

World-class astronomy in the Australian outback

Inyarrimanha Ilgari Bundara, the CSIRO Murchison Radio-astronomy Observatory

Welcome to Inyarrimanha Ilgari Bundara, the CSIRO Murchison Radio-astronomy Observatory in the heart of Wajarri Country in Western Australia – one of the best locations in the world for radio astronomy.

The observatory currently hosts three world-class radio instruments: the ASKAP radio telescope, the Murchison Widefield Array (MWA), and the Experiment to Detect the Global EoR Signature (EDGES). It is also the site where the international SKA Observatory (SKAO) is building the SKA-Low telescope – Australia's first mega-science facility. These instruments are providing a new window into the mysteries of the Universe, which will be further realised when the SKA-Low telescope comes online later this decade.

Radio telescopes are powerful instruments designed to detect the faintest radio signals from objects across the Universe. This ability makes them particularly sensitive to radio interference caused by transmitters, such as mobile phones, broadcast towers and even electrical equipment.

The Murchison is one of the best places on Earth for radio astronomy – a large area with a small population, remote so that it has comparably little radio interference, and its location in the Southern Hemisphere meaning a clear view into the centre of the galaxy. And, while the telescopes are at the frontier of technology, they come with a low impact on the land.

Aboriginal Australians are Australia's first astronomers and share a long-standing knowledge of the sky. An Indigenous Land Use Agreement (ILUA) has been negotiated with the Wajarri Yamaji, the Traditional Owners and Native Title Holders of the land on which the observatory sits.

We are grateful to the Wajarri Yamaji for partnering with us in establishing the observatory on Country and for the support they have shown as we work together towards furthering astronomical knowledge from their ancient lands.

Wajarri representatives Russell Simpson and Valerie Jones sign the ILUA at a community meeting. Credit: Wajarri Yamaji Aboriginal Corporation (WYAC)

Visiting the observatory

The Australian and Western Australian governments established a radio quiet zone centred on the observatory. It protects this unique radio astronomy site by ensuring radio frequency emissions are managed and the radio telescopes can observe the sky with limited interference.

When visiting the observatory remember we are a working scientific site, with a rich heritage and remote location, as well as host to the construction of a mega-science project.

That means that

- all electronic devices (including smart watches and fitness trackers) must be switched off, or in flight mode with bluetooth and wifi switched off
- cameras can only be used with permission including from phones
- everything must be left as you found it do not collect any rocks, plant life or soil
- the environment contains hazards consider your personal safety and ensure you keep hydrated and sun safe, keep with the group and don't wander outside designated areas
- you may encounter animals on site do not interact with the local wildlife for your, and their, protection.

Inyarrimanha ilgari bundara - sharing the sky and stars

Aboriginal people have lived in Australia for tens of thousands of years. The Wajarri Yamaji have lived in the Murchison region of Western Australia for much of this time.

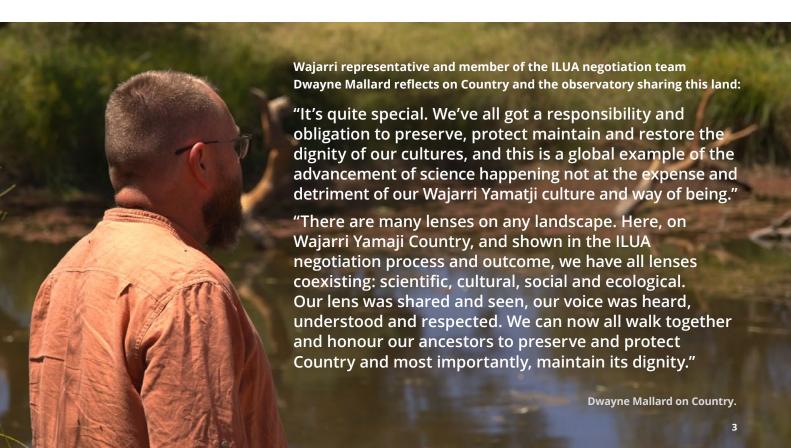
The Wajarri Yamaji, as Traditional Owners and Native Title Holders of the land on which the observatory sits, partner with the Australian Government and CSIRO through an Indigenous Land Use Agreement (ILUA).

The ILUA ensures the preservation of Wajarri cultural heritage during construction of SKA-Low and operation of the telescopes on site, as well as delivering multi-generational benefits to the Wajarri Yamaji community.

Negotiated over many years, the ILUA follows the principles of free, prior and informed consent as set out in the UN Declaration for the Rights of Indigenous Peoples, ensuring genuine inclusion and respect for Wajarri Yamaji knowledge and decision-making processes.

Heritage is not simply about sites and objects, but all that is passed down from one generation to the next through oral tradition, including language, stories, places of significance, history, belief and memories. It's what connects the past with the present, and continues to have relevance into the future.

The Wajarri Yamaji have a strong connection to Country, both the land, water and sky, and value the Sun, Moon


and stars for information and seasonal survival, as well as for the keeping of culture and stories.

The hot, dry Murchison landscape features rivers, creek beds and water holes – home to unique plants and animals. Wajarri people frequent Country and spend time hunting and collecting traditional foods and medicines, as well as visiting sites of significance in the area. Several communities have developed on Wajarri Country, including the closest community to the observatory, Pia Wadjarri.

The Wajarri language is still spoken across Wajarri communities with many words in use at the observatory, including names for the MWA radio telescope, each antenna of the ASKAP radio telescope and the SKA-Low construction village.

As part of the 2022 ILUA the expanded observatory received a Wajarri traditional name, Inyarrimanha Ilgari Bundara, meaning 'sharing the sky and stars' in the Wajarri language. The dual name used for the observatory, like the other Wajarri names on site, reflects and celebrates our partnership with the Wajarri community. We look forward to continuing work with the Wajarri to reflect their culture and language, including names for SKA-Low telescope buildings and components and more broadly across the observatory.

