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In this paper, we present the design and implementation of SplitBox, a system for privacy-preserving pro- 

cessing of network functions outsourced to cloud middleboxes—i.e., without revealing the policies govern- 

ing these functions. SplitBox is built to provide privacy for a generic network function that abstracts the 

functionality of a variety of network functions and associated policies, including firewalls, virtual LANs, 

network address translators (NATs), deep packet inspection, and load balancers. We present a scalable 

design aiming to provide high throughput and low latency, by distributing functionalities to a few virtual 

machines (VMs), while providing provably secure guarantees. We implement SplitBox inside FastClick, an 

extension of the Click modular router, using Intel’s DPDK to handle packet I/O. We evaluate our prototype 

experimentally to find its bottlenecks and stress-test its different components, vis-à-vis two widely used 

network functions, i.e., firewall and VLAN tagging. Our evaluation shows that, on commodity hardware, 

SplitBox can process packets close to line rate (i.e., 8.9Gbps) with up to 50 traversed policies. 
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. Introduction 

Network functions support a variety of functionalities – typi-

ally configured via a set of policies – including network address

ranslation (NAT), deep packet inspection, and firewalling. Tradi-

ionally, network functions have been implemented on hardware

iddleboxes deployed at the edge of an organization’s network,

owever, these appliances often yield high infrastructure and man-

gement costs [2] . As a result, more and more organizations have

aken advantage of advances in cloud computing and virtualization

echnologies to adopt Network Function Virtualization (NFV) [3] .

ith NFV, functions are implemented as software processes, out-

ourced to virtual machines running on commodity servers, lead-

ng to a significant reduction in associated costs and complexity, as

ell as flexibility in re-purposing generic hardware for a multitude

f functions [3–10] . 
� This article is based, in part, on [1] published at the 3rd ACM SIGCOMM Work- 

hop on Hot Topics in Middleboxes and Network Function Virtualization (HotMid- 

leBox 2016). 
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At the same time, however, outsourcing network functions to

hird parties may introduce serious security and privacy threats.

onsider, for instance, the case of a firewall: in the traditional set-

ing, firewall rules (or policies) are hidden from potentially pry-

ng eyes, except for what can be inferred from observing incom-

ng/outgoing traffic. Whereas, with NFV, policies could be accessed

y third parties running processes on the same cloud infrastruc-

ure, and are inherently available to a cloud provider that may be

ompromised or not fully trusted [11] . This raises worrying con-

erns as the disclosure of the policies may reveal sensitive details

bout an organization’s network, such as the IP addresses of hosts

r the topology of the private network [12,13] . 

These concerns motivate the need to enable network function

utsourcing while protecting the confidentiality of the policies.

here are at least two approaches to do so: one is to rely on vir-

ual machine isolation [14] , aiming to guarantee that a (client’s)

irtual machine is isolated from the rest of the processes/virtual

achines running on a given server. Alas, this is far from trivial

nd infeasible with commodity virtual machine hypervisors. An-

ther approach is to build on cryptographic primitives that prov-

bly minimize the amount of information disclosed to the cloud

rovider [15] . In theory, one could rely on tools like garbled cir-

uits and fully homomorphic encryption to perform computation

r evaluate functions, privately, without disclosing sensitive in-

ormation. However, these tools are too expensive for most NFV
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settings [15] , where low latency and minimization of computa-

tional overhead are crucial requirements. 

Arguably, optimal solutions to the problem should not only

guarantee confidentiality of the network policies—and with min-

imal trust assumptions—but also basic performance requirements

such as low latency and high throughput. Moreover, clients (whose

network functions are being outsourced) should be as thin as pos-

sible, otherwise outsourcing would only be nominal. Additionally,

one should also provide compatibility with existing infrastructure

(i.e., third parties do not need to implement new protocols) and

support a wide range of functionalities. Previous work, thoroughly

reviewed in Section 7 , has made several attempts in this direction

[12,13,15–17] , but has fallen short of simultaneously achieving all

these requirements. For instance, some of them are limited to sim-

ple firewalls [12,13] , whereas, we support more general network

functions in which packets can be (privately) modified in different

ways (e.g., changing destination IP). Other works such as Embark

[16] provide a more general applicability to network functions, but

at the cost of relying on the client itself to perform a significant

portion of the functionality. 

In this paper, we present the design, analysis and implementa-

tion of SplitBox, a system that supports fast and privacy-preserving

network function outsourcing with high throughput and low la-

tency. The privacy goal is to hide the policies governing the net-

work functions from the VMs implementing the functions, thus not

allowing the cloud (and third parties) learn network function poli-

cies of the client. Our intuition is to leverage the distributed nature

of cloud VMs: rather than relying on a single one, we distribute

functionality to a few VMs residing on multiple clouds or multi-

ple compute nodes in the same cloud, and provide a scalable and

provably secure solution. SplitBox supports the privacy-preserving

modification of a packet’s contents through the notion of secret

sharing [18] , ensuring that a collusion of any number of compute

nodes less than the total does not reveal the modified content (in-

cluding whether the packet has been tagged for a drop for the spe-

cific case of firewalls). This enables us to add more complex modi-

fications, thus addressing a challenging open problem. In summary,

we make the following contributions: 

1. We introduce an abstract mathematical definition of a network

function which is rich enough to capture many network func-

tions, including, but not limited to, firewalls, virtual LAN (VLAN)

tagging, and NAT. This helps us build solutions that guarantee

privacy for a generic network function, and can be applied to

many network functions used in practice. 

2. We design and implement SplitBox, a system geared for pri-

vately and efficiently computing the aforementioned abstract

network function, so that the “honest-but-curious” cloud, mod-

eled as several VM middleboxes, cannot learn network policies.

SplitBox relies on the distributed nature of cloud VMs, assum-

ing that an adversary does not corrupt all middleboxes simul-

taneously, and only uses relatively inexpensive cryptographic

primitives, while supporting a wide range of network policies

(specifically, those that can be modeled as substring match-

ing and replacement of packet contents). We provide secu-

rity proofs of our construction using the real/ideal simulation

paradigm [19] . 

3. We present an extensive evaluation of SplitBox, considering two

network functions as examples, to thoroughly assess its feasi-

bility in the wild. We consider a firewall application since it

is widely used, including in related work [12,13,16] , as well as

VLAN tagging. The latter is more complex in terms of function-

ality, since it modifies packet header rather than simply allow-

ing/dropping a packet. We show that on a firewall test case,

SplitBox achieves the same throughput of the non-private ver-

sion with 9.4Gbps and 1.5kB-sized packets when up to 10 rules
are fired, and a decrease in performance limited to 5% (i.e.,

8.9Gbps) with 50 rules. 

Paper organization. The rest of the paper is organized as fol-

ows. Next section presents the threat model as well as a generic

odel of network functions which abstracts the functionality of

etwork functions. Then, Section 3 introduces the design of the

plitBox system and its security analysis, while Section 4 discusses

ur prototype implementation. After presenting an experimental

valuation of SplitBox in Section 5, Section 7 reviews related work.

inally, the paper concludes in Section 8 . 

. System model 

.1. Problem statement 

The problem addressed in this paper is where a client out-

ources one or more of its network functions (e.g., firewall) to the

loud. The cloud processes these network functions on behalf of

he client, i.e., executes policies on incoming network traffic des-

ined to the client, and sends the processed packets to the client.

n the traditional setting, these network functions would be imple-

ented at the edge of the client network. Hence any third-party

an only see inbound/outbound traffic to/from the client network.

n particular, third parties do not learn the policies implemented

y the network functions (beyond what is deducible by observing

he traffic). The client wishes that the same privacy be applica-

le to its network functions when they are being processed in the

FV setting, where the cloud is executes these network functions

n behalf of the client. In particular, any third party, including the

loud, should not learn the policies implemented by these net-

ork functions. This essentially means that the cloud should pro-

ess these policies correctly while remaining oblivious to them. In

he following, we define the setting and these requirements more

recisely, including trust assumptions, describe our proposed solu-

ion and prove its security and correctness. 

.2. Entities 

As illustrated in Fig. 1 , SplitBox involves two types of cloud

iddleboxes (MBs): An entry MB A , hosted on a cloud provider

Cloud A) and a set of t ≥ 2 cloud MBs, B(t) , which collaboratively

ompute a network function on behalf of a client, e.g., hosted on

loud B. The client has its own client MB, denoted as C, at the

dge of its internal network. At a high level, A receives a packet,

erforms some computation on it, “splits” the result into t parts,

nd forwards part j to B j ∈ B(t) . B j performs local computations

nd forwards its part to C, which reconstructs the network func-

ion’s final result. (Note that there is also a direct link between A
nd C which is not illustrated in Fig. 1 to ease presentation.) 

