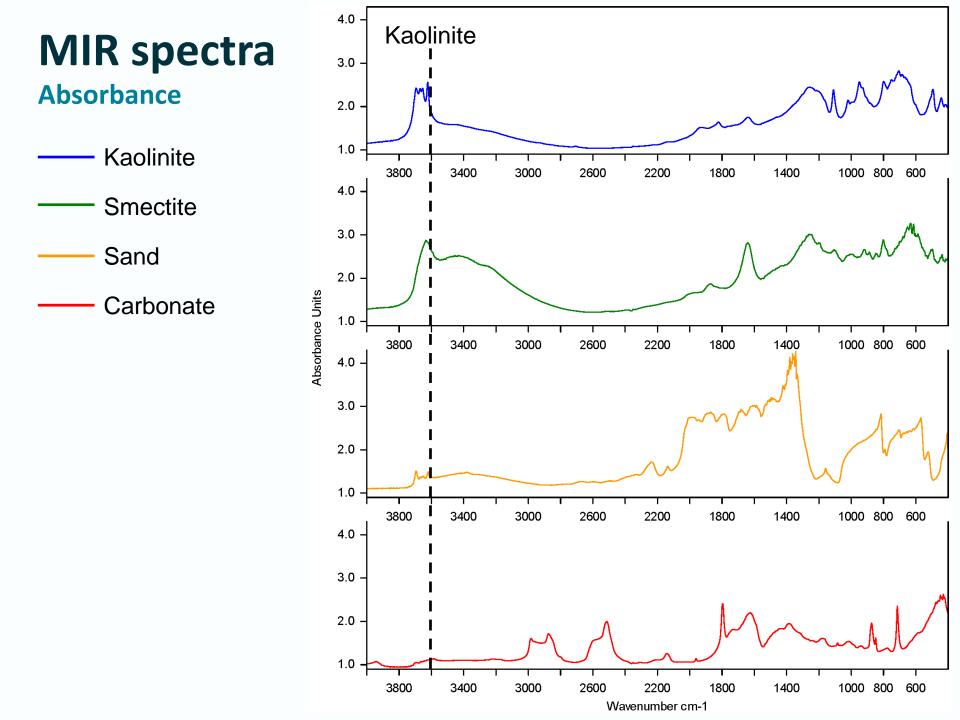


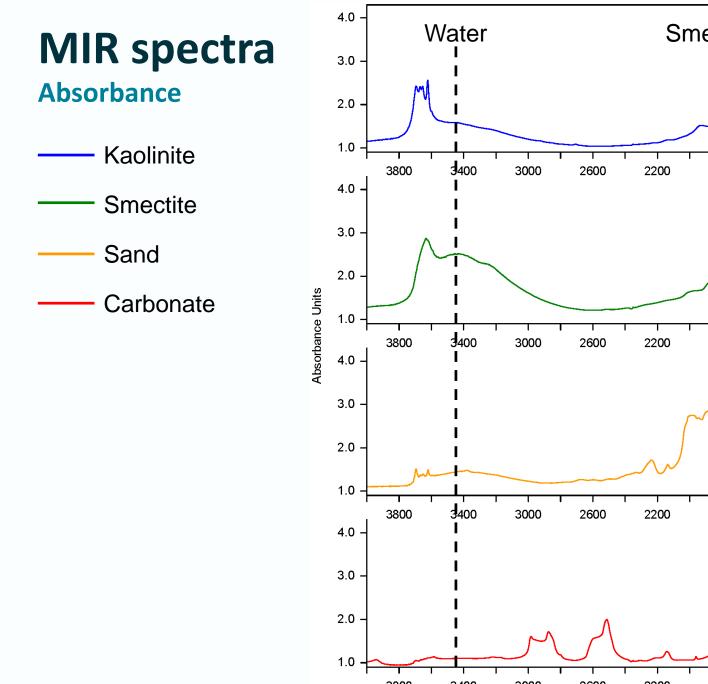


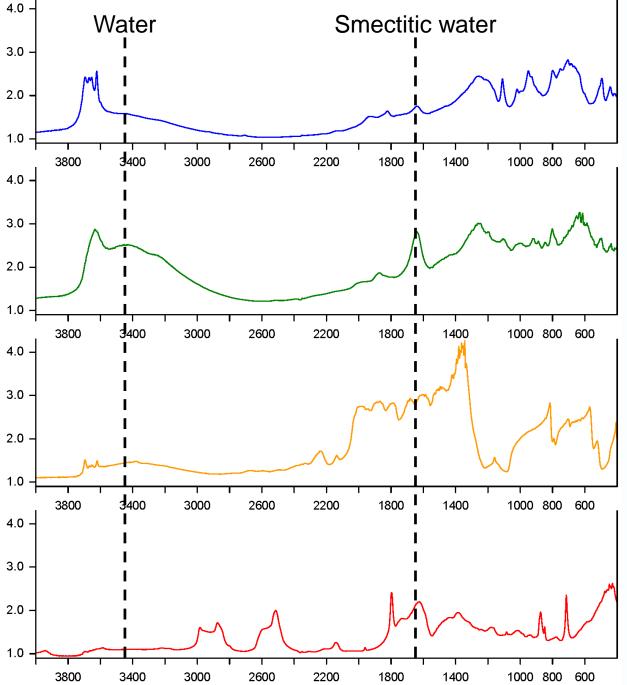

- Some of the infrared light is absorbed by substances in the soil specimen
 - Different substances absorb specific infrared wavelengths
 - Which wavelengths are absorbed depends on chemical bonds of the substance
 - In the infrared light reflected by the specimen, the intensity of these wavelengths is reduced
- Reduction in intensity is proportional to the concentration of the substance
- The reflectance spectrum carries information about the concentrations of the substances in the soil specimen
 - Like a fingerprint



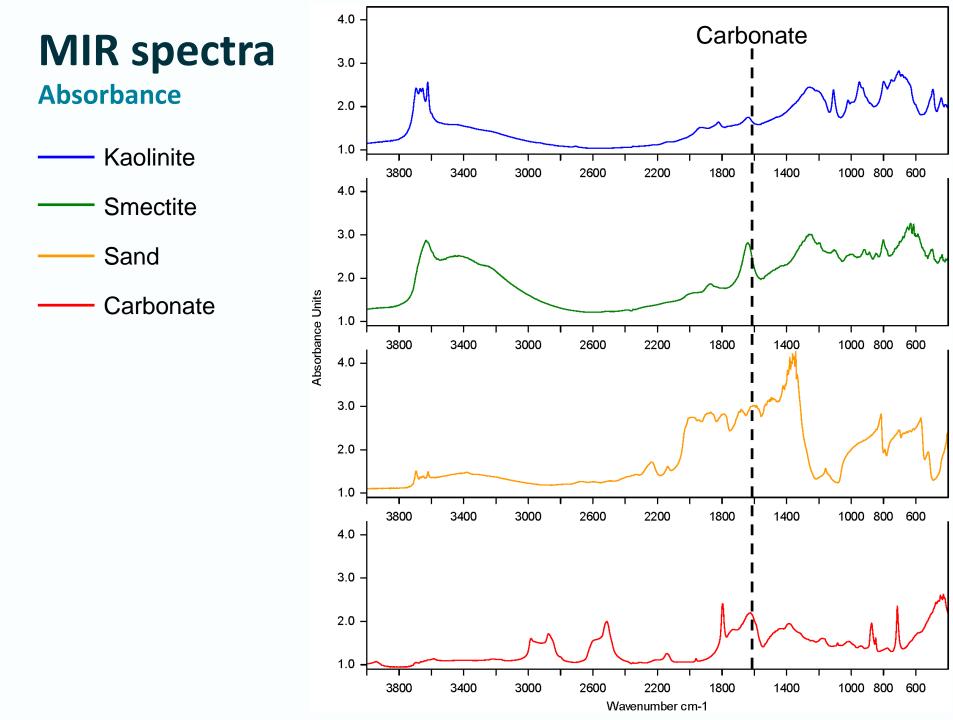


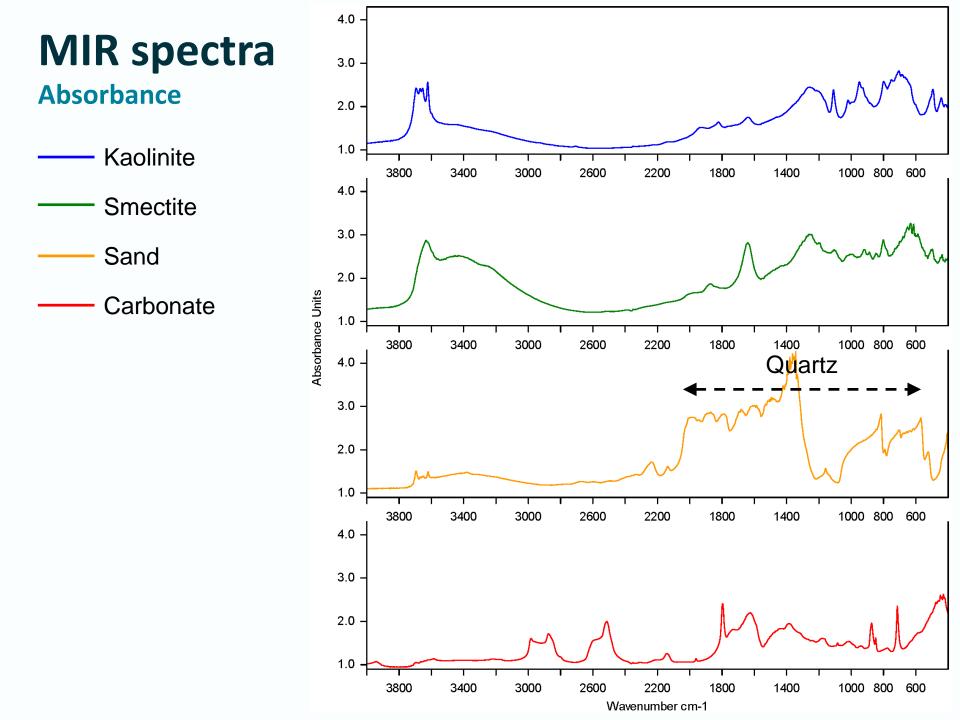


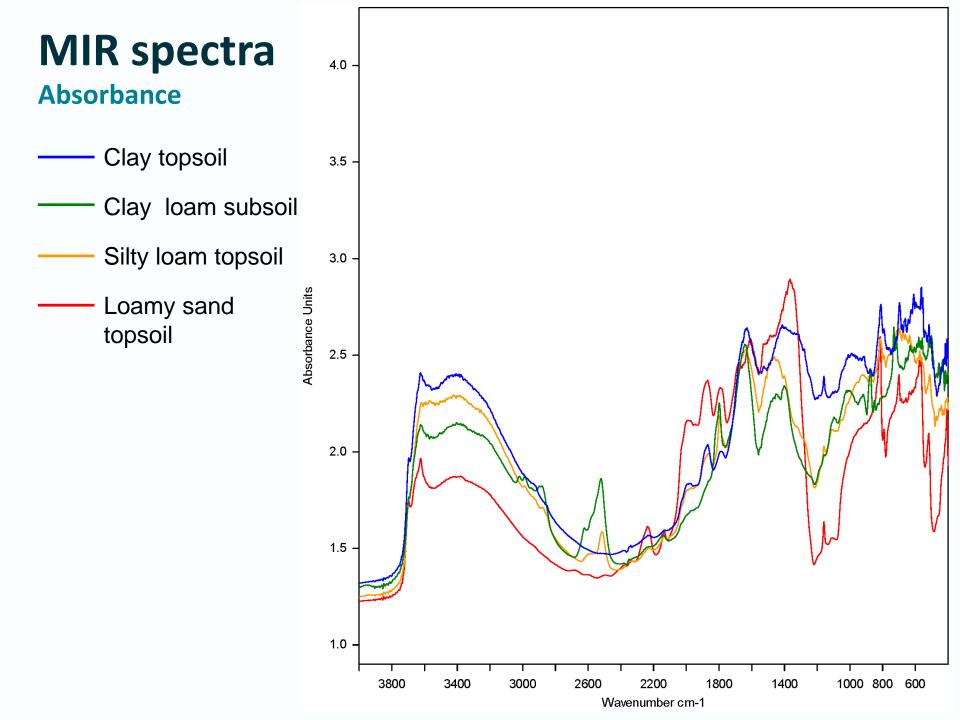




Wavenumber cm-1






Wavenumber cm-1

- Spectra of real soil is a complicated mixture of peaks
 - Dependent on the concentrations of different substances

- Spectra of real soil is a complicated mixture of peaks
 - Dependent on the concentrations of different substances
- These concentrations are usually estimated statistically
 - Process is called calibration
 - Uses a training set to 'teach' the system
 - Usually a small subset is selected
 - Training set is analysed by conventional laboratory methods
 - A statistical calibration is developed using "partial least squares"
 - Calibrations are developed for each soil property of interest
- This allows a range of soil properties can be estimated from the MIR spectra of the remaining soils

- Substances that can be estimated include:
 - Clay
 - Silt
 - Sand
 - Organic carbon
 - Total nitrogen
 - pH
 - Exchangeable cations and CEC
 - Iron
- Other properties related to the above **may** be estimated in a given region
 - Phosphorus buffering index (PBI)
 - Plant available water capacity

MIR reflectance spectroscopy Benefits

- Minimum soil preparation
 - Only drying and grinding to <0.5 mm
 - No extracts or wet chemistry
- Requires only small sample (teaspoon)
- MIR spectrum acquired for each soil sample is used to estimate many soil properties
 - Each soil property requires a one-off calibration against conventional measurements
 - Once calibrations are developed several soil properties can be predicted simultaneously
- Stored spectra can be used to predict additional soil properties when new calibrations become available