.3. Threat model 

Our main privacy goal is to limit information leakage of client’s

etwork policies. In a way, we set to emulate the “traditional” set-

ing where the network function, in its entirety, is implemented

lient-side, i.e., at C, thus revealing no information to the cloud.

e assume an honest-but-curious adversary [20] with access to

ne or more compute nodes in the cloud, which can only learn

hether or not the current packet “matches” some unknown policy

f the network function. More specifically, we assume that the ad-

ersary does not control (have access to) both A and a MB in B(t)

t the same time, which reflects our vision in which A runs on a

ifferent cloud provider (cloud A) than B(t) (cloud B). The adver-

ary can control up to t − 1 MBs from B(t) , i.e., it does not com-

romise all the MBs at the same time, as not all MBs in B(t) re-

ide on the same compute node. In other words, our threat model
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Cloud A Cloud B

Node 1
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Fig. 1. Our system model with Cloud A hosting MB A as a VM in one of its compute nodes. Cloud B hosts the MBs B(t) with t = 3 as VMs (not all t reside on the same 

compute node). The client MB C resides at the edge of the client’s internal network. A and B(t) collaboratively compute network functions for the client. 

Fig. 2. Examples of network functions as binary trees. 
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educes to assuming that the adversary does not have access, si-

ultaneously, to more than one cloud provider, and to all com-

ute nodes in cloud B, in line with recent proposals around the

dea of a super cloud [21] . 1 Finally, note that the system model in

ig. 1 implicitly targets inbound traffic. Outbound traffic is in gen-

ral trusted, hence, we only focus on inbound traffic. 

Out-of-scope threats. In our setting, entry MB A or a third-

arty adversary could observe traffic inbound to A and traffic out-

ound from C to infer policies. But notice that this is also possible

n the traditional setting if traffic is not encrypted. Even if traffic

s encrypted, it still does not provide protection against an adver-

ary generating traffic destined to the client. Thus, we can assume

hat the initial packet (at least its header) can remain in the clear.

f privacy of packet contents (not just policies) is required, encryp-

ion can be used to provide privacy against third-party adversaries,

nd/or traffic can be sent to C first before sending to A . However,

his is beyond the scope of this work. 
1 Note that we are making a distinction between a compute node (physical 

erver) and a virtual machine (MB). Our assumption is that only some of the phys- 

cal servers in cloud B are accessible to the adversary. Hence we require the MBs 

rom B(t) , i.e., virtual machines, to not be running on the same physical server. This 

an be implemented in policy, requiring each of the MBs from B(t) to run on a dif- 

erent compute node. With this policy, our assumption translates to the adversary 

aving access to at most t − 1 compute nodes in cloud B (and hence at most t − 1 

Bs from B(t) ). 
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Difference with Embark [16] . In our solution, inbound traffic

oes directly to the cloud MB, as opposed to other approaches,

uch as Embark [16] , where inbound traffic first goes to the client

B, which pre-processes it (e.g., encrypts it) and then routes it to

he cloud MB, which in turn processes and sends the traffic back

o the client MB. This is an inherently easier problem, as the client

B knows exactly which policies a given packet is expected to

atch, and can therefore “embed” the answers within the packet,

s is done in Embark. In contrast, in our setting, the traffic goes

traight to the cloud, which yields a harder problem, as these poli-

ies need to be hidden from the cloud. Note that there does not

eem to be a straightforward way to modify Embark to provide

rivacy in our setting without compromising efficiency. 

.4. Network function model 

We define a packet x as a binary string of arbitrary length,

owever, network functions will be applicable to the first n bits

f x only. We define a matching function as m : {0, 1} n → {0, 1},

nd its complement (i.e., 1 − m ) as m . Note that both are boolean

unctions. We also define action functions as transformations a : {0,

} n → {0, 1} n . Functions are evaluated on the first n bits of x , so, if

 x | > n, a keeps x unaltered after the n -th bit. We also define the

dentity action function I(x ) = x . 

Let M and A , respectively, denote finite sets of matching and ac-

ion functions. We define a network function , ψ = (M, A ) , as a bi-

ary tree with edge set M and node set A such that each node is

n action function a ∈ A and each edge is either a matching func-

ion m ∈ M or a complement m of a matching function m ∈ M . A

ode is either a leaf or a parent node, the latter having two chil-

ren. The left child is I , the edge to the right child is a m ∈ M , the

ne connecting the left child is its complement m . The root node

s I . Examples of network functions are given in Fig. 2 . 

Policies. Let ψ = (M, A ) be a network function. Then, there is

 binary relation from M to A , such that for each ( m, a ) from this

elation, there exists a parent node in ψ whose left child is con-

ected via m and the right child via m , and the right child is a . We

all each pair ( m, a ) in ψ a policy . A policy can also be represented

s a subtree of ψ as shown in Fig. 2 (a). Policies serve as building

locks of a network function. The set of policies of ψ is the set of

istinct policies ( m, a ) in ψ . 
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Fig. 3. The projection and masking functions. 

I

I I (allow)

I I (allow)

I a (drop)

m1 m1 (dst port = 80?)

m2 m2 (dst port = 22?)

m3 m3 (any other packet)

Fig. 4. Network function for a simple firewall. 
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2 This is not the only way to model dropping. In our implementation, we intro- 

duce another bit which acts as a flag to indicate dropping/blocking a packet. 
Network functions. A network function ψ( x ) is evaluated on a

packet x using Algorithm 1 . We create a separate writeable copy

Algorithm 1: Traversal. 

Input : Packet x , network function ψ . 

1 Make a read-only copy x r and a writable copy x w of x . 

2 Start from the root node. 

3 Compute x w ← a (x w ) , where a is the current node. 

4 if the current node is a leaf node then 

5 output x w and stop. 

6 else 

7 Compute m (x r ) , where m is the right hand side edge. 

8 if m (x r ) = 1 then 

9 Move to the right child node. 

10 else 

11 Move to the left child node. 

12 Go to step 3. 

x w to ensure the matching functions are applied on the “unmod-

ified” x , i.e., x r , and not on x w , which is modified by the action

functions. When a leaf node is entered, the network function ter-

minates. Fig. 2 (b) shows a network function with k distinct poli-

cies: whenever a match is found, the corresponding action is per-

formed and the function terminates. The function in Fig. 2 (c) has 3

distinct policies, ( m 1 , a 1 ), ( m 2 , a 2 ) and ( m 3 , a 3 ), and ( m 2 , a 2 ) is re-

peated twice. This function does not terminate immediately after a

match has been found (e.g., path m 1 m 2 ). Since a ◦ I = I ◦ a = a, we

can easily “plug” individual policy trees to construct more complex

network functions. 

Remark. Our (abstract) definition of network functions yields sev-

eral advantages compared to a standard representation using vec-

tors of elements corresponding to different fields of a packet,

and defining network functions as function composition [15] . First,

defining packets as strings removes the need for padding. Second,

we can support branching , i.e., network functions that do not nec-

essarily apply all policies on a packet, by including multiple exit

points (leaf nodes in our tree model). 

2.5. Restriction of policies 

We restrict m and a , respectively, to substring matching and

substitution. We introduce the “don’t care bit”, denoted by ∗ in

our alphabet. Given strings x ∈ {0, 1} n and y ∈ {0, 1, ∗} n , x = y if

x (i ) = y (i ) for all i ∈ [ n ] s.t. y ( i ) � = 

∗. A matching function m is de-

fined as m (x ) = 1 if x (1 , n ) = μ and 0 otherwise, where μ∈ {0, 1,
∗} n . We call μ the match of m . 

Example 1. Let n = 4 . And let the match μ of a matching function

m be μ = 10 ∗ 0 . Let x 1 = 1010 , x 2 = 10 0 0 and x 3 = 1001 be three

different packets. Then m (x 1 ) = m (x 2 ) = 1 , whereas m (x 3 ) = 0 . �

To define the action function, we introduce substring replace-

ment: given x ∈ {0, 1} n and z ∈ {0, 1, ∗} n , x ← z represents replacing

each x ( i ) with z ( i ) if z ( i ) � = 

∗, and leaving x ( i ) as is if z(i ) = ∗, for all

i ∈ [ n ]. Then, a is defined as a (x ) = x (1 , n ) ← α, where α ∈ {0, 1, ∗} n .

We call α the action of a . For the identity action function I , α = ∗n .

Given z ∈ {0, 1, ∗} n , the projection of z , denoted π z , is a string ∈ {0,

1} n , s.t. πz (i ) = 1 if z ( i ) ∈ {0, 1} and πz (i ) = 0 if z(i ) = ∗. Masking a

packet x , using π z ∈ {0, 1} n , is denoted as ω( π z , x ), returning x ′ s.t.

x ′ (i ) = x (i ) if πz (i ) = 1 and x ′ (i ) = 0 otherwise. Although ω( π z , x )

is defined for x ∈ {0, 1, ∗} n , we will use it exclusively for an x ∈ {0,

1} n . Fig. 3 illustrates the projection and masking functions. 

Lastly, we use H : { 0 , 1 } n → { 0 , 1 } q for a cryptographic hash

function; � for bitwise XOR, wt( x ) for the Hamming weight of x ,
hile x ← $ {0, 1} n denotes sampling a binary string of length n uni-

ormly at random. 

xample 2. Consider a simple firewall with the policy that only

ackets with destination ports 80 or 22 are allowed. This can be

epresented by the tree shown in Fig. 4 . Here m 1 is described by

he match μ1 whose bits corresponding to the destination port are

et to the binary representation of 80 and the rest by the don’t

are bit ∗. Likewise m 2 corresponds to destination port 22. The

atch μ3 of matching function m 3 is set to ∗n , and therefore ac-

epts every packet. The action function a is x (1, n ) ← 0 n , which we

odel as dropping a packet. 2 �

.6. Generic network functions 

Coverage. Our abstract definition of network functions captures

any network functions used in practice. These include firewalls,

ccess control lists (ACLs), NATs, virtual LANs (VLANs), and load

alancers. These usually go through a matching step to inspect

ome “parts” of a packet, and, if a match is found, modify con-

ents. With firewalls, this might also entail dropping a packet. In

ur model, packets are not dropped at B(t) , but are (privately)

agged to be dropped. When C receives the packet parts from B(t) ,

he reconstructed packet can have a bit within x (1, n ) set to 0 in

ase it is supposed to be dropped. Likewise, some QoS functions

e.g., rate limiters) can also be implemented by inserting a drop

it within the first n bits of a packet x . 

Stateful network functions. Some network functions are state-

ul, i.e., they maintain a table of states, somewhat resembling dy-

amically generated policies. Upon arrival of a packet, the state ta-

le is consulted first, if no match is found, it is further processed as
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Fig. 5. Breakdown of algorithms executed by each MB in SplitBox. 
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Algorithm 2: Global Setup ( C). 

Input : Parameters n and l, network function ψ = (M, A ) . 

1 for j = 1 to t do 

2 Send ψ priv to B j . 

3 Run Setup Lookup Tables with parameter l, M. 

4 for each m ∈ M do 

5 Run Hide Match algorithm. 

6 for each a ∈ A do 

7 Run Split Action algorithm. 
er the regular (static) policies. For instance, a stateful firewall may

eep a list of currently open TCP/IP connections. Since a state can

e modeled as a dynamically generated policy, our model of net-

ork functions can easily handle this by appending dynamic poli-

ies on top of the policy tree. However, in SplitBox, these dynamic

olicies can only be added by C. We discuss this in more detail in

ection 6 . 

Chaining. Our definitions also support function chaining , e.g.,

 1 ’s output is ψ 2 ’s input. However, in our “default” SplitBox solu-

ion, chaining is not possible as outputs of the MBs in B(t) need

o be combined in order to reconstruct a transformed packet. For

haining to work, ψ 2 needs to know the output of network func-

ion ψ 1 , but, if ψ 2 only needs the original input x , instead of the

verwritten copy x w , chaining can work by giving ψ 2 an auxil-

ary input – i.e., the share resulting from network function ψ 1 ,

n which it can apply its own actions. We discuss this again in

ection 6 . 

. SplitBox 

This section presents the design of the SplitBox system. 

.1. Requirements 

SplitBox is designed by taking into account four main require-

ents: privacy, efficiency, thin client, and compatibility, as dis-

ussed next. 

Privacy. Ideally, SplitBox should simulate a setting where A
earns only the input packet, and B(t) learn neither the input nor

he modified packet. We come close to achieving this as the MBs

(t) learn the projection πμ and the output m ( x ) for each m ∈ M ,

owever, they do not learn the match μ for any m ∈ M beyond

hat can be learned from πμ. Although this could potentially re-

eal which field of the packet the current matching function cor-

esponds to, it is not a major limitation as this information might

nyway be obvious from the type of NFV considered. For instance,

n case of a firewall, the IP fields will obviously be part of its poli-

ies. 

Efficiency. SplitBox should be computationally fast, i.e., process-

ng traffic at near-to-typical middlebox line rates, and limit MB-to-

B communication overhead. This makes it impossible to use (ex-

ensive) public-key operations as well as some simple solutions:

or instance, one could let A compute all the matches from the

et of matching functions M , then send the (encrypted) results of

hese matches to B(t) , which could in turn execute actions based

n the network tree. However, communication complexity would

e proportional to | M |: depending on the number of policies, this

ay result in significantly larger packets sent to B(t) and severely

ffect throughput. Moreover, based on the network tree, not all

atches need to be computed beforehand, and in this case this

pproach would be very inefficient. Note that we cannot reveal

he result of the match to A , as A already receives the packet x

n the clear, and could deduce the match of the matching func-

ion. Likewise, any solution that requires back and forth commu-

ication between A and B(t) is not desirable as it would effect

hroughput. 

Thin client. It is also crucial to impose minimal overhead on

, otherwise we would nullify the benefits provided to the client

y the outsourcing paradigm, i.e., reduced infrastructure costs, ef-

ciency, and flexibility. 

Compatibility. Third-parties should be oblivious to the virtual

etting. This precludes implementing custom protocols for third-

arties sending/receiving traffic from/to the cloud, which is done

or instance by BlindBox [17] . 
.2. The SplitBox system 

To illustrate the idea behind SplitBox, let us assume that the

et of policies ψ only includes a single policy, ( m, a ). The strategy

ollowed by SplitBox to hide m is to let C blind μ by XORing it

ith a random binary string s , and sending the hash of the result

o each MB in B(t) . Then, to hide a , C computes t shares of the

ction α using a t -out-of- t secret sharing scheme, and sends share

 to B j . When a packet x arrives, A encrypts it by XORing it with

he blind s , and sends the encrypted version to the MBs in B(t) ,

hich can then compute matches and actions on this encrypted

acket. 

In the rest of this section, we present SplitBox using a set of

lgorithms, grouped based on the MB executing them. Fig. 5 shows

 high-level overview of all the algorithms computed by each MB.

e assume ψ priv to be the private version of ψ , whose matching

nd action functions are replaced by unique identifiers. 

Middlebox CC). The initial setup is performed by C via

lgorithm 2 . This includes creating lookup tables ( Algorithm 3 ),

hiding the matching functions ( Algorithm 4 ), and splitting the

ction functions ( Algorithm 5 ). There are two lookup tables in

lgorithm 3 : S for A and 

˜ S for B(t) . Table S contains l “blinds”

hich are random binary strings used to encrypt a packet. For each

 ∈ S and m ∈ M , the portion of the blind corresponding to the pro-

ection of the match μ is extracted and then XORed with μ. Fi-

ally, this value is hashed using H and stored in the corresponding

ow of ˜ S . The Hide Match algorithm simply sends the projection

μ of each match μ to B(t) . This tells B(t) which locations of the

ncoming packet are relevant for the current match. The Split
ction algorithm computes t shares of the action α and action

rojection πα , for each a ∈ A , and sends them to B(t) . 
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Algorithm 3: Setup Lookup Tables ( C). 

Input : Parameter l, set M. 

1 Initialize empty table S with l cells. 

2 Initialize empty table ˜ S with l × | M| cells. 

3 for i = 1 to l do 

4 Sample s i ← $ { 0 , 1 } n . 
5 Insert s i in cell i of S. 

6 for j = 1 to | M| do 

7 Compute ˜ s i, j = ω(πμ j 
, s i ) , where μ j is the match of 

m j . 

8 Compute H (μ j � ˜ s i, j ) . 

9 Insert H (μ j � ˜ s i, j ) in cell (i, j) of ˜ S . 

10 Send S to A . 

11 Send 

˜ S to B(t) . 

Algorithm 4: Hide Match ( C). 

Input : Matching function m ∈ M with match μ. 

1 Send πμ to B(t) . 

Algorithm 5: Split Action ( C). 

Input : Action function a ∈ A with action α. 