MIR reflectance spectroscopy Benefits

- Spectrum for one sample acquired in < 5 minutes
 - Allows rapid estimation of many soil properties for large number of samples
- For example: Soil survey of Pyawbwe Township, Myanmar produced 4000 samples
 - Characterisation by conventional analysis would not be possible
 - Time
 - Cost
 - Characterisation by MIR spectroscopy
 - + conventional analysis of subset about 100 samples
 - Cost conventional analysis: AUD 170 per sample
 - Total AUD 17,000
 - If used to calibrate MIR and estimate properties for remaining 3900 samples
 - Effective cost: AUD 17,000/4000 = AUD 4.25
- Cost of MIR spectrometer is less than many conventional analytical instruments

Deployment of MIR capability

Recent technological advances mean MIR instruments are relatively inexpensive to buy and run

- Will be commissioned:
 - Koronivia Research Station
- Equipment:
 - Small oven to air-dry samples at 60°C
 - Several agate mortars & pestles
 - Small MIR spectrometer (size of a shoe box)
 - Computer to
 - control spectrometer
 - capture results
 - develop calibrations

Rapid Soil Analysis by Mid-Infrared Spectroscopy Training Course 03. ROLE OF RAPID SOIL ANALYIS IN DIGITAL SOIL MAPPING

Anthony Ringrose-Voase May 2018

Agriculture and Food www.csiro.au

Australian Government

Australian Centre for International Agricultural Research

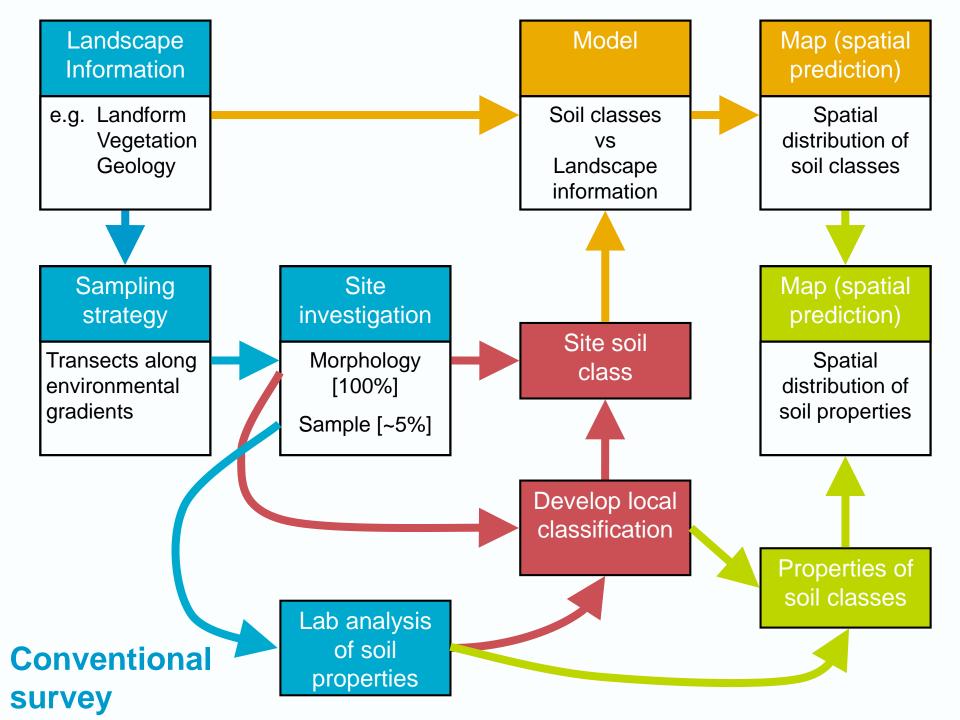
Types of soil measurement

In conventional soil survey the information collected at each observation site includes:

- Soil profile morphology descriptions:
- Laboratory measurements of soil properties:
 - Laboratory analysis is: time-consuming expensive

All sites A few 'representative' sites

Laboratory analysis in a survey context


Uses of laboratory analysis

- Assisting with soil classification
 - Required by some taxonomic systems (including Soil Taxonomy)
- Determine properties of each soil class

Why are they necessary?

- Because they directly reflect the function of the soil
 - Usually more important than morphology
- Required for some aspects of land suitability assessment
- Required to guide advice on land management practices

Types of soil measurement

In conventional soil survey the information collected at each observation site includes:

- Soil profile morphology descriptions:
- Laboratory measurements of soil properties:

All sites A few 'representative' sites

In digital soil surveys the collected information collected:

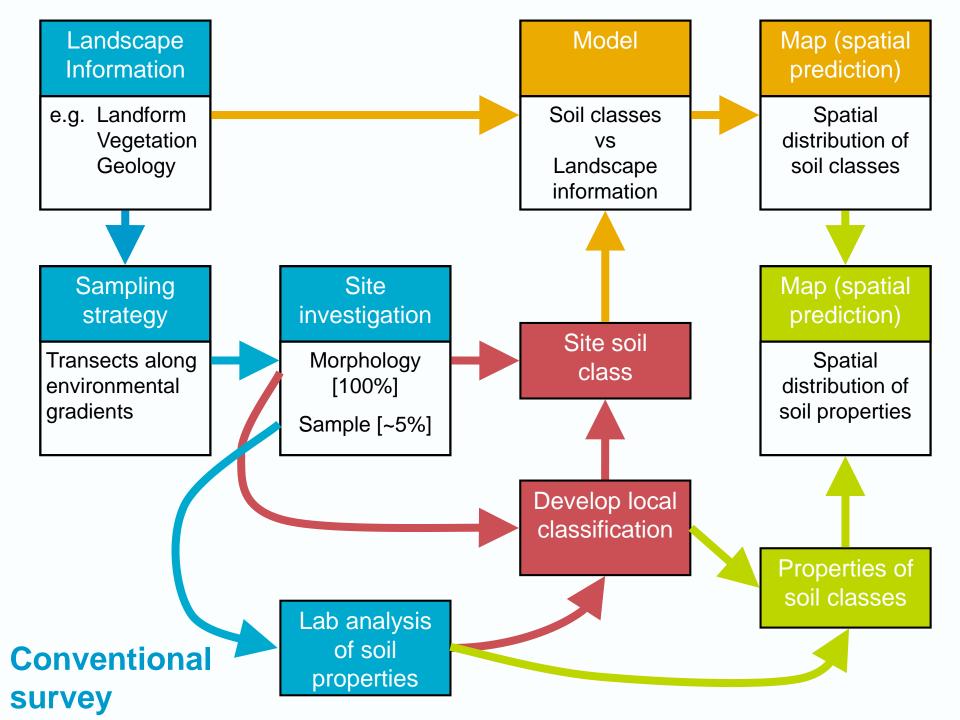
 Soil profile morphology descriptions: 	All sites
 Rapid soil measurements: 	All sites
 Laboratory measurements of soil properties: 	A few 'calibration' specimens

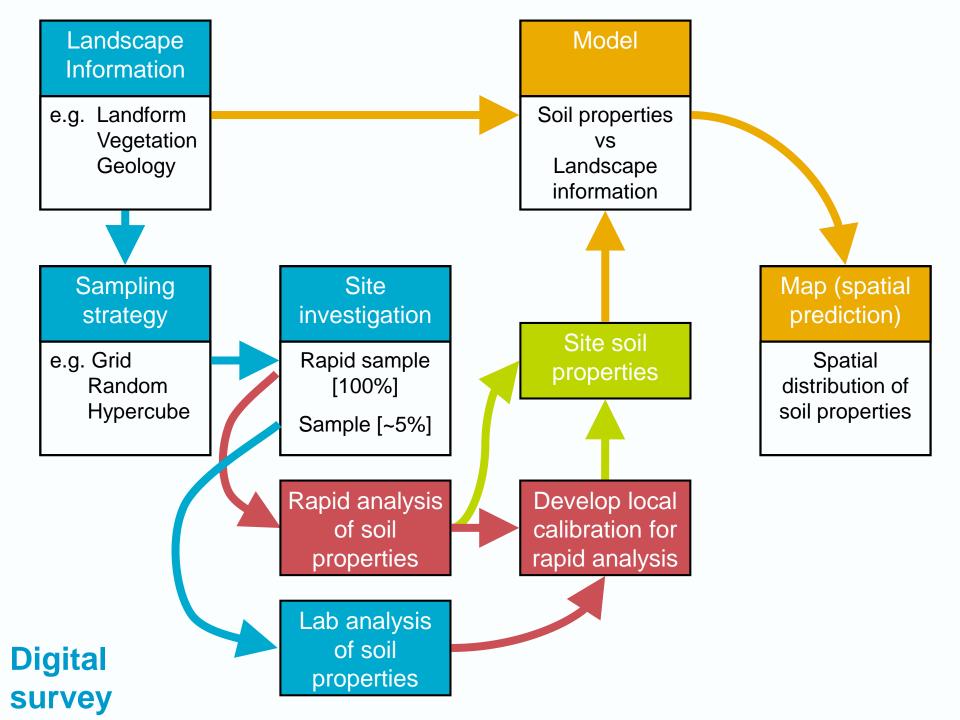
Role of rapid measurement

Measurement is 'rapid'

• Like morphology, can be done on all samples from all sites

Provides:


- Quantitative data
- Unlike morphology, measures soil properties of interest to farmers, hydrologists, land use planners etc.

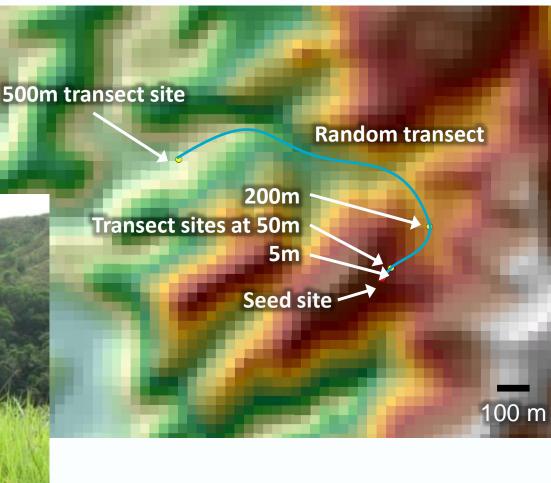

Not as precise as laboratory measurements

Measurement strategy for soil survey:

- Many, less precise measurements are better than few precise measurements
- Because spatial variability of soil properties is large
 - Even over short distances

Digital Land Resource Mapping (DLRM) including Digital Soil Mapping (DSM)

Based on 4 pillars:


- 1. Statistically-based sampling strategy
- 2. Simplified site and soil profile methods
- 3. Rapid soil analysis
- 4. Mapping of soil and land properties using statistical models

1. Statistically-based sampling strategy

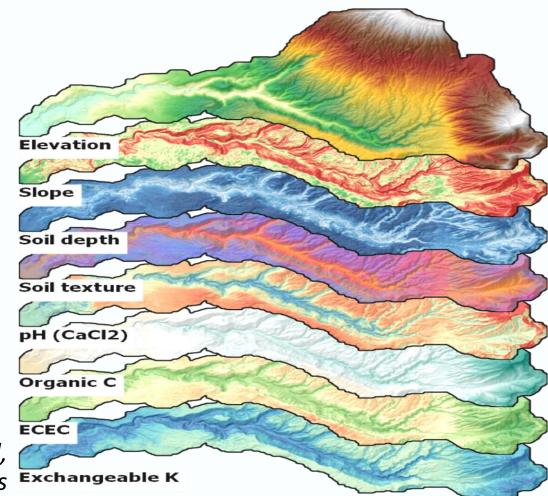
Using random transect samples generated on a 30 m digital elevation model (DEM)

2. Simplified site and soil profile methods

Simplified field procedures that can be carried out by non-experts with an emphasis on soil sampling all sites

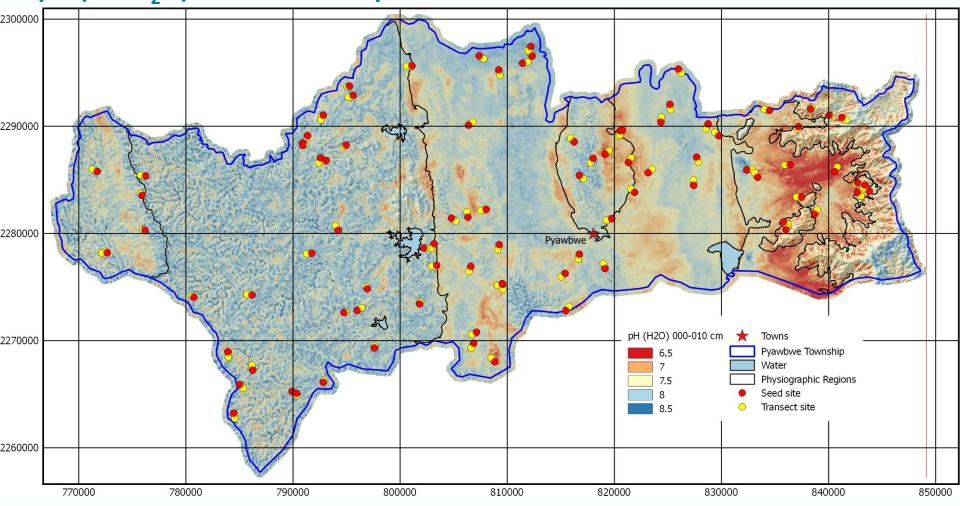
3. Rapid soil analysis

- Uses mid-infrared spectroscopy (MIR)
- Possible to estimate a range of soil properties at all sample sites
 - rather than at a small subset when only conventional laboratory methods are used.