1 Sample α1 , α2 , . . . , αt−1 ← $ { 0 , 1 } n . 
2 Let ˜ α = ω(πα, α) . Compute αt = ˜ α � α1 � · · · � αt−1 . 

3 Sample β1 , β2 , . . . , βt−1 ← $ { 0 , 1 } n . 
4 Compute βt = πα � β1 � · · · � βt−1 . 

5 for j = 1 to t do 

6 Give α j , β j to B j . 

Algorithm 6: Merge Shares ( C). 

Input : Index i , packet copy x w , α′ 
j 

and β ′ 
j 

from B j for j ∈ [ t] . 

1 Compute α′ ← α′ 
1 

� · · · � α′ 
t . 

2 Compute β ′ ← β ′ 
1 � · · · � β ′ 

t . 

3 Compute x ← x w � s i , where s i ∈ S. 

4 for i = 1 to n do 

5 if β ′ (i ) = 1 then 

6 x (i ) ← α′ (i ) 

7 if x (1 , n ) = 0 n then 

8 Drop x . 

9 else 

10 Forward x . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 7: Split Packet ( A ). 

Input : Packet x , lookup table S. 

1 Get the index i ∈ [ l] corresponding to the current value of the 

counter. 

2 Let x w ← x � s i (writeable copy), where s i ∈ S. 

3 Compute x r ← x (1 , n ) � s i (read-only copy), where s i ∈ S. 

4 for j = 1 to t do 

5 Send x r , i to B j . 

6 Send x w , i to C. 

 

o  

i  

j  

T  

A  

C  

X  
C uses one more algorithm, Algorithm 6 , to reconstruct the

transformed packet. This algorithm XORs the cumulative action

shares α′ 
j 

and cumulative action projection shares β ′ 
j 

from B j to

compute the final action α′ and action projection β ′ . It also XORs

the encrypted packet received from A with the current blind s in

the lookup table S , in order to reconstruct the final packet. Note

that dropping a packet is modeled as setting x (1, n ) to 0 n . 

Middlebox A A). This MB only runs Algorithm 7 , which keeps a

counter initialized to 0 and incremented when a new packet x ar-

rives. The value of the counter corresponds to a blind in the lookup

table S , thus, its range is [ l ] (barring the initial value of 0). The al-

gorithm makes two copies of an incoming packet x , x r (read-only

copy) for matching to be sent to B(t) , and x w (writeable copy) for

action functions to be sent to C. Both x r and x w are XORed with the

blind in S corresponding to the counter. The current counter value

is also given to B(t) and C. 
Middleboxes B(t) B(t). Each MB B j performs a private version

f the Traversal algorithm as shown in Algorithm 8 . B j first

Algorithm 8: Private Traversal ( B(t) ). 

Input : Index i , read-only copy x r , network function ψ priv . 

1 Initialize empty strings α′ 
j 
← 0 n and β ′ 

j 
← 0 n . 

2 Start from the root node. 

3 Update α′ 
j 

and β ′ 
j 

by running the Compute Action algorithm 

on the current node a . 

4 if the current node is a leaf node then 

5 Send i , α′ 
j 

and β ′ 
j 

to party C and stop. 

6 else 

7 Run Compute Match algorithm on i , m and x r , where m is 

the right hand side edge. 

8 if Compute Match outputs 1 then 

9 Go to the right child node. 

10 else 

11 Go to the left child node. 

12 Go to step 3. 

nitializes cumulative action strings α′ 
j 

and cumulative action pro-

ection strings β ′ 
j 

as strings of all zeros. Within the Private
raversal algorithm, B j executes the action functions using

lgorithm 9 and matching functions using Algorithm 10 . The

Algorithm 9: Compute Action ( B(t) ). 

Input : Pair of cumulative action and cumulative action 

projection shares (α′ 
j 
, β ′ 

j 
) of B j , pair of action and 

action projection shares (α j , β j ) of action function 

a ∈ A of B j . 

1 Compute α′ 
j 
← α′ 

j 
� α j . 

2 Compute β ′ 
j 
← β ′ 

j 
� β j . 

3 Output α′ 
j 
, β ′ 

j 
. 

Algorithm 10: Compute Match ( B(t) ). 

Input : Read-only copy x r , index i ∈ [ l] , lookup table ˜ S , index 

j ∈ [ | M| ] of m j ∈ M with match μ j . 

1 Lookup table ˜ S at index (i, j) to obtain H ( ̃ s i, j ) . 

2 Extract ˜ x r ← ω(πμ j 
, x r ) . 

3 Compute H ( ̃  x r ) . 

4 if H ( ̃  x r ) = H (μ j � ˜ s i, j ) then // m (x ) = 1 

5 Output 1. 

6 else // m (x ) = 0 

7 Output 0. 

ompute Action algorithm essentially updates α′ 
j 

and β ′ 
j 

by

ORing with the action share and action projection share of the
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urrent action. The Compute Match algorithm uses the read-only

opy x r . It extracts the bits of x r corresponding to the current

atch projection πμ. It then looks up the counter value i (sent

y A ) and the index of the matching function in the lookup table
˜ 
 and extracts the hashed match. This is then compared with the

ash of the relevant bits of x r . 

.3. Analysis 

Correctness. Given ψ = (M, A ) , for a matching function m ∈ M ,

plitBox correctly computes the match as long as m is represented

s substring matching. If m is an equality or range test for pow-

rs of 2 in binary (e.g., IP addresses in 127 . ∗ . ∗ . 32 to 127 . ∗ . ∗ . 64 ),

hen it can also be computed. Our model also allows for arbi-

rary ranges by dividing m into smaller matches that check equality

atching of individual bits. SplitBox can correctly compute action

unctions as long as: (a) they are applied to the initial packet x

nly, and not on its transformed versions; (b) any two action pro-

ections β i and β j do not overlap on their non-zero bits. However,

his does not restrict the number of times the identity function I

an be applied, as its action projection is 0 n . 

Security. We divide our security analysis in two parts. We first

rove that an honest-but-curious A does not learn the network

unction ψ = (M, A ) including the number of matching and action

unctions, i.e., | M | or | A |. Then we prove that any coalition of less

han t MBS in B(t) does not learn the match μ of each match-

ng function in M , and the action or the action projection of every

ction function in A for up to l packets (where l is the number of

linds in the lookup table). The coalition may learn the match pro-

ection (the bits of the packet the match applies to), or the result

f the unknown match (i.e., whether it evaluates to 1 or not). We

lso discuss additional security strategies, e.g., how to ensure se-

urity for greater than l executions. Overall this ensures security

f our proposed solution with the assumption that clouds A and

 do not collude (as required). In the following, we make these

ssumptions more rigorous and provide formal proofs of security

nder these assumptions. 

As explained in Section 2 , we assume a passive (honest-but-

urious) adversary E which can either corrupt A , or up to t − 1

Bs from B(t) . Let � denote our SplitBox scheme. Before a for-

al security analysis, we first discuss the assumptions and privacy

equirements of the scheme �: 

• The parameter n is public. 

• A should not know the network function ψ = (M, A ) (not even

| M | or | A |). It does however see x in clear. 

• Each B j ∈ B(t) knows the projection πμ of the match μ of

each matching function m ∈ M . It should not, however, learn

the match μ of any matching function m ∈ M (beyond what

is learnable through πμ). It also knows the result of all the

matching functions; this may include matching functions that

are not necessary to compute ψ( x ) for each packet x , i.e., the

subset of matching functions that are in the path that exit the

graph ψ given x . Since B j can always access the hash function

H offline, it can check all matching functions m ∈ M for their

output (not necessarily in the path of ψ). We therefore need to

make this explicit. 

• Each MB B j ∈ B(t) should not know x . Furthermore, for any two

packets x 1 and x 2 , it should not know which bits of x 1 and x 2 
are the same, beyond what is learnable through the result of

the subset of the matching functions used in ψ( x 1 ) and ψ( x 2 ).

In particular, if a matching function m has projection πμ for

its match μ, it should only learn that the bits corresponding

to πμ are the same if m (x 1 ) = m (x 2 ) = 1 . If m ( x 1 ) � = m ( x 2 ), B j 

should not learn whether individual bits corresponding to πμ

are the same or different (except when wt (πμ) = 1 ). This is
the reason for using the hash function H and the encryption

of packet through XORing with the blinds in our scheme. We

call this property, indistinguishability of packet contents . 

• Any coalition of t − 1 MBs in B(t) should not be able to learn

the action α and the action projection β of every action a ∈ A . 

Let us denote random variables I and O denoting the input and

utput of an MB (or a subset of MBs) corrupted by E . Further de-

ote the random variable X representing the packet x , and D rep-

esenting the description of the network function ψ . The output of

he network function ψ on input from X is denoted ψ( X ). We first

escribe the ideal functionality, denoted ideal , followed by the real

etting, denoted real . 

ideal (ψ, S) . We assume a trusted third party T , which com-

unicates with each of the MBs via a secure and private link. T 
s given the network function ψ = (M, A ) . MBs B(t) are given the

index set” of M (i.e., { 1 , 2 , . . . , | M|} ) together with the matching

rojections πμ, for the match μ of each matching function m ∈ M .

otice that, since in our protocol, we leak this information, we

eed to make this explicit. MB A receives a packet x and hands

t over to T . T computes x ′ = ψ(x ) . It hands over x ′ to C. Since

n our protocol, we leak the information about the output of the

atching functions, T also hands over the result of each matching

unction m ∈ M to the parties B(t) . The simulator S serves as the

dversary in the ideal setting. Succinctly, ideal (ψ, S) is the tuple

(I, O, X, ψ(X ) , D ) , where the random variables correspond to the

B (or subset of MBs) controlled by S . 

real (�, E ) . Our real setting is simply the execution of our

cheme in the presence of the adversary E . It again represents the

uple (I, O, X, ψ(X ) , D ) where each random variable corresponds

o the MB (or subset of MBs) corrupted by E . Naturally, depending

n whether E corrupts MB A or upto t − 1 MBs in B(t) , the sim-

lator S in the ideal setting will be different (and so will be the

andom variables in the tuple (I, O, X, ψ(X ) , D ) ). 

With these two settings, we want to show that for every prob-

bilistic polynomial time adversary E there exists a probabilistic

olynomial time adversary S, such that 

eal (�, E ) ≈c ideal (ψ, S) , 

here ≈c denotes computational indistinguishability. If the above

olds, we say that � privately processes ψ . In our proofs, we im-

licitly use the assumption that given binary strings c and c 1 , . . . , c t 
uch that c 1 , . . . , c t−1 are random binary strings in {0, 1} n , and c t =
 1 � · · · � c t−1 � c, then for any subset of strings from c 1 , . . . , c t ,

enoted C(t − 1) , with cardinality ≤ t − 1 , the following holds:

 [ c| C(t − 1)] = P [ c] = 2 −n . The proof of this assumption is stan-

ard. We use this result whenever we talk about t -out-of- t shares

n our proposed solution. 

Our main results are as follows. 

heorem 1. The scheme � privately processes ψ against an honest-

ut-curious E = A . 

roof. Before receiving any packet, the simulator S samples l uni-

ormly random strings s i ∈ {0, 1} n to construct the lookup table S

nd gives it to E . It initializes its counter to 0. Upon receiving a

acket x , S forwards it to T . For E, S first gets the current value of

he counter i ∈ [ l ]. It further samples a uniformly random r ∈ {0, 1} n 

nd constructs x w ← x � r. It computes t shares of r , the j th share

f which is denoted r j . Finally it obtains x r ← x (1 , n ) � s i by look-

ng up the counter value i in the table S . Finally S gives x r , i , x w 
nd the t shares of r to E . Once the counter i reaches l , S resets it

o 0. 

Since the input to party A is the same as the input packet x ,

e have that I = X (which holds both in the ideal and real set-

ing). The output O is distributed in the exact same manner in

he two worlds. Since the output is generated without any knowl-

dge of the network function ψ , we have that D is the same in
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Table 1 

Data structures shared among cores and their size. M is the set of matching 

functions, A the set of action functions, n the mask size, l the number of 

rows in the lookup table and q the hash size. 

Shared data Size A B C

Blinds l × n � × � 

Actions | A | × n × � ×
Action Projections | A | × n × � ×
Hashes l × | M | × q × � ×
Synchronization/ Merge Ring 3 × | M| × pkt _ size × × � 
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3 FastClick Elements are available on https://bitbucket.csiro.au/users/jou008/ 

repos/splitbox-source/ . 
the ideal and real world. Finally, the output of ψ is not revealed in

the two worlds. Hence real (�, E ) = ideal (ψ, S) ⇒ real (�, E ) ≈c 
ideal (ψ, S) . �

As discussed in Section 3.3 , if the match of a matching func-

tion is small, the adversary can brute-force the hash function H to

find its pre-image. Thus, our security proof for E ⊂ B(t) requires

that the minimum Hamming weight of a match μ in the set of

matching functions M should be large enough for brute-force to be

infeasible. Furthermore, our security proof applies only when the

blinds are used once, i.e., for counter values ≤ l without reset. See

the discussion following the next theorem for our proposed miti-

gation strategy for security, when the counter completes its cycle. 

Theorem 2. Suppose δ = min μ wt (πμ) , for all matching functions

m ∈ M. The scheme � privately processes ψ for up to l inputs (pack-

ets), against an honest-but-curious E ⊂ B(t) in the random oracle

model. 

Proof. Let R : { 0 , 1 } ∗ → { 0 , 1 } q denote the random oracle. Before

receiving any packet, the simulator S simulates the lookup table S̃

as follows. For each m ∈ M , given the projection πμ of its match

μ, it generates l binary strings by sampling a random bit where

πμ(i ) = 1 and placing a 0 otherwise. For each such string, S sam-

ples a uniform random binary string of length q . S creates two ta-

bles. One is the lookup table ˜ S , and the other its personal table ˆ S .

The table ˆ S contains the pre-images of the entries in 

˜ S . It hands

over ˜ S to each MB in E . For each policy ( m, a ) ∈ ψ , it generates |E|
random binary strings αj and β j of length n , for 1 ≤ j ≤ |E| , and

gives each pair ( αj , β j ) to a separate MB in E . S initiates a counter

i initially set to 0. 

Upon receiving the result of the matching functions in M from

T , indicating the arrival of a new packet, S first generates a ran-

dom binary string as x w and |E| random binary strings of length

n (to simulate the r j ’s). S initializes an empty string x r . For each

matching function m that outputs 1, S looks up its table ˆ S and

the projection πμ, where μ is the match of the matching function,

and replaces the corresponding bits of x r with the corresponding

bits of the input string to the lookup table ˆ S . Finally, for all bits of

x r that are not set, S replaces them with uniform random bits. It

hands over x w , x r and r j to each MB in E, together with the current

counter value i . 

For any oracle query from an MB B j ∈ E, S first looks at its ta-

ble ˆ S and sees if an entry exists. If an entry exists, S outputs the

corresponding output from the table ˆ S . If an entry does not exist, E
outputs a uniform random string of length q , and stores the input

and the output by appending it to the table ˆ S . 

It is easy to see that the distribution of the variables

(I, O, X, ψ(X ) , D ) for each MB in E is the same as in the real

setting, for any E, such that |E| < t, for any value of the counter

i ≤ l , and for a polynomial in δ number of oracle queries. Therefore

real (�, E ) ≈c ideal (ψ, S) . �

Security consequences. Here we highlight two important

points. First, if SplitBox is used for match projections with low

Hamming weight, then an adversarial MB in B(t) could brute-force

H to find its pre-image. This would reveal μ�s for some blind s ,

allowing the adversary to learn more than simply looking at the

output of m . Namely, if m (x ) = 0 , she learns which relevant bits of

an incoming packet x do not match with the stored match. This is

why we use the hash function H , as it does not allow B(t) to learn

more than the output of m . 

Second, the length of the look-up table l should ideally be large

enough so that the same blind is not re-used before a long period

of time. However, high throughput would require a prohibitively

large value of l . Thus, we adopt the following strategy: with proba-

bility 0 < 1 − ρ < 1 , A sends a uniform random string from {0, 1} n 
dummy packet), rather than the next packet in the queue. As a re-

ult, any middlebox in B(t) that attempts to compare two packets

sing the same blind (according to the value of the counter i ∈ [ l ])

oes not know for certain whether or not the result corresponds

o two actual packets (the probability is ρ2 ). This however reduces

he (effective) throughput by a factor of ρ . Naturally, A needs to

ndicate to C which packet is dummy. This can be done by sending

 bit through B(t) to C, using a t -out-of- t secret sharing scheme

XORing with random bits). 

. Implementation 

We now present a prototype implementation of SplitBox. 3 Later

n Section 5 , we will also present a thorough evaluation of its per-

ormance in real-world settings. We implement SplitBox, in C ++ ,
nside FastClick [22] , an extension of the Click modular router [23] .

e choose FastClick as it provides fast user-space packet I/O and

asy configuration via automatic handling of multi-threading and

ultiple hardware queues. We also use Intel DPDK [24] as the un-

erlying packet I/O framework. 