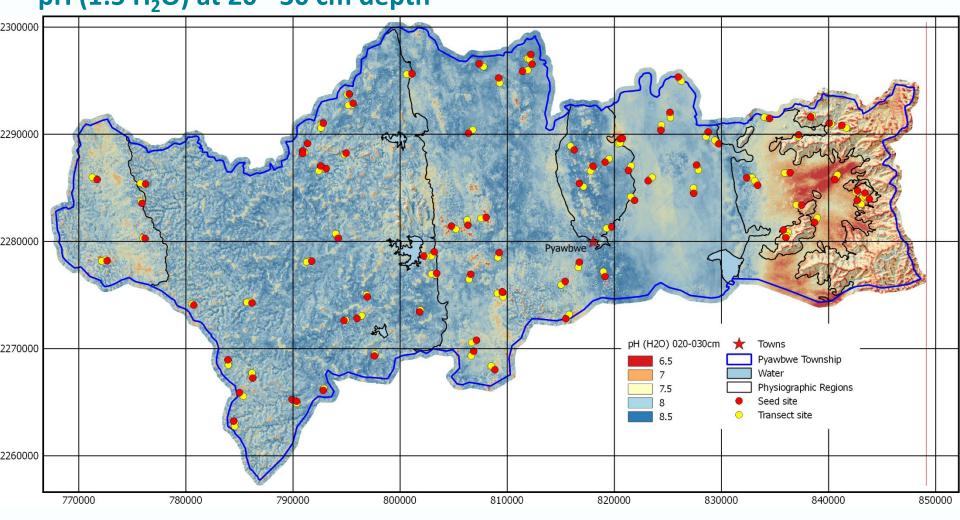


4. Mapping of soil and land properties using statistical models

Numerical methods are used


- To predict land and soil properties over the survey area using
 - Measurements at sample sites
 - Terrain attributes (e.g. slope) derived from a 20 m digital elevation model (DEM)
- Produces, not one, but many digital maps such as these

Cabulig watershed, southern Philippines


Digital soil map of Pyawbwe Township pH (1:5 H₂O) at 0 - 10 cm depth

CSIRC

Digital soil map of Pyawbwe Township pH (1:5 H₂O) at 20 - 30 cm depth

CSIRC

Conclusion

Rapid soil analysis by MIR spectroscopy

- Allows direct mapping of soil properties of interest to land managers
- Instead of mapping soil type based on observations of soil morphology and then inferring soil properties from a measurements on a few examples of each soil type

Rapid Soil Analysis by Mid-Infrared Spectroscopy Training Course 04. SAFETY

Anthony Ringrose-Voase May 2018

Agriculture and Food www.csiro.au

Australian Government

Australian Centre for International Agricultural Research

Health and safety

Highest priority objective for any project:

- That all staff return home
- Uninjured
- In good health

Outline of presentation

- CSIRO framework for assessing health and safety risks
- Controlling risk
- Risk assessment for field laboratory

- 1. Identify a hazard
 - For example, repetitive strain injury due to soil grinding

- 2. Assess the consequence of the hazard
 - Catastrophic
 - Fatality
 - Serious, permanent disability
 - Major
 - Extended absence from work (>1 week)
 - Moderate to severe health effects
 - Moderate
 - Temporary absence from work (<1 week)
 - Requires one or more visits to doctor
 - Minor
 - Requires first aid
 - Insignificant
 - No injury

- 3. Assess likelihood of hazard
 - Almost certain
 - Daily to several times per week
 - Likely
 - Once per month to several times per year
 - Possible
 - Once per year to several times over 2 years
 - Unlikely
 - Once every 2 to 5 years
 - Rare
 - Once every 5 years or less

4. Assess inherent risk

- Risk that exists in the absence of control measures
- Assessed using consequence and likelihood

Likelihood	Consequence						
	Insignificant	Minor	Moderate	Major	Catastrophic		
Almost certain	Mod	Mod	High	High	High		
Likely	Mod	Mod	Mod	High	High		
Possible	Low	Mod	Mod	High	High		
Unlikely	Low	Low	Mod	Mod	High		
Rare	Low	Low	Mod	Mod	Mod		

Inherent risk levels

High risk

• Immediate action required

Moderate risk

• Management responsibility must be specified

Low risk

• Manage by routine procedures

5. Decide on management controls

- Very good
 - Controls are best practice
 - Involve explicit standards
 - Followed all of the time
 - High emphasis on elimination, substitution or engineering controls.
- Reasonable
 - Controls are in place
 - Not followed all of the time
 - May not include best practice
 - High emphasis on administration and protective equipment.
- Poor
 - Few or no controls in place.
 - No standards have been identified.
 - Controls do not address Hierarchy of Control principles.

6. Assess impact of management controls

- Determines residual risk
- Risk that exists after application of control measures

Likelihood	Consequence						
	Insignificant	Minor	Moderate	Major	Catastrophic		
Almost certain	Mod	Mod	High	High	High		
Likely	Mod	Mod	Mod	High	High		
Possible	Low	Mod	Mod	High	High		
Unlikely	Low	Low	Mod	Mod	High		
Rare	Low	Low	Mod	Mod	Mod		

Residual risk levels

Low

- High Attend to immediately
 - Moderate Attend to in short-term
 - Attend to in longer term

Hierarchy of control principles

Elimination

• Eliminate the hazard from the workplace altogether

Substitution/modification

• Substitute the hazard with something with lesser risk which will still perform the same task in a satisfactory manner

Isolation

- Isolate the problem from staff
- often by use of separate purpose built rooms, barricades, sound barriers, etc.

Engineering controls

• Re-design equipment, work processes or tools to reduce or eliminate the risk

Most preferred controls

Hierarchy of control principles

Administrative controls

- Training
- Written work procedures
- Adequate supervision
- Signage
- Maintenance of plant and equipment
- Limitation of exposure time

Personal protective equipment (PPE)

- Provide adequate personal protective equipment.
- Masks, gloves, boots, overalls etc.

Note:

- This is the least preferable method of dealing with a hazard
- It should only be adopted when all other methods are unsuitable.

Least preferred controls

Exercise: Risk assessment for MIR laboratory

Exercise:

- 1. Identify a hazard you think we might encounter in the field laboratory Then work through the risk assessment framework for that hazard
- 2. Consequences
- 3. Likelihood
- 4. Inherent risk
- 5. Management controls
- 6. Residual risk

Hazards in MIR laboratory

Repetitive strain injury

- Long term pain due to repetitive actions during grinding
- Consequence: Major
- Likelihood: Likely
- Inherent risk: High
- Controls:
 - Staff should be aware of risk and of need to act early
 - Provide ergonomic workstations
 - Regular rest-breaks rotate activity with other staff
- Consequence: Moderate
- Likelihood: Unlikely
- Residual risk: Moderate

Hazards in MIR laboratory

Electrocution

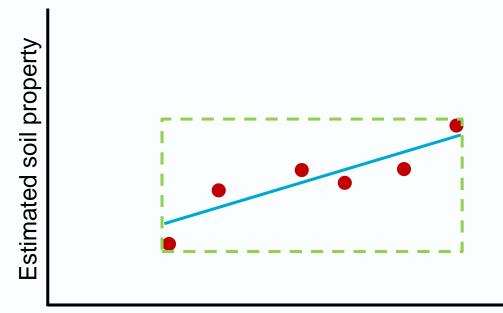
- Use of electric equipment oven, MIR spectrometer
- Serious injury, death
- Consequence: Catastrophic
- Likelihood: Unlikely
- Inherent risk: High
- Controls:
 - Use earth
 - Check electric leads for wear and tear
 - Maintain equipment
 - Use approved plugs and sockets
 - Use licensed electrician to change plugs etc.
- Consequence: Catastrophic
- Likelihood: Rare
- Residual risk: Moderate

Rapid Soil Analysis by Mid-Infrared Spectroscopy Training Course 05. MIR CALIBRATION STRATEGY

Anthony Ringrose-Voase May 2018

Agriculture and Food www.csiro.au

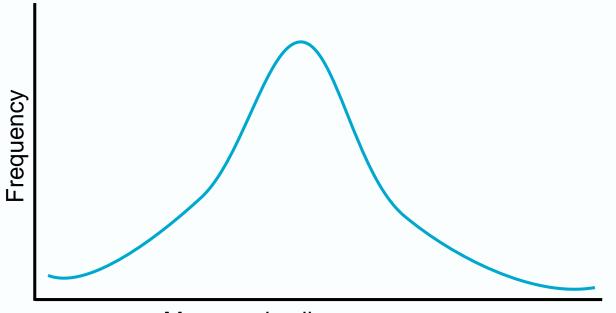
Australian Government


Australian Centre for International Agricultural Research

Choice of samples for calibration

Prediction of a soil property using a calibration is only valid for soil property values within the range of the calibration sample set

• Properties of calibration samples should cover full range encountered in survey area



Measured soil property

Choice of samples for calibration

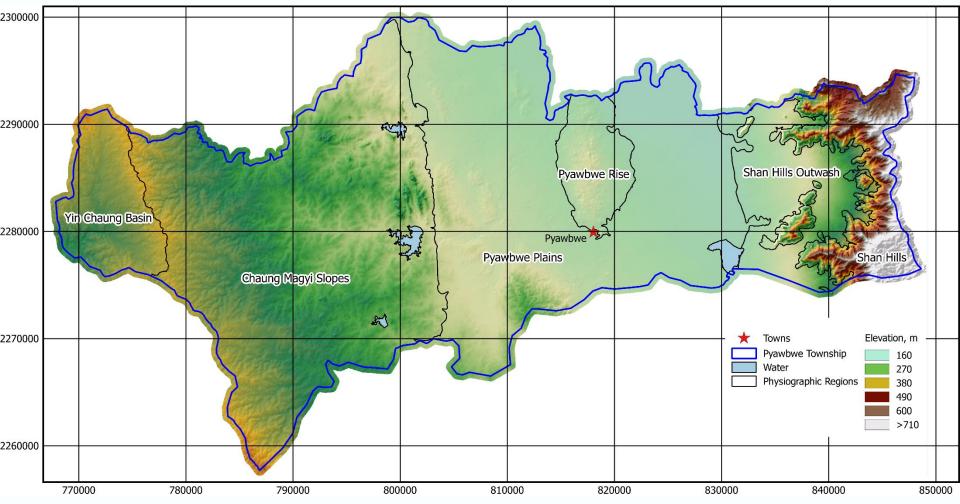
Calibrations are most reliable when statistical distribution of soil properties in the calibration sample set reflects the distribution in the survey area

Measured soil property

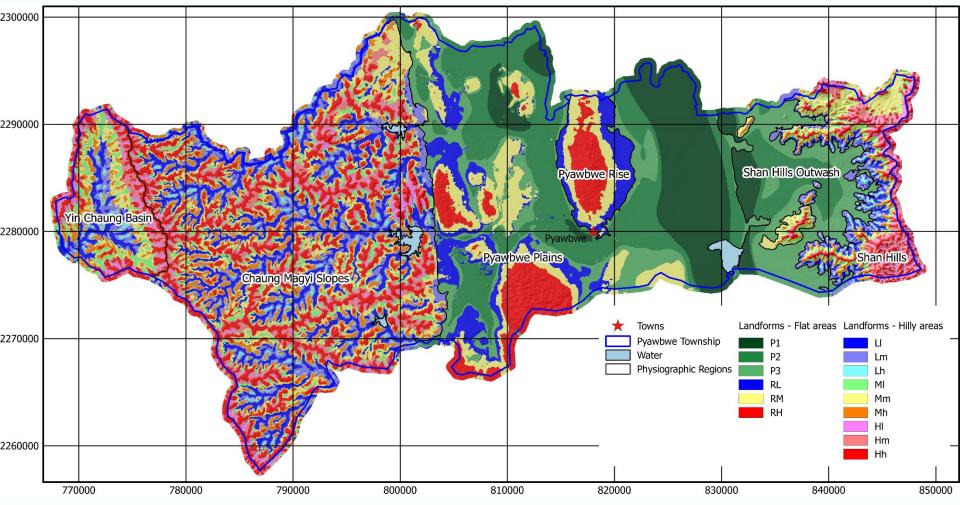
Calibration strategy for a survey area

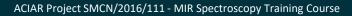
- At the outset we have no knowledge of the range or distribution of soil properties in survey area
- Aim to represent the range of soil materials in survey area
- Two stage process
 - Select sampling locations likely to include a wide range of soil materials
 - After acquiring MIR spectra, select samples that cover the range of MIR spectral characteristics

Calibration strategy for a survey area Stage 1


Select sampling locations likely to include a wide range of soil materials

- Stratify landscape at two levels
 - Physiographic regions
 - Landform units

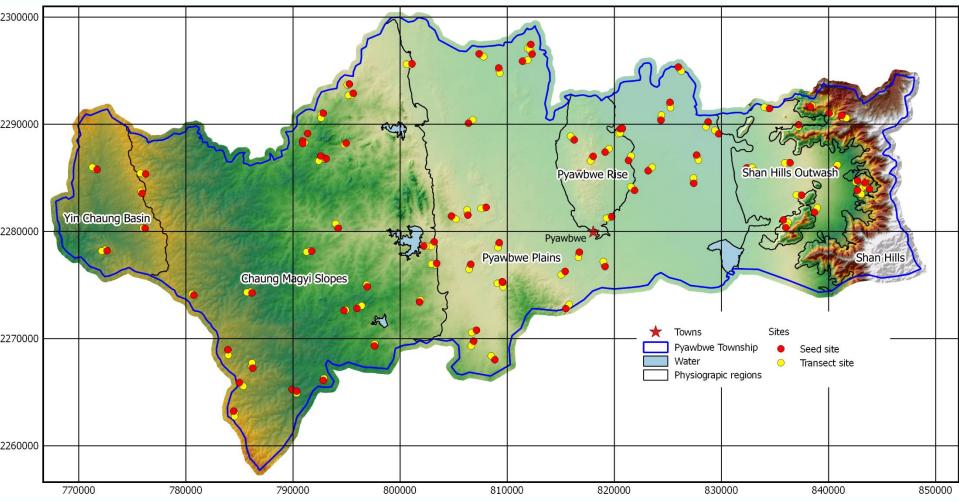

Calibration strategy for a survey area


Stage 1 – Stratification into physiographic regions

Calibration strategy for a survey area

Stage 1 – Stratification of each physiographic region into landform units

Calibration strategy for a survey area Stage 1


Select sampling locations likely to include a wide range of soil materials

- Stratify landscape at two levels
 - Physiographic regions
 - Landform units
- Randomly locate 'seed sites' in each physiographic-landform unit
 - Number of sites proportional to unit area
- Also locate 4 'transect sites' along random transects away from seed site