More specifically, we implement three FastClick elements: (i)

n element Entry corresponding to A ; (ii) Processor realizing

; and (iii) Client corresponding, to C. Fig. 6 outlines the setup

f these elements as well as their interactions with concurrent

hared data structures. The shared data structures are presented in

able 1 , along with their associated sizes and location. Specifically,

ig. 6 presents how each element is processing packets from the

ime they are pulled from, till the time they are pushed to DPDK

ings. 

In particular, note that all elements follow a Run-to-Completion

odel and that both Processor and Entry rely on the same ar-

hitecture where they only perform read operations to shared data

tructures, while Client needs to write in a shared ring buffer in

rder to execute the Merge Shares algorithm. 

Network functions. We choose to implement and evaluate two

etwork functions – namely, a stateless, ACL-based firewall and

LAN tagging network management – which follow a decision tree

imilar to the one in Fig. 2 (b). These two functions are imple-

ented in a similar way, and rely on a “SplitBox Byte” (SByte), as

hown in Fig. 7 . The purpose of SByte is to “mark” a packet, e.g.,

arking a packet for blocking (in the case of a firewall). SByte is

sed in the Processor element marking the packet from 0 to

55. Each value corresponds to an action function configured by C
sing Algorithm 5 . In the Client element, this algorithm config-

res up to | M | ClickOS out-going pipes with various actions. For the

rewall, one of these pipes corresponds to the blocking action, and

mplements ClickOS’s discard() action, whereas, in the VLAN

etting, each pipe encapsulates the packet in an Ethernet frame

ith the VLAN ID corresponding to the SByte number. 

Entry. The Entry element is responsible for the Split
acket algorithm. It follows the processing model shown in

https://bitbucket.csiro.au/users/jou008/repos/splitbox-source/
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Fig. 6. The setup of three SplitBox elements: Entry , Processor , and Client . 
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ig. 6 , where each thread pulls packets from the Rx ring from

PDK, obfuscates m bytes from the original packets, and then

ends via the Tx ring the obfuscated packet to the Client and

he obfuscation part to the Processors . In these packets, as

hown in Fig. 7 , the Entry adds three fields at the beginning

f the payload: the sequence number, the origin number, and

he SByte. The sequence number identifies packets from each el-

ment during the merging (synchronization) algorithm and is in-

remented once per packet in the Entry . The origin number al-

ows the Client to identify the provenance of a packet with a

iven sequence number. We use 0, 1, and 2 to identify, respectively,

he Entry , Processor 0, and Processor 1. Finally, we add one

ore byte (SByte), and blind it in order to mark and perform any

ind of policies as explained above. Overall, during this process, an

ntry thread requests a read per packet from the shared structure

lind. 

Processor. The Processor element implements the B j MBs,

nd executes the Private Traversal , Compute Match , and

ompute Action algorithms. Similar to the Entry , each thread

n the Processor pulls packets from DPDK Rx ring, performs the

lgorithms in a Run-To-Completion configuration, and sends to the

lient a packet containing the sequence number, an updated ori-

in number, and the correct action and projection. The structure of

hese packets is illustrated in Fig. 7 . Note that H is implemented

sing OpenSSL’s SHA-1, aiming to achieve a compromise between

ecurity, digest length, and speed. While faster hashing functions
re available, they are not cryptographic hash functions, thus they

ight be invertible and/or lead to larger amount of collisions. On

he other hand, we do not want hash functions which have very

arge message digests (leading to overly large lookup tables), or

hich are more computationally expensive. Overall, this element

erforms a significant number of lookups in the shared data struc-

ures (Projection, Action, and Hashes from Table 1 ), however, mul-

iple hash computations per packet yield relatively low overhead,

s we show in Section 5 . 

Client. Finally, the Client element implements C, executing

he Merge Shares algorithm. This algorithm is based on a ring

uffer (Mer ge Ring in Table 1 ) shared among all threads on this

lement. In our C ++ prototype, this ring buffer is implemented as

 std:vector class of fixed size 1024. Each entry in this struc-

ure stores the packet from the Entry and the two Processor
lements. As shown in Fig. 6 , this corresponds to an update on the

hared structure, per packet, and, potentially, one push to DPDK

x ring when the three packets have been received. The other al-

orithms of C, used to configure the above three elements, are ex-

cuted outside the FastClick elements. 

. Performance evaluation 

We now discuss maximum achievable throughput of our pro-

otype while maintaining a packet loss rate inferior to 0.1%

PLR < 0.1%) and the associated latency per packet as a function of
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traversed rules. Note that a PLR of less than 0.1% is merely used

as a benchmark for an acceptable limit of packet loss. This is well

below what is normally considered a problematic packet loss rate.

In all experiments, we present aggregated results from both VLAN

and firewall network functions. Overall, based on a thorough anal-

ysis, we show that SplitBox’s cryptographic layer does not signifi-

cantly affect overall performance as opposed to shared-data struc-

tures look-ups. 

5.1. Experimental setup 

Experiments were performed using a lab testbed of four iden-

tically configured commodity servers (Dell PowerEdge R210s), re-

spectively for one Entry , two Processors , and one Client
elements. Each server is equipped with a quad-core Intel X3430

2.4GHz CPU and 16GB of RAM, as well as a dual-port Intel X710

NIC controlled by Intel DPDK for packet transmission between the

elements (in addition to a separate Linux-controlled NIC for man-

agement access). The servers run Ubuntu 16.04.1 LTS with Linux

kernel 4.4.0-57, and Intel DPDK version 2.2.0. We used a topology

similar to that depicted in Fig. 1 , with two Cloud B middleboxes

running as Processor elements. To generate test traffic, we used

a Spirent TestCenter chassis equipped with a 2-port Hyperme-

trics CV 10G SFP+ module, running firmware version 4.24.1026.

The Spirent generator acts as both traffic source and sink, allow-

ing us to measure performance metrics very accurately, including

throughput, loss, and latency for multiple concurrent flows, while

generating traffic up to 10Gbps. 

In all our tests, we set both our system and the baseline IP fil-

ter to always store 10 0 0 possible rules and matches. We configured

the Spirent traffic generator to create various types of traffic in or-

der to stress-test the network functions. In particular, we consid-

ered two traffic flow distributions emulating both a worst-case sce-

nario and a more realistic type of load. With the former, we gen-

erated uniformly distributed traffic where each flow accounts for

the same amount of traffic, and matches a single rule in the VLAN

tagging or the firewall scenarios. For instance, when considering

10 rules, we generated 10 different flows, each of them accounting

for 10% of the total traffic. With the latter, each flow accounts for

a different portion of the total traffic, following a Zipf distribution,

since prior work has shown that, in a production firewall/network

management infrastructure, only a few rules get matched most of

the time [25] . 

5.2. Throughput and delay 

Our first experiment aimed to explore how packet size affects

overall performance of SplitBox. Fig. 8 shows performance in terms

of maximum achievable throughput, as well as packets per sec-

ond, as a function of packet size and number of traversed rules.

In this experiment, we configure SplitBox to perform VLAN tagging

on 5, 10, and 20 different flows using the uniform distribution.

Overall, we observe that SplitBox can handle a constant number

of packets/s, regardless of the packet size, which is crucial vis-à-vis

our requirement to handle generic network functions. The num-

ber of packets per second degrades when the number of traversed

rules is larger than 10, following the same proportion for all packet

sizes. This implies that our system bottleneck does not reside, at

10 Gbit/s, in the packet-handling function. 

In order to further analyze the scalability of SplitBox, we stud-

ied the maximum achievable throughput as a function of the num-

ber of rules traversed. Fig. 9 shows it, using packets of size 1500

bytes, vis-à-vis uniform and Zipf distribution (as explained above)

and the ClickOS IPFilter elements. (Note that this element also

uses Intel DPDK with FastClick.) Overall, as expected, the ClickOS

element maintains line rate regardless of the number of rules. On
he other hand, however, we observe that, with the uniform dis-

ribution, the line rate is achieved for rules between 2 and 15,

he throughput starts to decrease quasi-linearly with the number

f rules. The Zipf distribution behaves in a similar way, with the

hroughput decreasing with more rules following a similar pat-

ern. However, in this case SplitBox is capable to sustain acceptable

hroughput (i.e. more than 8 Gbit/s) for up to 100 traversed rules. 

In Fig. 9 , we have identified the point in which SplitBox’s

hroughput starts decreasing, leading to packet loss at very high

peed. To further understand this issue, we measure the average

nd minimum latency when varying the number of traversed rules

etween 5 and 500, for both uniform and Zipf distributions – see

ig. 10 . We observe that the average latency increases with the

umber of rules, reaching a plateau for both distributions that cor-

esponds to the time before we start losing packets either in (i)

he synchronization ring buffer as an entry would be overwritten,

r (ii) the Intel DPDK ring buffer on the Processor . This sug-

ests that SplitBox’s bottleneck either stems from numerous hash

unction evaluations, or potential cache misses in the shared data

tructure of the Processor , or both. 