Calibration strategy for a survey area

Stage 1 – Stratified-random sampling strategy

CSIR

Calibration strategy for a survey area Stage 1

Select sampling locations likely to include a wide range of soil materials

- Stratify landscape at two levels
 - Physiographic regions
 - Landform units
- Randomly locate 'seed sites' in each physiographic-landform unit
 - Number of sites proportional to unit area
- Also locate 4 'transect sites' along random transects away from seed site
- Specimen collection
 - Seed sites: MIR specimen + bag specimen (Pyawbwe 498 specimens)
 - Transect sites: MIR specimen only

(Pyawbwe – 3561 specimens)

(Pyawbwe – 4059 total)

Calibration strategy for a survey area Stage 2

From seed site specimens select specimens that cover the range of MIR spectral characteristics

- Scan all MIR specimens from seed sites
 - (Pyawbwe 498 specimens)
- Analyse MIR spectra
 - Using principal component analysis
- Select a sub set of ~100 specimens that cover range of principal components
 - Using Kennard Stone sampling method

Calibration strategy for a survey area

- Conventional analysis of bag specimens for selected MIR spectra
 - 104 specimens (out of all seed site specimens 498 in Pyawbwe)
- Develop calibrations for each soil property of interest
- Scan MIR specimens from transect sites
 - (3561 specimens in Pyawbwe)
- Estimate soil properties for unanalysed specimens using calibrations
 - Pyawbwe: 3561 transect specimens + 394 seed specimens = 3955 specimens
- Outliers with unreliable estimates are automatically identified
 - Can be removed if desired
 - Or sent for conventional analysis to update calibration

Types of calibration strategies

- Survey area calibrations
 - As above (e.g. for township, catchments)
- Regional calibrations
 - E.g. Central Dry Zone
 - Start with calibration for a survey area
 - Gradually add sites for other areas in the region
 - Incrementally update calibrations
- National calibration
 - Use: Existing database of soil test values within a country Archive of soil specimens (from surveys, agronomy trials etc.)
- Global calibration

Types of calibration strategies

General rule:

- Local calibrations will generally give more accurate estimates than regional, national or global calibrations
 - But are limited to the calibration area
- Spectra should be archived together with soil specimens
 Allows calibrations to be developed for new soil properties in the future
- Most effective if different institutions share spectra and results to build up databases of soil properties and MIR spectra

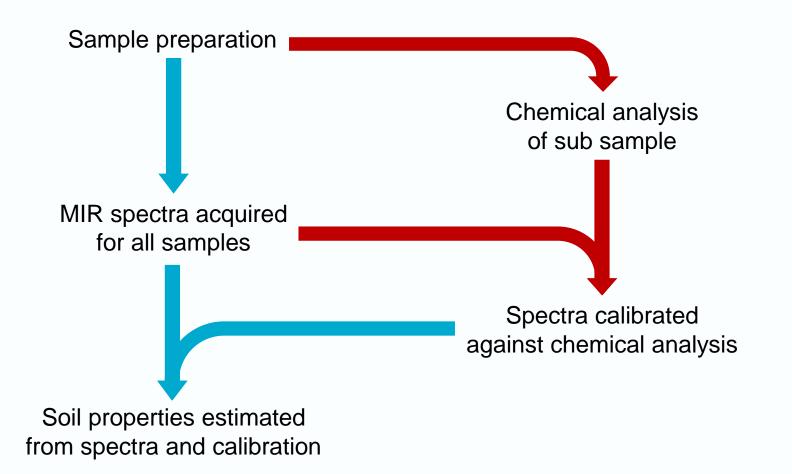
Rapid Soil Analysis by Mid-Infrared Spectroscopy Training Course 06. MIR CALIBRATION

Anthony Ringrose-Voase May 2018

Agriculture and Food www.csiro.au

Australian Government

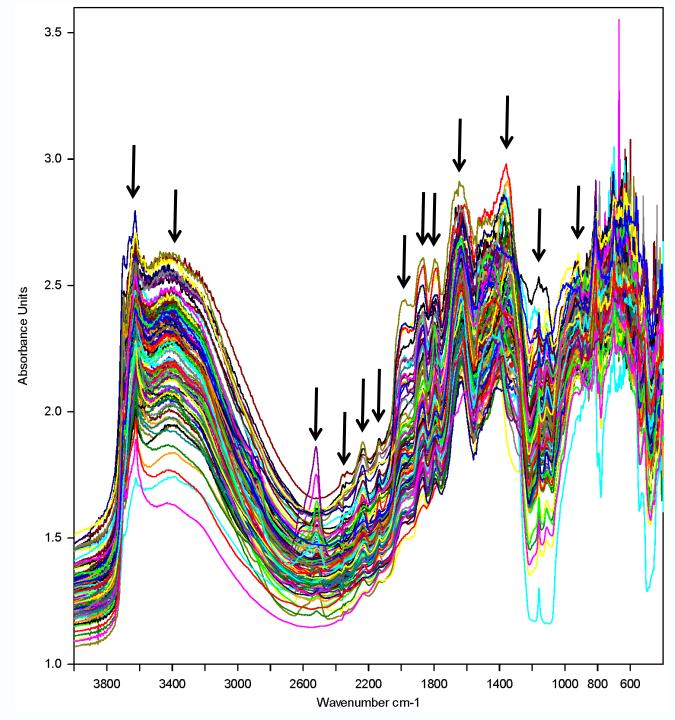
Australian Centre for International Agricultural Research



Purpose of MIR calibration

- To correlate measured MIR spectra with soil properties measured by conventional analysis
- To use this correlation to estimate these properties for soil samples for which there is no conventional analysis
- The whole spectrum is used in correlation
- The correlation is done by partial least square regression

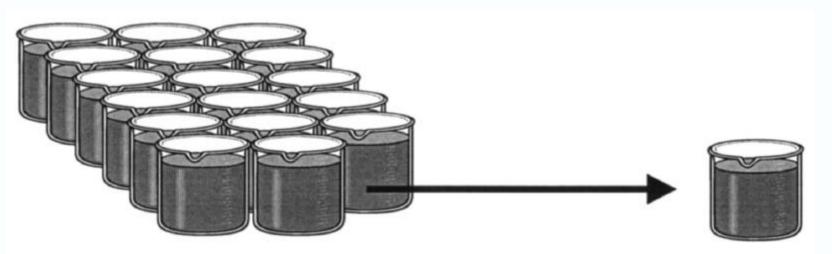
MIR Process to measure soil properties



MIR spectra of 104 samples Pyawbwe Township,

Many parts of the spectra follow a similar pattern

Myanmar


- Therefore much is redundant information
- The whole spectra can be described by a few principal components

Cross-validation

Checking the quality of a calibration

- Calibration is run many times
 - Each time one sample is removed and used for validation
- Good method when short of samples: minimum of ~60 required for a calibration

Calibration Set: Developing a Method

Test Sample: Validating the Method

Residual prediction deviation (RPD)

Assessment of calibration

- RPD = Standard deviation/Root mean square error of prediction
- Related to R²
- Indicates quality of prediction:
 - < 1.5 Poor 1.5-2.0 Indicator 2.0-3.0 Good > 3.0 Analytical quality

MIR prediction for soil samples

Cabulig watershed, southern Philippines

Soil attribute	RPD	Prediction quality
Organic carbon	3.1	Analytical quality
рН (1:5 Н ₂ О)	2.8	Good quality
Exchangeable Mg	2.7	Good quality
Exchangeable acid	2.3	Good quality
Sum exchangeable cation	2.3	Good quality
Clay content	2.2	Good quality
Exchangeable Ca	2.2	Good quality
ECEC	2.0	Good quality
Sand content	1.8	Indicator
Exchangeable K	1.5	Indicator
Silt	1.4	Poor
Olsen P	1.3	Poor

MIR prediction for soil samples

Inabanga watershed, southern Philippines

Soil attribute	RPD	Prediction quality	(Cabulig)
Organic carbon	2.1	Good quality	(Analytical quality)
pH (1:5 H ₂ O)	2.0	Good quality	(Good quality)
Exchangeable Mg	2.1	Good quality	(Good quality)
Exchangeable acid	1.7	Indicator	(Good quality)
Sum exchangeable cation	3.8	Analytical quality	(Good quality)
Clay content	1.8	Indictor	(Good quality)
Exchangeable Ca	3.4	Analytical quality	(Good quality)
ECEC	3.4	Analytical quality	(Good quality)
Sand content	1.7	Indicator	(Indicator)
Exchangeable K	1.6	Indicator	(Indicator)
Silt	1.4	Poor	(Poor)
Olsen P	1.1	Poor	(Poor)

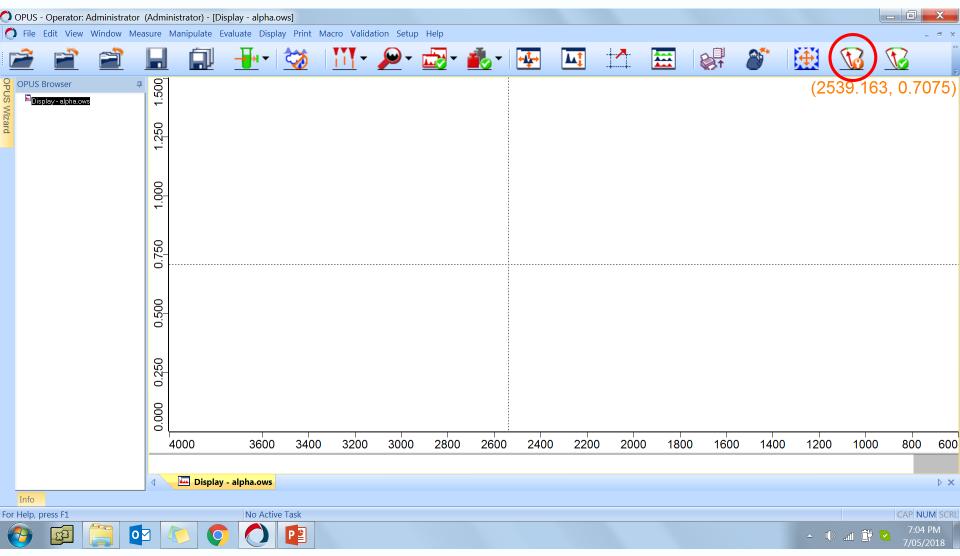
Calibration process

- Make a table of spectra of calibration samples
- Make a table of laboratory results
- Check match of calibration and lab analysis
- Calculate calibration
- Validate
- Optimize

Rapid Soil Analysis by Mid-Infrared Spectroscopy Training Course 07. MIR CALIBRATION INSTRUCTIONS

Anthony Ringrose-Voase May 2018

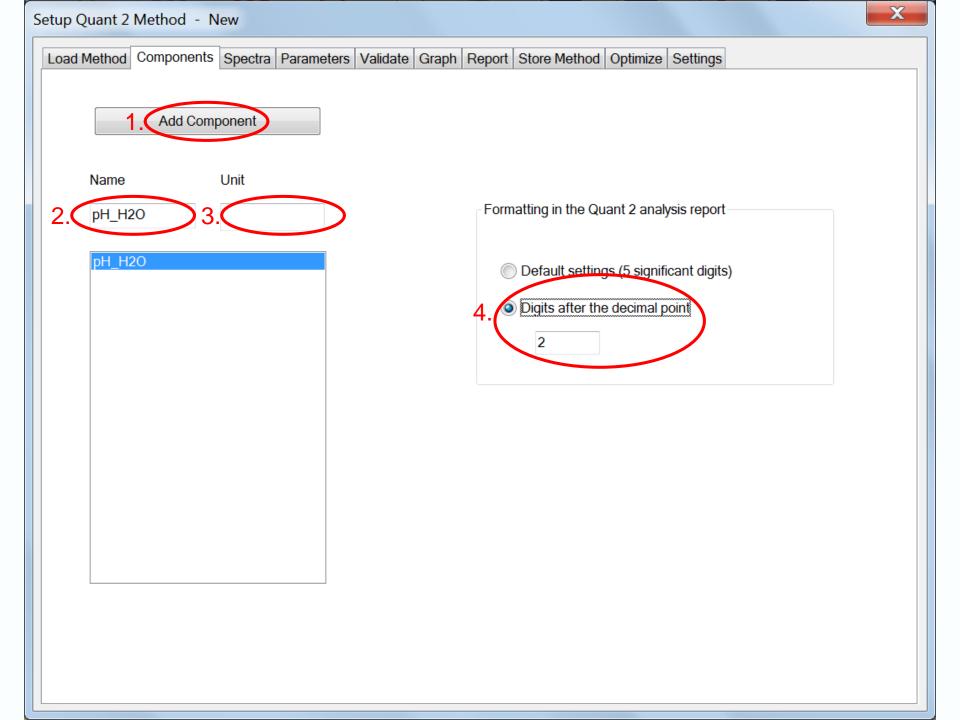
Agriculture and Food www.csiro.au



Australian Government

Australian Centre for International Agricultural Research

MIR Calibration with OPUS Quant 2 module Start Quant 2



First create a calibration template

- Template will contain:
 - List of soil properties for which there are calibration data
 - List of calibration spectra
 - How many replicate spectra there are for each sample
 - Calibration data
 - Other calibration settings
- Setting up a template correctly makes it easier to perform the calibrations in a standard way