In order to check if the hash function is contributing signifi-

antly to the latency, we present, in Fig. 11 , the average latency

bserved by each flow when increasing the number of rules from

 to 15 in the uniform distribution scenario. Fig. 11 shows that, on

verage, latency observed in all the flows is identical and mono-

onically increasing with the number of rules. This indicates that,
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Table 2 

Efficiency of Processor ’s shared structure cache. 

5 traversed 10 traversed 20 traversed 50 traversed 

rules rules rules rules 

Hashes hits 648 611 425 358 

Action hits 58 69 54 95 

Hashes misses 48 (6.9%) 54 (8.1%) 52 (10.9%) 49 (12%) 

Action misses 0 0 0 0 
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ith a relatively small number of rules, hash function evalua-

ions in Processors does not significantly impact latency . In-

eed, if hashing contributed significantly to the latency, in Fig. 11 ,

e would observe a difference in latency between the 2 rules and

5 rules setup, since the latter calls the hash function 14 more

imes for the flow number 15 compare to flow number 1. 

We then turn to check whether cache access and potential

ache misses are the reasons for the bottleneck in SplitBox. In

ig. 12 , we plot the number of hardware (RAM) cache references

nd misses observed per thread and per second in Processors . 4 
his coarse-grained plot presents both Intel DPDK cache references

nd our element cache references, highlighting that the number of

emory references initially yields a linear increase in the number

f rules for both flow distributions. The difference between the two

urves can be explained as, in the Zipf distribution, the first rule is

ore likely to be matched and thus we do not reference, as much

s in the uniform distribution, the Hashes structure (lookup table)

rom Table 1 since we are exiting the search loop after one itera-

ion. 

In Table 2 , we present a sample of number of cache hits and

isses for the Processor shared structures. We observe that,

hile the number of packets per second is more than halved going
4 Cache references and misses in Entry and Client are proportional to the 

umber of packets per second, thus, we omit them. 

t  

i  

t  

t  
rom 5 to 50 traversed rules, the percentage of cache misses in-

reases from 6.9% to more than 12%. This increase in cache misses

s explained by the size of the Hashes structure that is, as shown

n Table 1 , proportional to both the number of blinds and number

f rules. 

From these results we conclude that the performance bottle-

eck in SplitBox is mainly due to cache misses as the number of

ules increases. We discuss different strategies to overcome this

nd other limitations and avenues for further performance opti-

ization in SplitBox in the next section. 

. Discussion 

Hardware limitations. As discussed earlier, our SplitBox pro-

otype achieves near line rate throughputs under realistic loads.

erformance starts decreasing when the number of traversed rules

s larger than 50 for both VLAN tagging and the firewall scenar-

os, mainly due to the shared data structures management in the

rocessor element. We now discuss a few possible strategies to

mprove it. First, we observe that, since we do not perform any

pdate on the data structures, increasing the number of cores and

he amount of local core memory would have a significant impact

n performances. Also, our experiments are run on relatively out-

ated CPUs – namely, Intel X3430, launched in late 2009 – with

imited cache size (8MB shared cache size). Therefore, upgrading

ur testbed to state-of-the-art cloud technologies should result in

aintaining line rate throughputs for larger number of traversed

ules and/or smaller packets. 

Next, better spatial locality of caching would also improve per-

ormance. Indeed, the number of blinds affects the size of all

hared structures, and it is given to all elements as a function

f the sequence number. To reduce this redundancy, one can ex-

end the current Intel DPDK hashing function – Receive Side Scal-

ng (RSS) – to always send the packet with the same blind number

o the same core, thus reducing the size of all data structures by

he number of cores. Unfortunately, this is not supported in the
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current version of the Intel DPDK framework since RSS does not

give access to UDP payloads. 

Increasing cloud MBs ( B(t) ). Increasing the number of cloud

MBs in B(t) , i.e., increasing t , naturally strengthens the security

of SplitBox. On the other hand, increasing t has an adverse im-

pact on the packet loss ratio (PLR) to maintain a given level of

throughput. The main performance bottleneck in terms of through-

put at each MB in B(t) is table lookup. As shown previously, if

the packet arrival rate is higher than table lookup speed, the re-

ceiving packet ring fills up quickly inducing end-to-end delay and

driving the overall packet loss rate in the system. Indeed, in our

performance evaluation we have considered the maximum achiev-

able throughput while maintaining an overall successful delivery

rate greater than 99.9%, i.e., PLR < 0.1%. Let ρ be the probability of

packet loss at a cloud MB B for a given throughput and number

of traversed rules. Let Pr [ no loss ] be the probability of not losing

any packets from all the B’s. Then, since the probabilities ρ are in-

dependent, we get Pr [ no loss ] = ρt . Thus, increasing the number of

cloud MBs will result in proportional packet loss. This represents a

tradeoff between increased security and reliability. 

Real World Implications. Our experiments are conducted by

simulating the execution environment of the real world in which

the MBs (entry, cloud and client MBs) all reside on different com-

pute nodes (hence the use of four commodity servers). Thus, the

environment faithfully simulates execution in a real cloud environ-

ment, except for perhaps the additional latency expected in a set-

ting where the compute nodes are relatively highly remote. How-

ever, note that this would also have a proportional performance

impact in the traditional NFV setting (where no security is pro-

vided against an honest-but-curious adversary). As long as the la-

tency between clouds A and B is reasonable, the overhead in a real

setting beyond the results of our experiments would be minimal.

Nevertheless, as we discuss in Section 8 , in the future, we plan to

test SplitBox in a more real-world cloud environment. 

Removing lookup tables. We note that performance does not

depend on the number of traversed rules per se, i.e., the number

of different matching functions evaluated, but on the number of

different match projections of these matching functions. For many

middleboxes, the number of different match projections might be

limited. With this observation, SplitBox could be substantially op-

timized. A special case of this is when there is a single match pro-

jection, e.g., a network function whose policies span the whole IP

5-tuple. In this case, we do not need any lookup tables! Omitting

details, this is achieved by A only sending the hash of the rele-

vant packet content to the B’s, and each B j doing a string match

in the hashed domain to detect any matches. This can be modi-

fied slightly to provide indistinguishability of packet contents (cf.

Section 3.3 ), without compromising efficiency. 

Stateful network functions. A stateful network function is a

function that processes packets based on its current state. The state

itself can be modeled as dynamic policies that are generated and

deleted as packets flow. An example is that of a stateful firewall,

that keeps the state of a current TCP/IP connection. We discussed

before that states in our network function model can be handled

by simply adding policies (policy tree) on top of the network tree.

These can then be removed once the state is deleted. However, to

implement this in SplitBox, we require C to send l new hashes to

each party in B(t) , one for each blind s i , and requiring them to

update their lookup tables. While this is one solution, it is not op-

timal in terms of communication complexity. A somewhat differ-

ent solution is to require C to maintain the state table at its end.

This means that while the static policies are kept at the cloud, any

dynamically generated state is maintained by C. Notice that prior

approaches [16] have also used this solution to maintain state ta-

bles. In either case, our solution is generic enough to handle state

tables. It remains an open problem to handle the case where the
loud dynamically generates and maintains states without knowing

he contents of the state and without involving any communication

ith C, except may be at the setup. 

Chaining. SplitBox does not straightforwardly allow network

unction chaining, if the next network function requires the packet

odified by the previous network function as its input. This is

ecause the parties B(t) only possess shares of the action, from

hich the modified packet can only be constructed by receiving

he original packet and all shares. Obviously, for privacy reasons,

his is done by C in our scheme. However, network function chain-

ng can be done if we then let C forward the modified packet to

arty A of the next network function. In this way, the traffic loops

hrough the client MB A until the last of the network functions has

een applied. 