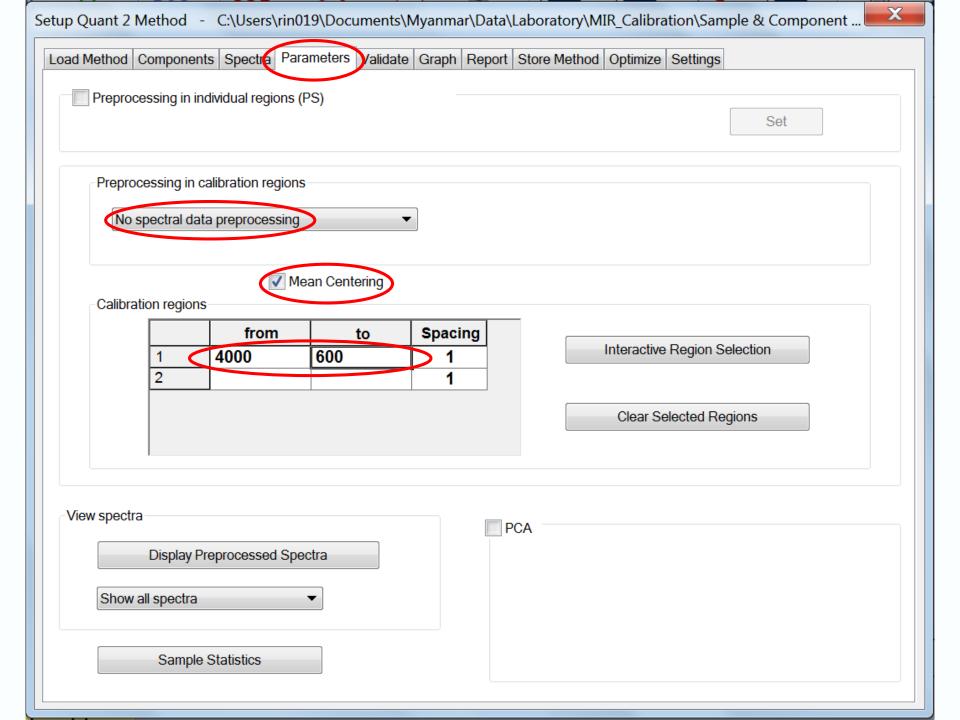
Setup Quant 2 Method - New	X
Load Method Components Spectra Parameters Validate Graph Report Store Method Optimize Settings	
Add Component	
Name Unit	
Formatting in the Quant 2 analysis report	
Objective Default settings (5 significant digits)	
Digits after the decimal point	
2	

Setup Quant 2 Method - C:\Users\rin019\Documents\M	Iyanmar\Data\Laboratory\MIR_Calibration\Sample & Component
Load Method Components Spectra Parameters Validate	Graph Report Store Method Optimize Settings
Add Component	
Name Unit	
pH_H2O	Formatting in the Quant 2 analysis report
pH_H20 EC [dS/m] OC [%] P_Olsen [ppm] PBI Exch_Ca [cmol+/kg] Exch_Mg [cmol+/kg] Exch_Na [cmol+/kg] Exch_Acid [cmol+/kg] Exch_Sum [cmol+/kg] Exch_Sum [cmol+/kg] Exch_Sum [cmol+/kg] BaseSat [%] ESP [%] Ca_Mg ECEC_Clay Sand [%] Silt [%] Clay [%]	 Default settings (5 significant digits) Digits after the decimal point

Se	tup Quar	nt 2 Method	- C:\Users\	rin019\Docu	uments\Myan	mar\Data\La	aboratory\MI	R_Calibration	n\Sample & C	omponent	X
	_oad Meth	nod Compone	nts Spectra	Parameters	Validate Gra	ph Report S	Store Method	Optimize Se	ttings		
		Add Sp	pectra		Change P	ath				W	indow
							_				
		Set Sample	Numbers		Set Data S	Set				F	Print
		Data Set	Sample	Path	File Name	pH_H2O	EC	00	P_Olsen	PBI	Excl
		111									•
											9

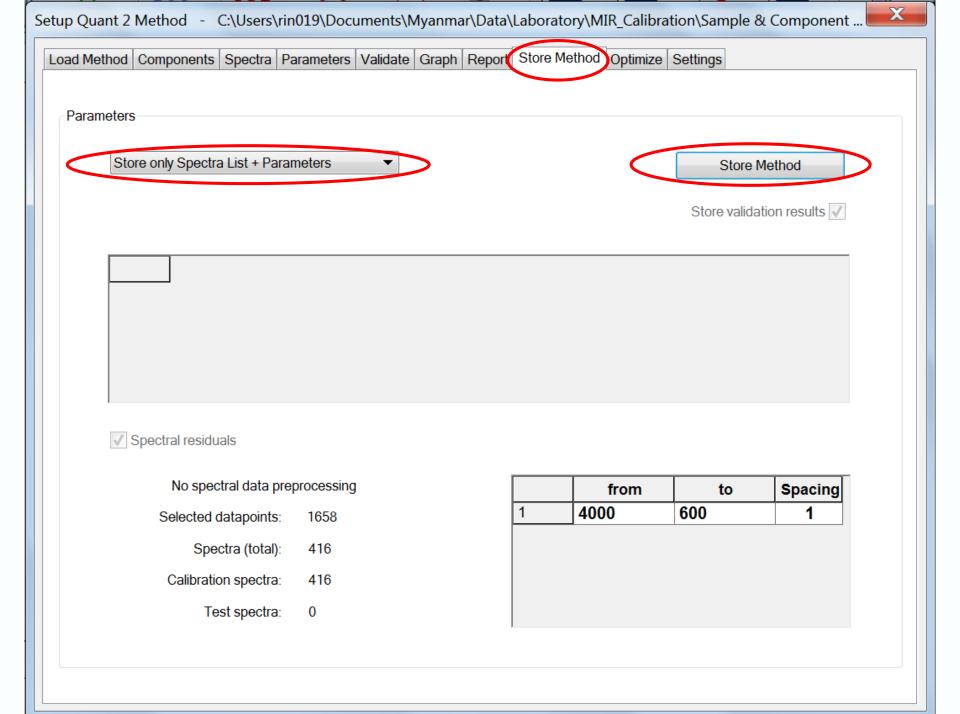
🔿 Setup Quant 2	Method - Select Standards:		×
Look in:	L MIR_Spectra_Calibration	▼ 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Preview:
í 🕀 🔤 🗌	1000_000-010.0	1005_050-070.3	416 Files selected
L	1000_000-010.1	1005_070-090.0	
Recent Places	1000_000-010.2	1005_070-090.1	
	1000_000-010.3	1005_070-090.2	
	1000_100-150.0	1005_070-090.3	
Desktop	1000_100-150.1	1010_020-030.0	
	1000_100-150.2	1010_020-030.1	
	1000_100-150.3	1010_020-030.2	
	1005_010-020.0	1010_020-030.3	
Libraries	1005_010-020.1	1015_010-020.0	
	1005_010-020.2	1015_010-020.1	
	1005_010-020.3	1015_010-020.2	
Computer	1005_050-070.0	1015_010-020.3	
	1005_050-070.1	1015_030-050.0	
	1005_050-070.2	1015_030-050.1	
Network	< III		N
	1		P
	File name:	▼ Open	
	Files of type: OPUS Spectru	m Cance 	Ī
Date of Measurem	ent V DAT		
Filename	▼ NAM		

•Hint: Click first spectra then <Ctrl A> to select all spectra in folder


oad Me	ethod Component	s Spectra	Parameters \	/alidate Graph Re	eport Store M	lethod Optim	nize Settings			
	Add Spe	ctra		Change Path		Сору	Spectra		Windo	w
	Set Sample N	Numbers		Set Data Set		Comp. C	correlations		Print	t
	Data Set	Sample	Path	File Name	pH_H2O	EC	OC	P_Olsen	PBI	
1	Calibration	1	C:\Users\rin0	1000 000-010.0	P					
2	Calibration	1	C:\Users\rin0	1000_000-010.1						
3	Calibration	1	C:\Users\rin0	1000_000-010.2						-
4	Calibration	1	C:\Users\rin0	1000_000-010.3						-
5	Calibration	2	C:\Users\rin0	1000_100-150.0						-
6	Calibration	2	C:\Users\rin0	1000_100-150.1						-
7	Calibration	2	C:\Users\rin0	1000_100-150.2						-
8	Calibration	2	C:\Users\rin0	1000_100-150.3						-
9	Calibration	3	C:\Users\rin0	1005_010-020.0						-
10	Calibration	3	C:\Users\rin0	1005_010-020.1						-
11	Calibration	3	C:\Users\rin0	1005_010-020.2						-
12	Calibration	3	C:\Users\rin0	1005_010-020.3						_
13	Calibration	4	C:\Users\rin0	_						
14	Calibration	4	C:\Users\rin0	-						
15	Calibration	4	C:\Users\rin0	1005_050-070.2						
16	Calibration	4	C:\Users\rin0	-						
17	Calibration	5	C:\Users\rin0	-						
18	Calibration	5		1005_070-090.1						
1 1 0	Calibration	5		1005_070-090.2						_
19 20	Calibration	5	C:\Llooro\rin0	1005 070-090.3						

up Qu	ant 2 Method -	C:\Use	rs\rin019\Docur	nents\Myanmar\	Data\Laborat	ory\MIR_Ca	libration\Sam	ple & Compor	nent	X
.oad Me	ethod Component	ts Spectr	a Parameters \	/alidate Graph R	eport Store M		nize Settings			
	Set Sam	ple Num	nbers			×				
	Se		Number of spec	tra per sample:			Spectra Correlations		Windo	
	1 🔽	Set samp	ole numbers acco	ording to file name	s					
							00	P_Olsen	PBI	-
1	Cali		2	et						E
2	Calil		2.	et						-
4	Calil									-
5	Cali Cali						-			-
6	Cali						-			-
7	Calil									-
8	Calil		3. С Б	cit 🔰						-
9	Calil									-
10	Calil									-
11	Calibration		0.10301311110	1000_010 020.2						-
12	Calibration	3	C:\Users\rin0	1005_010-020.3						-
13	Calibration	4	C:\Users\rin0	1005_050-070.0						-
14	Calibration	4	C:\Users\rin0	1005_050-070.1						-
15	Calibration	4	C:\Users\rin0	1005_050-070.2						
16	Calibration	4	C:\Users\rin0	1005_050-070.3						-
17	Calibration	5	C:\Users\rin0	1005_070-090.0						-
18	Calibration	5	C:\Users\rin0	1005_070-090.1						
19	Calibration	5	C:\Users\rin0	1005_070-090.2						
20	Calibration	5	C:\Users\rin0	1005_070-090.3						
21	Calibration	6	C:\Users\rin0	1010_020-030.0						Ψ.
◀ 📃	111								•	

- In Excel ensure that any missing values are BLANK
- Copy calibration data in Excel
- Paste into OPUS
- CHECK that the data is lined up against the correct sample names
- Check again
- And again
 - It is really important that OPUS matches the correct data with each spectrum

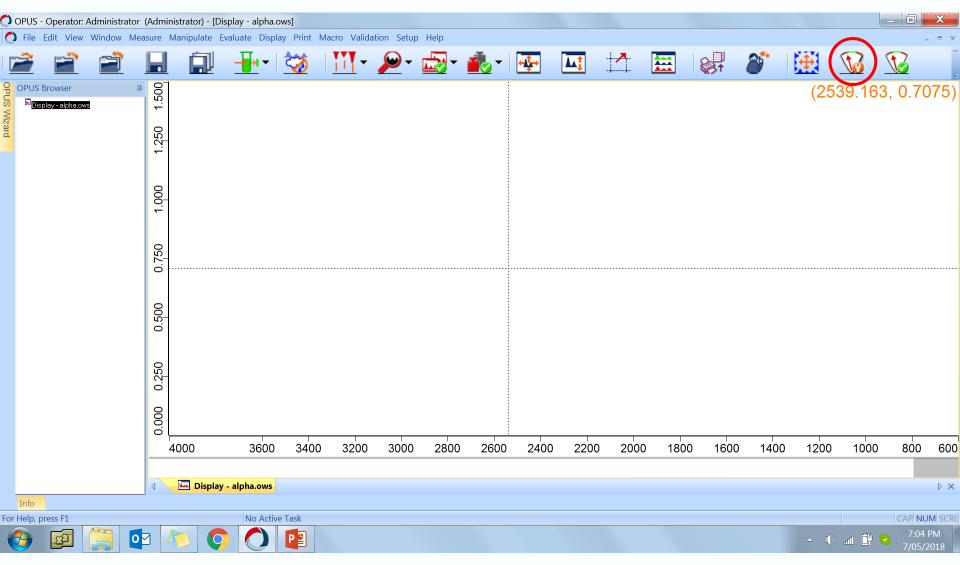


ad Me	thod Componen	ts Spectra	Parameters	Validate Graph F	Report Store	Method Opt	imize Settings	;		
	Add Spe	ectra		Change Path		Сор	oy Spectra		Windo	WC
	Set Sample I	Numbers		Set Data Set		Comp.	Correlations		Print	t
	Data Set	Sample	Path	File Name	pH_H2O	EC	OC	P_Olsen	PBI	
1	Calibration	1	C:\Users\rin0		7.85	0.224	1.85	52.28	93	Ξ
2	Calibration	1	C:\Users\rin0		7.85	0.224	1.85	52.28	93	_
3	Calibration	1	C:\Users\rin0		7.85	0.224	1.85	52.28	93	-
4	Calibration	1	C:\Users\rin0	1000_000-010.3	7.85	0.224	1.85	52.28	93	-
5	Calibration	2	C:\Users\rin0	1000_100-150.0	9.11	0.16	0.26	14.01	159.5	-
6	Calibration	2	C:\Users\rin0	1000_100-150.1	9.11	0.16	0.26	14.01	159.5	-
7	Calibration	2	C:\Users\rin0	1000_100-150.2	9.11	0.16	0.26	14.01	159.5	-
8	Calibration	2	C:\Users\rin0	1000_100-150.3	9.11	0.16	0.26	14.01	159.5	-
9	Calibration	3	C:\Users\rin0	1005_010-020.0	8.56	0.077	0.56	2.56	58.7	-
10	Calibration	3	C:\Users\rin0	1005_010-020.1	8.56	0.077	0.56	2.56	58.7	-
11	Calibration	3	C:\Users\rin0	1005_010-020.2	8.56	0.077	0.56	2.56	58.7	-
12	Calibration	3	C:\Users\rin0	1005_010-020.3	8.56	0.077	0.56	2.56	58.7	-
13	Calibration	4	C:\Users\rin0	1005_050-070.0	8.78	0.077	0.31	1.97	269.2	-
14	Calibration	4	C:\Users\rin0	_	8.78	0.077	0.31	1.97	269.2	-
15	Calibration	4	C:\Users\rin0	1005_050-070.2	8.78	0.077	0.31	1.97	269.2	-
16	Calibration	4		1005_050-070.3	8.78	0.077	0.31	1.97	269.2	
17	Calibration	5	C:\Users\rin0	1005_070-090.0	8.78	0.071	0.19	3.21	170.2	
18	Calibration	5	C:\Users\rin0	_	8.78	0.071	0.19	3.21	170.2	_
	Calibration	5	C:\Users\rin0	_	8.78	0.071	0.19	3.21	170.2	_
19			C:\Users\rin0	1005 070-090.3	8.78	0.071	0.19	3.21	170.2	-

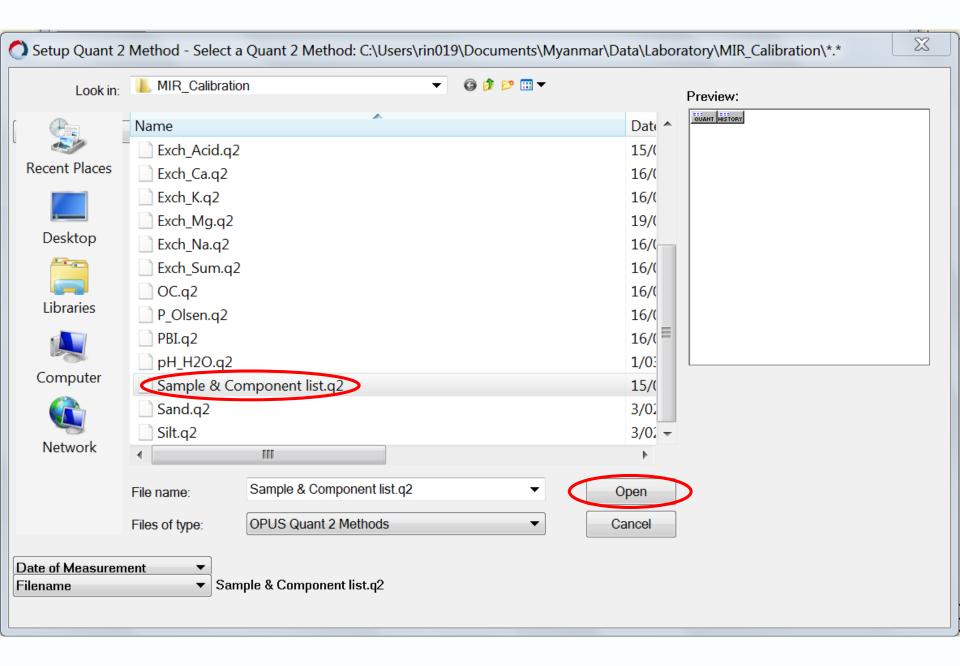
Component Wax. Kank Ose 1 pH_H2O 20 Image: Construction of the second of		Component	Max. Rank	Use			
2 EC 20 Image: Constraint of the second secon	1					Cross Validation	•
3 OC 20 Image: Constraint of the state of the					=	No of complete la	aving out 1
4 P_Olsen 20 Image: Comparison of the second						two. of samples le	aving out:
5 PBI 20 Image: Second				v	-		
7 Exch_Mg 20 8 Firsh_K 20	5			1		Valida	ate
	6	Exch_Ca	20	v	_		
		Exch_Mg		1	_		
culation status	0	Eval V	20				

etup Quant 2 Method - C:\Users\rin019\Documents\Mya	anmar\Data\Laboratory\MIR_Calibration\Sample & Component
Load Method Components Spectra Parameters Validate G	raph Report Store Method Optimize Settings
Graph page Marker size: 10 🔻	Method protection Store spectra in Quant 2 method file
Select preprocessing options for Optimize	Use this option only if you want to protect a method in the mode 'Enlarge method' or 'Change parameters'.
Mospectral data preprocessing Constant offset elimination Straight line subtraction Vector normalization (SNV) Min-Max normalization Multiplicative scattering correction First derivative Second derivative First derivative + Straight line subtraction First derivative + Vector normalization (SNV) Smoothing points:	 User defined optimization regions NIR regions (max 5) A,B regions (max 10)
Maximum test range:4000	
Interactive Region Selection Run optimization in background	

		ers\rin019\Documents\Myanmar\Data\Laboratory\MIR_Cali	
C	Store Quant 2		X
	Look in:	MIR_Calibration	▼ ◄
S	Recent Places Desktop Libraries Computer	Name Initials BaseSat.q2 Ca_Mg.q2 Clay.q2 EC.q2 ECEC.q2 ECEC_Clay.q2 ESP.q2 Exch_Acid.q2 Exch_Ca.q2 Exch_K.q2 Exch_Mg.q2 Exch_Mg.q2 Interview	Date 2/0: 19/0 19/0 3/02 15/0 19/0 19/0 15/0 19/0 19/0 19/0 19/0 19/0 19/0 19/0 16/0 16/0 16/0
		File name: Sample & Component list.Q2 Files of type: OPUS Quant 2 Methods	SaveCancel

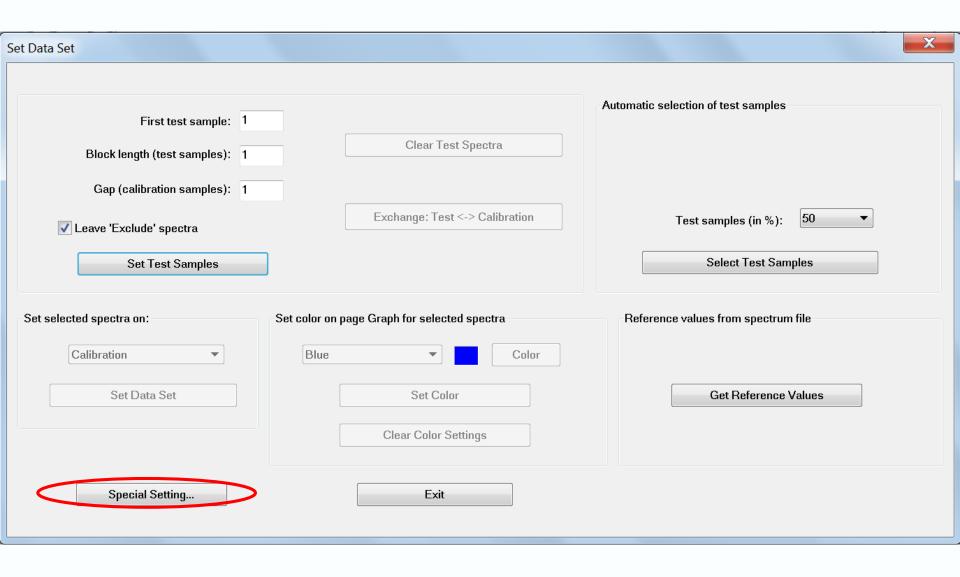

up Quant 2 Method - C:\Users\rin	019\Documents\	Myanmar\Data\	Laborato	ry∖MIR_Calibra	tion\Sample &	Component
oad Method Components Spectra Pa	rameters Validate	Graph Report	Store Me	thod Optimize	Settings	
Parameters						
Store only Spectra List + Paran	neters 🔹				Store M	lethod
					Store validat	ion results 🗸
1						
Spectral residuals						
No spectral data prep	processing			from	to	Spacing
Selected datapoints:	1658		1	4000	600	1
Spectra (total):	416					
Calibration spectra:	416					
Test spectra:	0					
		1				

• This completes setting up the calibration template

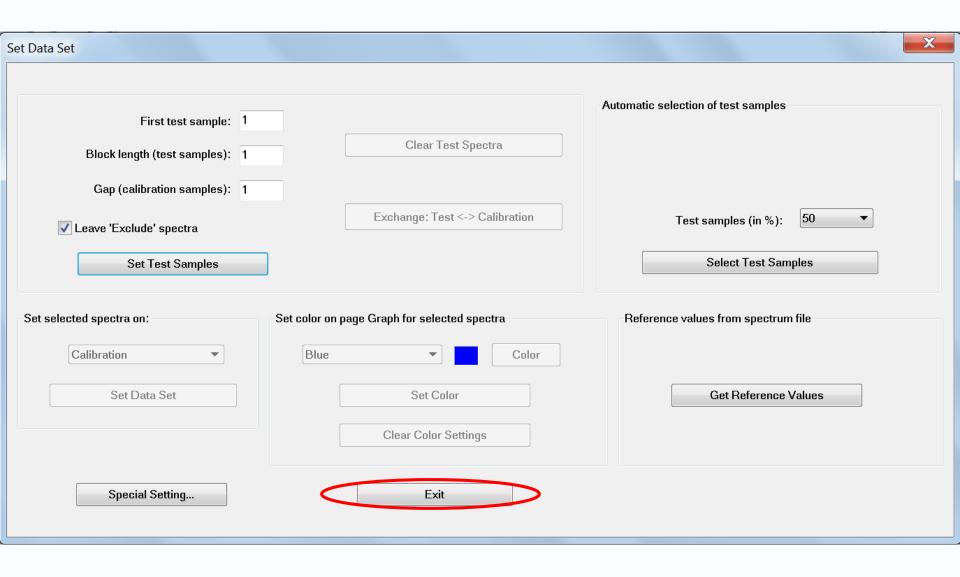


Calibrate each soil property in turn

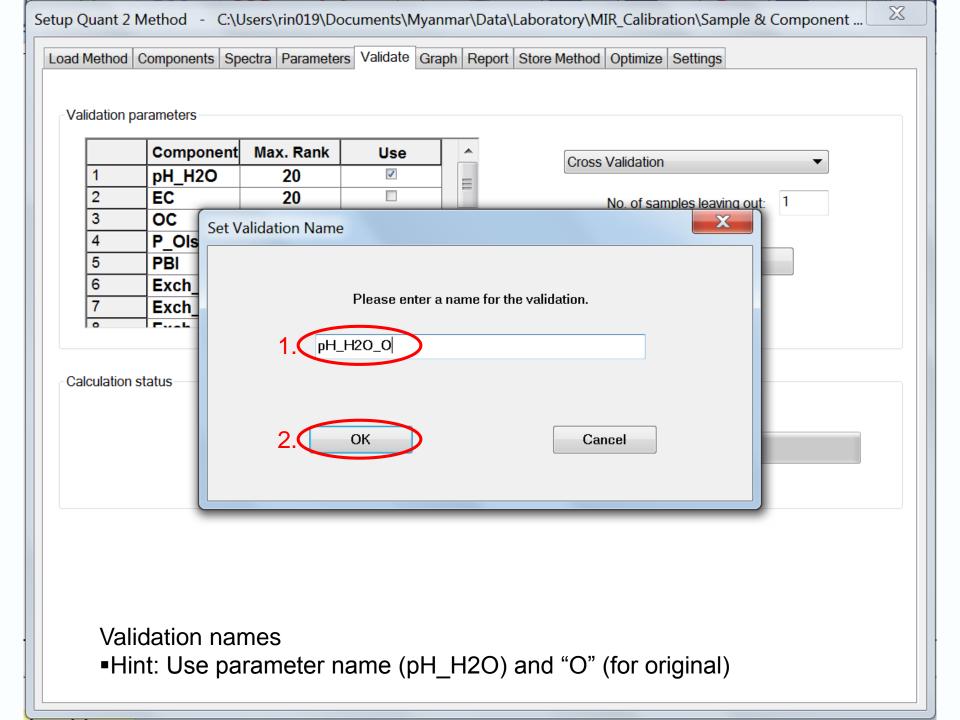
In this example calibrate pH_H2O

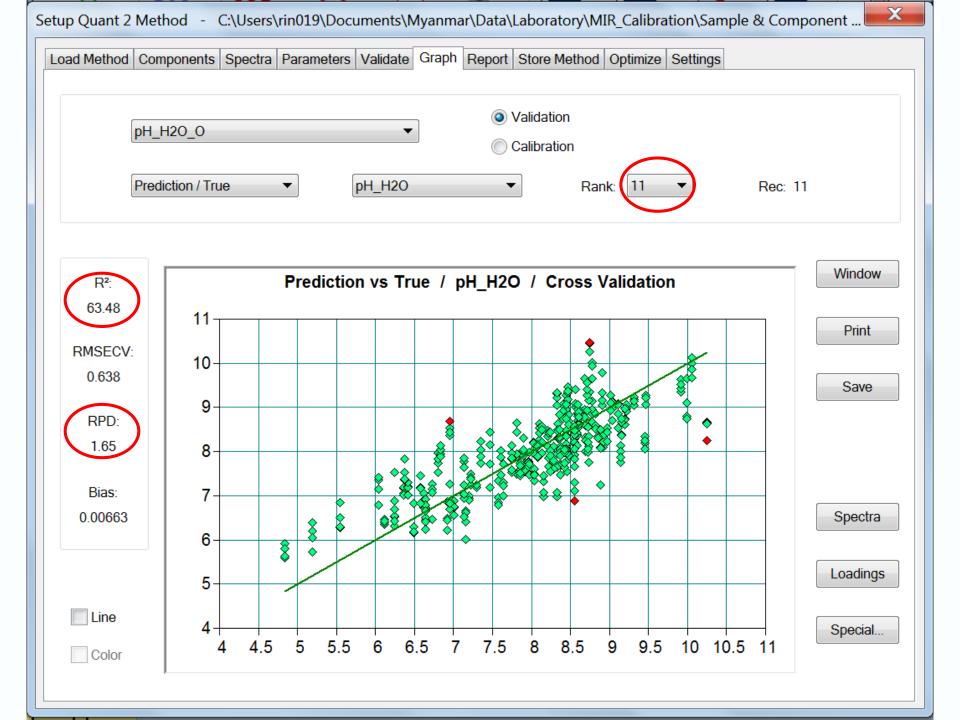


d Method Components Spectra F	Parameters Va	lidate Graph Repo	rt Store Method	d Optimize Settings	
Load Method					
Load existing validation result	s				
General information					
Spectra (total):	0	Samples (to	al): 0		
Calibration spectra:	0	Calibration samp	les: 0		
Test spectra:	0	Test samp	es: 0		
Components:	0				
Frequency ranges:	0				
Selected datapoints:	0				
Preprocessing:					
No spectral data preproc	essing				