. Related work 

The first work to study privacy-preserving network functions

utsourcing is, to the best of our knowledge, by Khakpour and Liu

12] , who propose a scheme based on Bloom Filters (BFs) to pri-

ately outsource firewalling. Besides only considering one use case

that of a firewall), their solution is not provably secure as BFs are

ot one-way . Shi et al. [13] focus on the same problem, using CLT

ultilinear maps [26] , which were however shown to be insecure

27] . Also note that both [12] and [13] do not consider network

unctions that modify packet contents, whereas, we aim to cover

 broader range of network functions including but not limited to

rewalls. Jagadeesan et al. [28] introduce a secure multi-controller

rchitecture for SDNs based on secure multiparty computation,

hich could be employed for NFV. They focus on identifying heavy

itters in a network consisting of two controllers, however, it takes

ore than 13 min to execute with 4096 flow table entries. Melis

t al. [15] investigate the feasibility of provably-secure private NFV

or generic network functions: They introduce two constructions

ased on fully homomorphic encryption and public-key encryption

ith keyword search (PEKS) [29] , but with high overhead (e.g., it

akes at least 250ms in their experiments to process 10 firewall

ules), which makes it unfeasible for real-world deployment. Re-

ent proposals [30,31] also rely on homomorphic encryption for

rivately outsourcing, respectively, firewall policies [31] and image

ranscoding [31] , again achieving poor performances due to the ex-

ensive cryptographic primitives they employ. Somewhat related

ut limited solutions to private NFV rely on auditing [32] and ver-

fication of correctness [33] of outsourced functions. 

Yuan et al. [34] support deep packet inspection over encrypted

raffic, so that inspection rules or the payloads are not disclosed,

elying on an encrypted rule filter and on secret sharing to en-

ble secure inspection on the rules. They evaluate their solution on

n Amazon Web Service instance with 500 concurrent connections

nd achieve a throughput of up to 3.6K packets/s per connection.

ote that the system only considers general actions that do not

odify the content of the packets. 

Asghar et al. [1] introduce the main idea behind SplitBox, pre-

enting a brief evaluation of a proof-of-concept implementation

sing a simple firewall as a test case. They achieve an average

Gbps throughput, with 1kB packets while traversing up to 60 fire-

all rules. Compared to [1] , this paper presents a full-blown proto-

ype implementation of SplitBox and a thorough system evaluation

n commodity hardware using a Spirent traffic generator to create

arious types of traffic in order to stress-test the network func-

ions. The experimental evaluation is done vis-à-vis two applica-

ions, namely, firewall and VLAN tagging, considering an uniformly

istributed traffic flow distribution, which emulates the worst case

cenario, as well as a Zipf distribution resembling a more realistic

roduction firewall [25] . Overall, our prototype achieves the same

hroughput of the non-private solution with 9.4Gbps and 1.5kB
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Table 3 

Comparison of existing private NFV solutions. 

Stateful Thin Line VM Standard 

Client Rate Isolation Hardware 

Melis et al. [15] � × × × � 

Blindbox [17] � × � × � 

SICS [36] � × � × � 

Embark [16] � × � × � 

SplitBox (our solution) � � � × � 

Safebricks [37] � � � � ×
LightBox [38] � � � � ×

c  

a  

t  

t  

l  

i  

i

 

o  

t  

s  

M  

l  

l  

w

8

 

B  

v  

w  

s  

o  

e  

t  

f  

t  

s  

f

 

m  

m  

m  

W  

a  

c  

o  

m  

t  

i

D

S

 

f

R

 

 

ackets when up to 10 rules are fired, and a decrease in perfor-

ance by up to 5% for 50 rules. We also demonstrate that the

atency introduced by SplitBox’s prototype implementation, with

arge rule sets, is not due to the cryptographic layer, but to the data

tructures in the Processor element provided by the FastClick

ramework. 

Blindbox [17] considers a setting in which a sender (S) and a

eceiver (R) communicate via HTTPS through a middlebox (MB)

hich has a set of rules for packet inspection that only it knows.

he MB cannot decrypt traffic between S and R, while S and R

o not learn the rules. Authors achieve 166Mbps throughput, how-

ver, the connection setup requires around 1.5 min, thus suggest-

ng that BlindBox may not be practical for applications with short-

ived connections. It also operates in a different setting than ours,

here R sets and knows the rules (policies), while S and MB do

ot. Moreover, Blindbox only considers middlebox actions limited

o drop, allow or report to network administrator, without defin-

ng action as modifying packet contents (e.g., for a NAT), while we

o support modifying packet contents too. Recently, Canard et al.

35] introduces an extension of Blindbox [17] based on public-key

ncryption, which suffers from the same limitations of the original

cheme. 

Embark [16] allows a cloud provider to support middlebox out-

ourcing, such as firewalls and NATs, while maintaining confiden-

iality of an enterprise’s network packets and policies. It employs

he same architecture as APLOMB [5] , where the middlebox func-

ionalities (e.g. firewall) are outsourced without greatly damaging

hroughput, but traffic going through the service provider (SP) is

ncrypted in order to protect privacy. Embark relies on symmetric-

ey encryption and introduces a novel scheme, PrefixMatch, used

o encrypt a set of rules for a middlebox type. The encrypted rules

re generated by the enterprise(s) and then provided to the SP at

etup time. The other scheme used in Embark is KeywordMatch

dopted from [17] . Both the KeywordMatch and PrefixMatch meth-

ds require the client gateway to effectively insert the “encrypted”

atch for the cloud which in SplitBox is outsourced to the cloud

Bs in B(t) . The cloud middleboxes at SP then process the en-

rypted traffic against the encrypted rules, and send back the pro-

uced encrypted traffic to the enterprise, which performs the de-

ryption. Thus, Embark does not satisfy our requirement of a thin

lient. Furthermore, Embark loops the traffic through the client

hich receives the traffic, encrypts it, sends to the cloud, who pro-

esses it (in the encrypted domain), and sends the modifications

o the client, which then decrypts the packet. Providing privacy for

uch a system model is easier than the model considered in this

aper, in which the traffic goes straight to the cloud. More specif-

cally, since the client already knows the rules, it can effectively

ompute part of the matching functionality before sending the en-

rypted packet to the cloud. Another advantage of our scheme over

mbark is that we provide a formal proof of security. 

SICS [36] enables secure service function chain outsourcing. It

xtends APLOMB to support private processing of traffic through a

equence (chain) of middleboxes. Similar to Embark, SICS relies on

ES encryption. However, actions applied to the packets are de-

ermined by labels attached to the packets. These labels are at-

ached by the gateway (similar to our client MB), which also en-

rypts the packet header. Thus, once the encrypted packet along

ith the assigned label is sent to the cloud, the cloud MB readily

nows which action to apply based on the label received. 

Overall, our work differs from Embark [16] and SICS [36] as

e allow complex actions to be performed on the packet directly

ithout involving the client MB to aid the cloud MB. Thus, the

raffic in our setting enters directly into the outsourced network

unction without looping through the client. 

Finally, a parallel stream of work on secure network function

utsourcing is the use of trusted computing environments in the
loud. This includes Safebricks [37] and LightBox [38] to name

 few. As discussed in Section 1 , this approach, which assumes

hat an adversary does not have access to the code or data in

he protected “enclave” (trusted computing environment), is simi-

ar to ensuring VM isolation for secure network function outsourc-

ng. Hence, it is orthogonal to the approach taken in this paper as

t requires specialised hardware. 

We present in Table 3 a summary of the comparison between

ur work and state-of-the-art privacy-preserving and secure NFV

echniques. The comparison is based on whether the private NFV

olution handles stateful network functions, the degree of client

B’s involvement in real-time processing (thin client), achieving

ine rate, whether the solution is based on virtual machine iso-

ation (as opposed to a cryptographic solution), or if the solution

orks with standard commodity servers (standard hardware). 

. Conclusion 

This paper presented the design and implementation of Split-

ox, a scalable system that allows a cloud service provider to pri-

ately compute network functions on behalf of a client, in such a

ay that the cloud does not learn the network policies. It provides

trong security guarantees in the honest-but-curious model, based

n cryptographic secret sharing. We performed a thorough system

valuation on commodity hardware, and created various types of

raffic in order to stress-test firewall and VLAN tagging as network

unctions. Our evaluation shows that SplitBox achieves the same

hroughput of the non-private solution with 9.4Gbps and 1.5kB-

ized packets when up to 10 rules are fired, and a decrease in per-

ormance limited to 5% (i.e., 8.9Gbps) with 50 rules. 

In future work, we intend to deploy and evaluate SplitBox on

ore powerful, cloud-grade hardware, rather than on our com-

odity servers, re-evaluating its bottlenecks when operating on

iddleboxes equipped with more cores, cache, and/or memory.

e also expect to improve performance by means of better man-

gement of shared data structures and better spatial locality of

aching. Finally, we plan to extend SplitBox for: (i) Full support

f stateful network functions, (ii) function chaining, which at the

oment could be done if we replace the client MB C with the en-

ry MB A of another cloud, and (iii) handling network functions

nvolving actions overwriting previous actions. 

eclaration of Competing Interest 

None 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.comnet.2019.106893 . 
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