Setup Quant 2 Method	- C:\Users\ri	n019\Doc	cuments\Myanmar\Data\Lal	ooratory\N	MIR_Calibration\San	nple & Component	X
Load Method Compone	ents Spectra P	arameters	Validate Graph Report Si	ore Method	d Optimize Settings		
Load	d Method						
✓ Load existing	validation result	s					
General information	on						
S	spectra (total):	416	Samples (total):	104			
Calibr	ation spectra:	416	Calibration samples:	104			
	Test spectra:	0	Test samples:	0			
[AL AB						
	Components:	21					
		1					
	uency ranges:						
Selecte	ed datapoints:	1658					
P	Preprocessing:						
No spectr	ral data preproce	essing					


oad Me	thod Compone	ents Spectra	Parameters \	Validate Gra	aph Report	Store Metho	d Optimize S	Settings			
	Add Sp	pectra		Change F	Path	th Copy Spectra Win					
	Set Sample	Set Data Set				Comp. Correlations			Print		
	Data Set	Sample	Path	File Name	pH_H2O	EC	oc	P_Olsen	PBI	E	
1	Calibratio	1	C:\Users\rin0	1000_000-	7.85	0.224	1.85	52.28	93	9.4	
2	Calibratio	1	C:\Users\rin0	1000_000-	7.85	0.224	1.85	52.28	93	9.4	
3	Calibratio	1	C:\Users\rin0	1000_000-	7.85	0.224	1.85	52.28	93	9.4	
4	Calibratio	1	C:\Users\rin0	1000_000-	7.85	0.224	1.85	52.28	93	9.4	
5	Calibratio	2	C:\Users\rin0	1000_100-	9.11	0.16	0.26	14.01	159.5	6.8	
6	Calibratio	2	C:\Users\rin0	1000_100-	9.11	0.16	0.26	14.01	159.5	6.8	
7	Calibratio	2	C:\Users\rin0	1000_100-	9.11	0.16	0.26	14.01	159.5	6.8	
8	Calibratio	2	C:\Users\rin0	1000_100-	9.11	0.16	0.26	14.01	159.5	6.8	
9	Calibratio	3	C:\Users\rin0	1005_010-	8.56	0.077	0.56	2.56	58.7	14	
10	Calibratio	3	C:\Users\rin0	1005_010-	8.56	0.077	0.56	2.56	58.7	14	
11	Calibratio	3	C:\Users\rin0	1005_010-	8.56	0.077	0.56	2.56	58.7	14	
12	Calibratio	3	C:\Users\rin0	1005_010-	8.56	0.077	0.56	2.56	58.7	14	
13	Calibratio	4	C:\Users\rin0	1005_050-	8.78	0.077	0.31	1.97	269.2	12	
14	Calibratio	4	C:\Users\rin0	1005_050-	8.78	0.077	0.31	1.97	269.2	12	
15	Calibratio	4	C:\Users\rin0	1005_050-	8.78	0.077	0.31	1.97	269.2	12	
16	Calibratio	4	C:\Users\rin0	1005_050-	8.78	0.077	0.31	1.97	269.2	12	
17	Calibratio	5	C:\Users\rin0	1005_070-	8.78	0.071	0.19	3.21	170.2	15	
18	Calibratio	5	C:\Users\rin0	1005_070-	8.78	0.071	0.19	3.21	170.2	15	
19	Calibratio	1	C:\Users\rin0	1005_070-	8.78	0.071	0.19	3.21	170.2	15	
20	Calibratio		C:\Users\rin0	1005_070-	8.78	0.071	0.19	3.21	170.2	15	
21	Calibratio		C:\Users\rin0	4040 000	7.04	0.019	0.3	2.56	30.4	32	



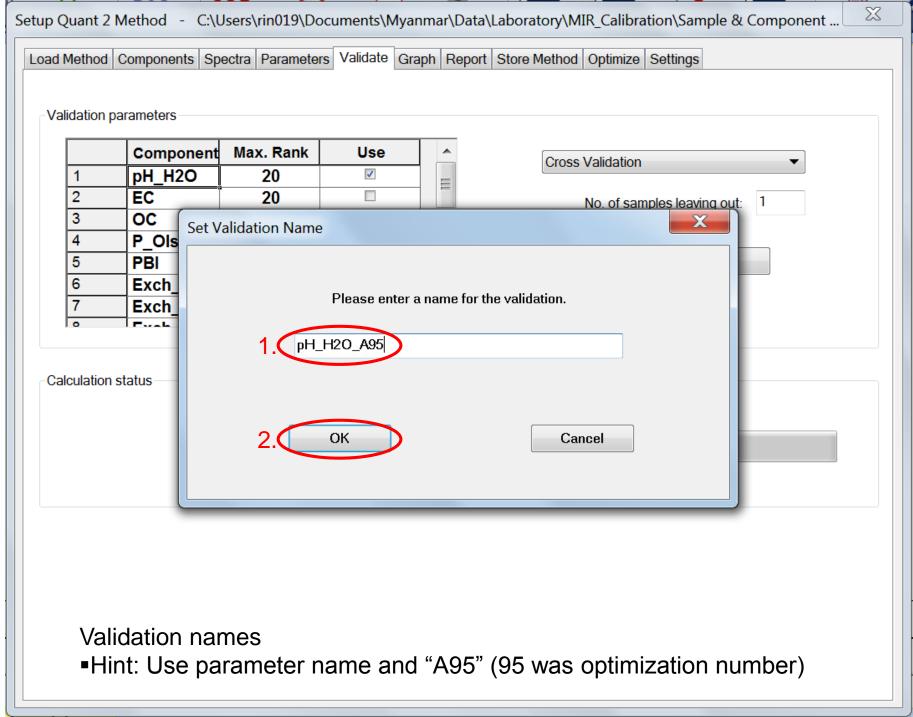
Set	Spectra on 'Ex	cluded'				X	Dptimize S			
			no defined com sted component 2.(pH_H	, are set on '		•-1 or	Copy Spectr	ra	V	Vindow Print
							OC	P_Olsen	PBI	E 🔺
H							1.85	52.28	93	9.4 📃
H I		3.	Set				1.85	52.28	93	9.4
							1.85	52.28	93	9.4
							1.85	52.28	93	9.4
							0.26	14.01	159.5	6.8
							0.26	14.01	159.5	6.8
		Λ (Exit				0.26	14.01	159.5	6.8
		4.					0.26	14.01	159.5	6.8
							0.56	2.56	58.7	14
							0.56	2.56	58.7	14
							0.56	2.56	58.7	14
12	Calibratio	3	C:\Users\rin0	1005_010-	8.56	0.077	0.56	2.56	58.7	14
13	Calibratio	4	C:\Users\rin0	_		0.077	0.31	1.97	269.2	12
14	Calibratio	4	C:\Users\rin0	1005_050-	8.78	0.077	0.31	1.97	269.2	12
15	Calibratio	4	C:\Users\rin0			0.077	0.31	1.97	269.2	12
	Calibratio	4	C:\Users\rin0	_		0.077	0.31	1.97	269.2	12
16	Calibratio	5	C:\Users\rin0	1005_070-	8.78	0.071	0.19	3.21	170.2	15
16 17		5	C:\Users\rin0	1005_070-	8.78	0.071	0.19	3.21	170.2	15
		1		1005 070	8 78	0.071	0.19	3.21	170.2	15
17	Calibratio Calibratio		C:\Users\rin0	1005_070-			1			
17 18	Calibratio Calibratio Calibratio	5	C:\Users\rin0 C:\Users\rin0	_		0.071	0.19	3.21	170.2	15

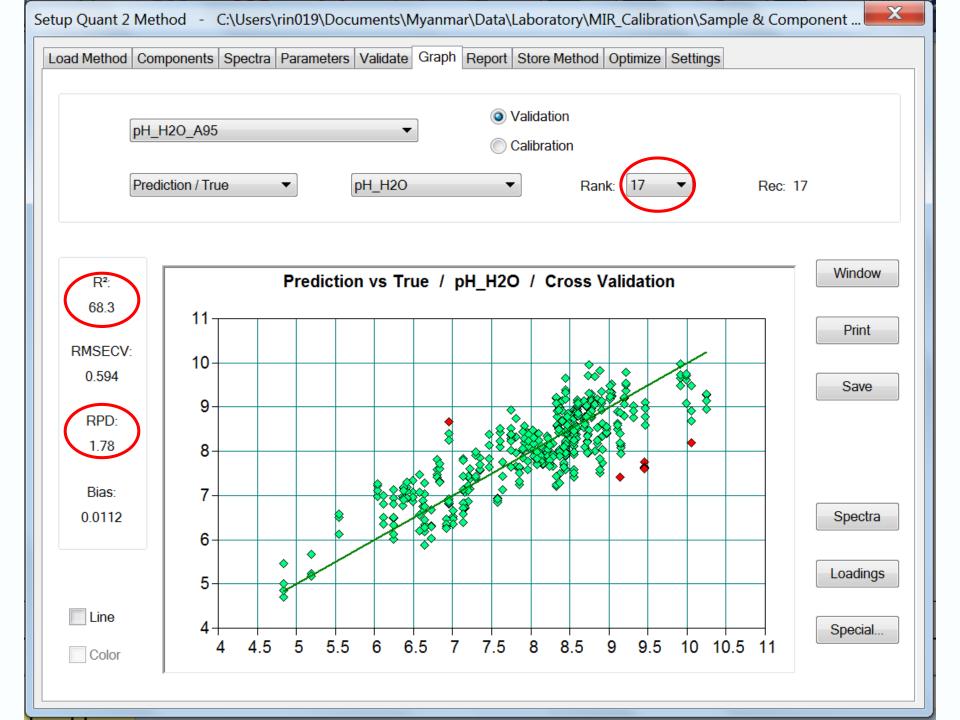
up Quant 2	Method - C:\U	lsers\rin019\Do	ocuments\My	anmar\Data\	Laboratory\MIR_Calibration\Sample & Component
and Mothod	Components Sp	octra Paratholo	vrs Validate G	Prant Poport	Store Method Optimize Settings
au metriou	Components Spe			alapii Report	Store Method Optimize Settings
Validation p	parameters				
	Component	Max. Rank	Uşe		
1	pH_H2O	20			Cross Validation
2	EC	20		=	No. of samples leaving out: 1
3	00	20			No. of samples leaving out.
4	P_Olsen	20	2.		
5	PBI	20	Z. 🔲		3. Validate
6	Exch_Ca	20			
7	Exch_Mg	20		-	
0	Frak V	20			
-Calculation	Status				

• Next optimize the calibration

ad Metl	hod Comp	onents	Spectra Paramete	ers Validate Graph F	Report Store Method Optimize Settings	
	Use F	Paramete	Prs	pH_H2O	▼ 1. General A 2. 0	ptimize
Num	RMSE	Rank	Regions		Preprocessing	
151	0.425	8	4000.9 - 3659.3	3320.6 - 1275.5 93	First derivative + Vector normali	-
148	0.425	8	4000.9 - 1275.5	936.8 - 595.2	First derivative + Vector normali	Ľ
161	0.425	8	4000.9 - 3659.3	3320.6 - 2979.1 26	First derivative + Vector normali	
153	0.425	8	4000.9 - 2979.1	2638.9 - 1275.5 93	First derivative + Vector normali	
102	0.425	9	4000.9 - 2979.1	2638.9 - 1275.5 93	First derivative	
143	0.425	9	4000.9 - 2979.1	2638.9 - 595.2	First derivative + Vector normali	
110	0.425	9	4000.9 - 3319.2	2638.9 - 1275.5 93	First derivative	
139	0.426	9	4000.9 - 595.2		First derivative + Vector normali	
141	0.426	9	4000.9 - 3659.3	3320.6 - 595.2	First derivative + Vector normali	
109	0.426	9	4000.9 - 3659.3	3320.6 - 2979.1 26	First derivative	
152	0.426	8	4000.9 - 3319.2	2980.5 - 1275.5 93	First derivative + Vector normali	
160	0.426	8	4000.9 - 3659.3	2980.5 - 1275.5 93	First derivative + Vector normali	
97	0.426	9	4000.9 - 1275.5	936.8 - 595.2	First derivative	
101	0.426	9	4000.9 - 3319.2	2980.5 - 1275.5 93	First derivative	
142	0.426	9	4000.9 - 3319.2	2980.5 - 595.2	First derivative + Vector normali	
100	0.427	9	4000.9 - 3659.3	3320.6 - 1275.5 93	First derivative	
150	0.427	8	3660.8 - 1275.5	936.8 - 595.2	First derivative + Vector normali	

Optimize status

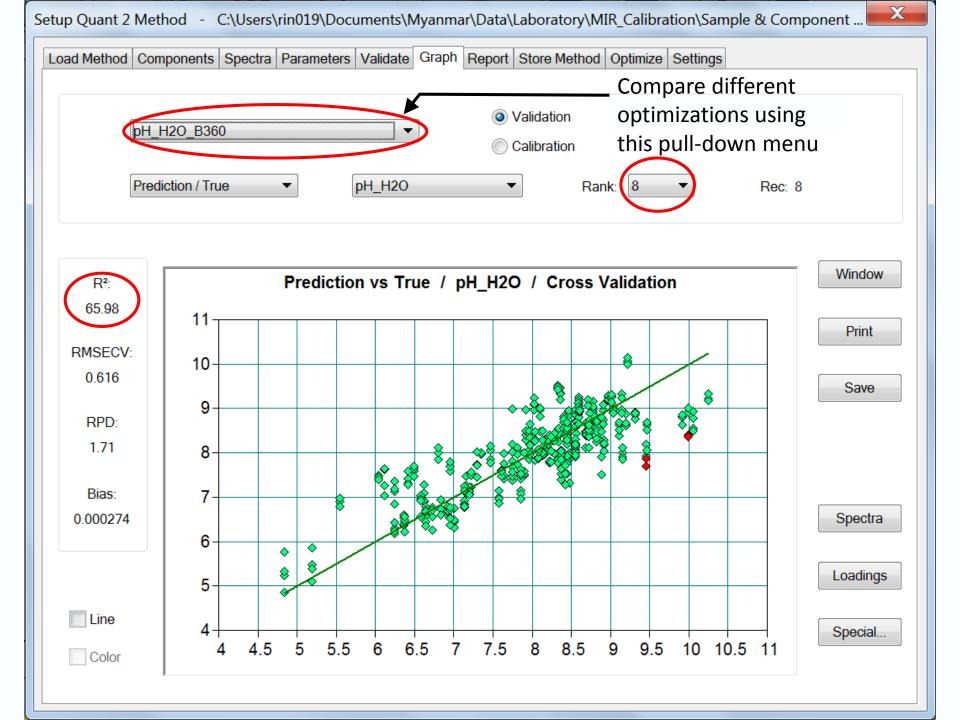

• Now wait a long time (sometimes hours)

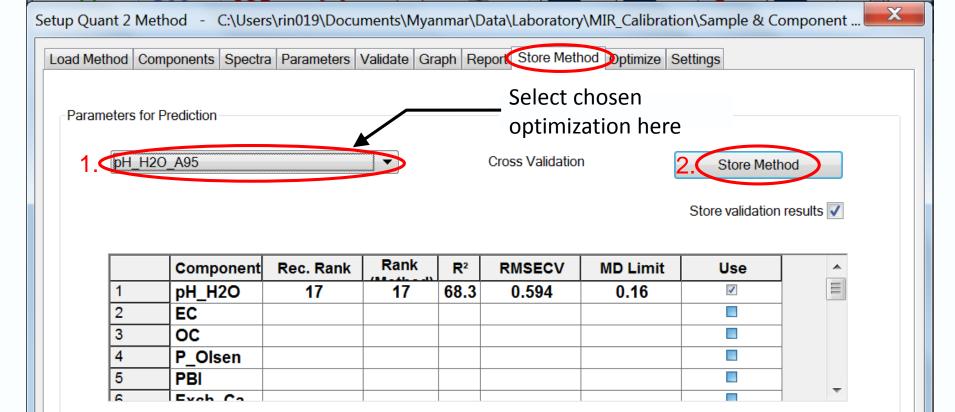


ACIAR Project SMCN/2016/111 - MIR Spectroscopy Training Course

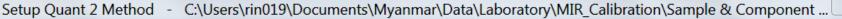
				✓ General A ✓ Optimize			
Optimization number							
Num	RMSE	Rank	Regions	Preprocessing			
95	0.594	17	2976 - 2294.1 1616.4 - 1273.4	First derivative	_		
90	0.599	18	3657.9 - 3314.9 2976 - 2294.1 1616.	First derivative	=		
86	0.611	17	3996.7 - 3314.9 2976 - 2294.1 1616.	First derivative			
91	0.613	18	3996.7 - 3655.8 2976 - 2294.1 1616.	First derivative			
84	0.617	16	3657.9 - 2294.1 1616.4 - 1273.4	First derivative			
92	0.619	16	3996.7 - 3314.9 2637.1 - 2294.1 16	First derivative			
83	0.62	18	3996.7 - 2294.1 1616.4 - 1273.4	First derivative			
14	0.634	11	3996.7 - 3314.9 2976 - 1953.2 1616.	No spectral data preprocessing			
15	0.636	11	3996.7 - 2973.9 2637.1 - 1953.2 16	No spectral data preprocessing			
36	0.637	9	3996.7 - 1953.2 1616.4 - 593.6	Vector normalization (SNV)			
8	0.637	10	3996.7 - 1953.2 1616.4 - 593.6	No spectral data preprocessing			
1	0.638	11	3996.7 - 593.6	No spectral data preprocessing			
22	0.639	13	3996.7 - 3655.8 2976 - 1953.2 1616.	No spectral data preprocessing			
85	0.64	15	3996.7 - 3655.8 3316.9 - 2294.1 16	First derivative			
19	0.64	10	3996.7 - 1953.2 1616.4 - 1273.4 93	No spectral data preprocessing			
3	0.64	12	3996.7 - 3655.8 3316.9 - 593.6	No spectral data preprocessing			
23	0.642	10	3996.7 - 3314.9 2637.1 - 1953.2 16	1 11 3			
27	0.643	10	3996.7 - 3314.9 2976 - 1953.2 1616.	No spectral data preprocessing			

1 pH_H2O 20 Image: Closs validation Image: Closs validation 2 EC 20 Image: Closs validation Image: Closs validation Image: Closs validation 3 OC 20 Image: Closs validation Image: Close validat	pH_H2O 20 Image: Closs Validation Image: Closs Validation EC 20 Image: Closs Validation Image: Closs Validation OC 20 Image: Closs Validation Image: Closs Validation OC 20 Image: Closs Validation Image: Closs Validation P_Olsen 20 Image: Closs Validation Image: Closs Validation P_Olsen 20 Image: Closs Validation Image: Closs Validation Image: Closs Validation P_Olsen 20 Image: Closs Validation Image: Closs Validation Image: Closs Validation Image: Closs Validation P_Olsen 20 Image: Closs Validation Image: Closs Validation Image: Closs Validation Image: Closs Validation PBI 20 Image: Closs Validation		Component	Max. Rank	Use	•	Cross Validation
2 EC 20 Image: Second se	EC 20 Image: Second secon	1			1	_	
3 OC 20 4 P_Olsen 20 5 PBI 20 6 Exch_Ca 20 7 Exch_Mg 20 8 Frich K 20	OC 20 P_Olsen 20 PBI 20 Exch_Ca 20 Exch_Mg 20	2		20			No. of samples leaving out: 1
5 PBI 20 Validate 6 Exch_Ca 20 Validate 7 Exch_Mg 20 Validate	PBI 20 Validate Exch_Ca 20 Image: Comparison of the second	3	OC	20			1 5
6 Exch_Ca 20 7 Exch_Mg 20 8 Exch_K 20	Exch_Ca 20 Exch_Mg 20 Frack 20						
7 Exch_Mg 20 8 Evch_K 20	Exch_Mg 20						Validate
			Exch Ma				
			Fuch 1/			.	

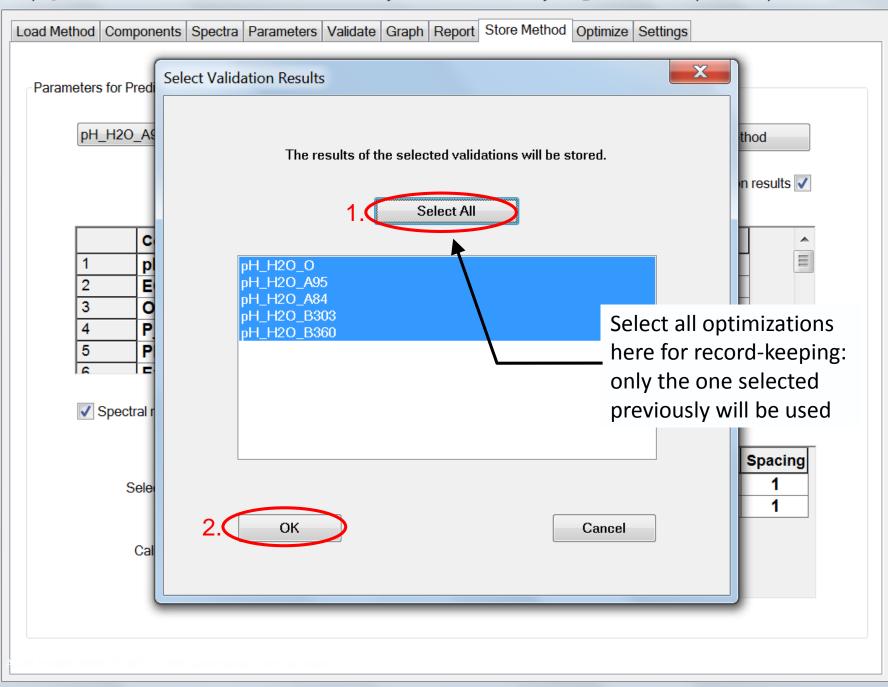

4	2. Use I	Paramete	pH_H2O	▼ General A ▼ Optimize
		— C	Optimization number	
Num	RMSE	Rank	Regions	Preprocessing
95	0.594	17	2976 - 2294.1 1616.4 - 1273.4	First derivative
90	0.599	18	3657.9 - 3314.9 2976 - 2294.1 1616	First derivative Find first optimization
86	0.611	17	3990.7 - 3314.9 2970 - 2294.1 1010	First derivative
91	0.613	18	3996.7 - 3655.8 2976 - 2294.1 1616	First derivative that has a lower rank
84	0.617	(16)	3657.9 - 2294.1 1616.4 - 1273.4	First derivative
92	0.619	16	3996.7 - 3314.9 2637.1 - 2294.1 16	First derivative
83	0.62	18	3996.7 - 2294.1 1616.4 - 1273.4	First derivative
14	0.634	11	3996.7 - 3314.9 2976 - 1953.2 1616	No spectral data preprocessing
15	0.636	11	3996.7 - 2973.9 2637.1 - 1953.2 16	No spectral data preprocessing
36	0.637	9	3996.7 - 1953.2 1616.4 - 593.6	Vector normalization (SNV)
8	0.637	10	3996.7 - 1953.2 1616.4 - 593.6	No spectral data preprocessing
1	0.638	11	3996.7 - 593.6	No spectral data preprocessing
22	0.639	13	3996.7 - 3655.8 2976 - 1953.2 1616	No spectral data preprocessing
85	0.64	15	3996.7 - 3655.8 3316.9 - 2294.1 16	First derivative
19	0.64	10	3996.7 - 1953.2 1616.4 - 1273.4 93	No spectral data preprocessing
3	0.64	12	3996.7 - 3655.8 3316.9 - 593.6	No spectral data preprocessing
23	0.642	10	3996.7 - 3314.9 2637.1 - 1953.2 16	No spectral data preprocessing
27	0.643	10	3996.7 - 3314.9 2976 - 1953.2 1616	No spectral data preprocessing
	ize status-		Select top result – 0	OPUS thinks this is the best one


- Validate first optimization that has a lower rank
- Examine R². If it is less that 1% lower that the top optimization:
 - <u>Consider</u> using it instead the top optimization
- Next Select < General B> on the Optimize sheet
- Wait while the optimization runs

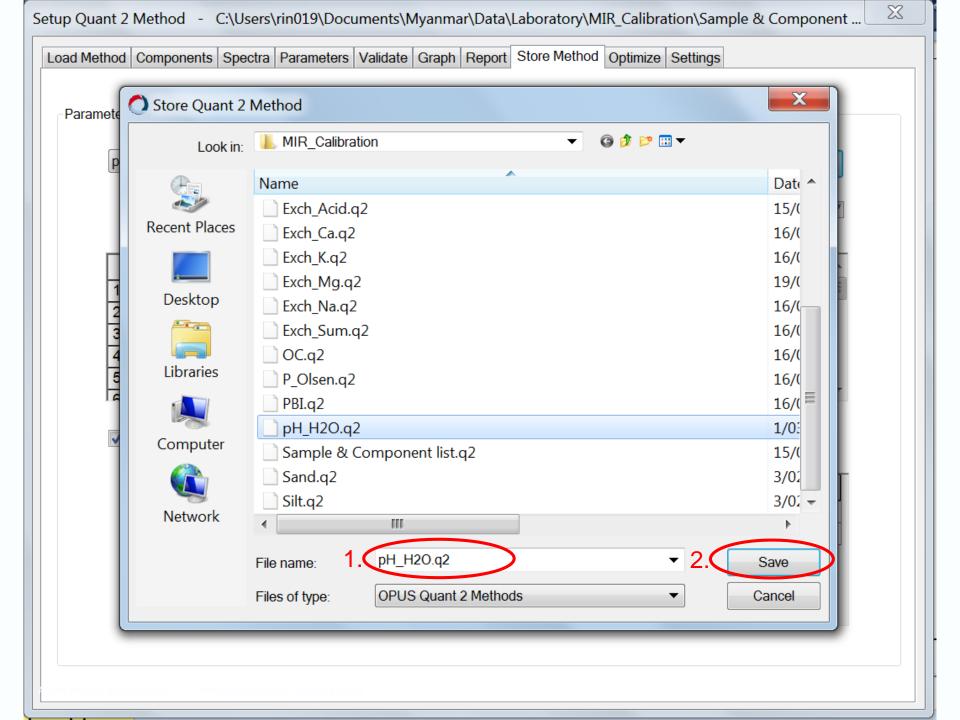
- Then select first optimization that has a lower rank and validate
- On the Graph sheet, compare R² and rank of all the selected optimizations and choose which to use as a calibration


Spectral residuals

First derivative (17 Pts.)


- Selected datapoints: 501
 - Spectra (total): 416
- Calibration spectra: 416
 - Test spectra:

0


	from	to	Spacing
1	2976	2294.1	1
2	1616.4	1273.4	1

 Σ

• The chosen calibration is now saved as a "Method", and can be used to predict the pH of other samples based on their MIR spectra

Thank you

CSIRO Agriculture and Food

Anthony Ringrose-Voase Principal Research Consultant

t +61 2 6246 5956

e anthony.ringrose-voase@csiro.au

CSIRO Agriculture and Food www.csiro.au