We acknowledge the Wajarri Yamaji as Traditional Owners and Native Title Holders of the observatory site.

Ancient land under brilliant skies

While the radio astronomy observatory on Wajarri Country is relatively new, the land it resides on is not. Nearby Mt Narryer has some of the oldest rocks on Earth, estimated to be 3.6 billion years old. The Murchison landscape contains minerals hundreds of millions of years older than the rocks they're within. These minerals will have formed before the Earth's crust and remain unchanged ever since.

The observatory as we know it today occupies the 4,300 square kilometres that make up the historic Boolardy and Kalli stations. One of the oldest and largest pastoral stations in Western Australia, Boolardy was primarily used for wool production until it transitioned to cattle in the 1980s. Since it became host to radio astronomy the station has gradually been de-stocked, with no current pastoral activity.

The observatory was first established in 2009, both for Australian radio astronomy and as part of the Australian bid to host the SKA telescope.

The original observatory site hosts ASKAP and MWA, which are world-class telescopes in their own right as well

as SKA telescope precursors – providing technological, design and operations guidance for the SKA telescopes.

The Wajarri Yamaji, as Traditional Owners and Native Title Holders of the land, partnered with CSIRO and the Australian and Western Australian governments to bid for hosting the SKA telescopes, joining international delegations to showcase Australia as a potential host for the SKA project.

In 2012 it was announced that Australia's bid was successful, alongside South Africa, and that Australia would host one of the two SKA telescopes, SKA-Low.

The successful bid needed an expanded observatory site, and in 2022 a new ILUA was signed enabling expansion of the site and construction of the SKA-Low telescope at Inyarrimanha Ilgari Bundara, the CSIRO Murchison Radio-astronomy Observatory.

In 2025 neighbouring Kalli Station was added to the observatory footprint, and is now transitioning from pastoral activities to radio astronomy.

radio quietness

in the Murchison.

The WA Government

creates the first radio

quiet protections for the Murchison region. is signed with the Wajarri

Yamaji, officially

establishing the

observatory.

Radio astronomy in the Murchison

Early 1990s Development of the SKA telescope concept begins globally. 2007 Boolardy Station is chosen as the location for the observatory. 1990 2000 1996 Investigations start Pirst testing for Investigations start 2007 Boolardy Station is chosen as the location for the observatory. 2009 The first ILUA

for potential SKA

telescope sites

in Australia.

2012

The SKA telescope sites are decided – SKA-Low in Australia and SKA-Mid in South Africa.

The ASKAP radio telescope opening ceremony.

2016

Pastoral activities end at Boolardy Station, accelerating the observatory land's regeneration.

2020

ASKAP's first all-sky survey, RACS, is completed.

2022

A new ILUA with the Wajarri Yamaji is signed, expanding the observatory.

SKA-Low telescope construction begins.

2024

SKA-Low antennas begin installation. First combined signals from SKA-Low.

2010

2013

The MWA telescope is operational.

2017

The first test array for the SKA-Low telescope starts observing.

2021

The SKAO is established.

Australia signs the Host Country Agreement for the SKA-Low telescope with the SKAO.

2020

2023

Infrastructure preparation – including optical fibre, power cables and mesh – begins for the SKA-Low telescope on site.

2025

First image from an early working version of SKA-Low.

Kalli Station is added to the observatory footprint.

SKA-Low telescope

The SKA-Low telescope is part of the SKAO – a global scientific facility that will deliver half a century of transformational science, revolutionising our understanding of the Universe and delivering benefits to society through global collaboration and innovation.

The SKA-Low telescope will be made up of 131,072 two-metre-tall antennas, spanning out from a central core along three spiral arms that stretch 74 km end-to-end. SKA-Low will detect radio signals from the Universe in the frequency range of 50–350 MHz, similar to FM radio stations or TV signals.

In Australia, the SKAO is collaborating with CSIRO to build and operate the SKA-Low telescope. Institutions in Australia, China, India, Italy, Malta, the Netherlands and the UK contributed to the design of SKA-Low, and its components will be manufactured all over the world.

skao.int

SKA-Low: revealing the Universe's faintest details

Resolution: making the cosmos clearer

Both SKA telescopes can achieve higher resolution than a single large telescope, thanks to the large separation between the farthest antennas. High resolution translates into sharper images which reveal much finer detail.

Sensitivity: shining a light on the distant Universe

In radio astronomy, the sensitivity of a telescope depends on the collecting area available to capture signals from space. SKA-Low provides 400,000m² of collecting area, so it can detect very faint radio signals and combine and enhance them in a way never before possible.

Survey speed

SKA-Low uses a technique called beamforming to digitally point the telescope anywhere in the sky by combining signals from some or all of the antennas in the array. The SKA-Low telescope has a huge field of view, allowing the telescope to survey more of the sky at much faster speeds than other telescopes.

SKAO: a global collaboration revealing our Universe

The SKAO is an intergovernmental organisation whose mission is to build and operate cutting-edge radio telescopes on behalf of its member states and partners.

The SKAO has a global footprint, bringing together members from across five continents. The SKA telescopes – the SKA-Low telescope being built on Wajarri Country in Western Australia and the SKA-Mid telescope being built in the Karoo in South Africa – together with the SKAO's global headquarters in the UK, will form the largest and most capable radio astronomy observatory in the world.

Constructing and operating SKA-Low and SKA-Mid will position the SKAO as the leading research infrastructure for radio astronomy globally, providing science capabilities to the international astronomical community for decades to come.

The SKA telescopes are underpinned by the great scientific discoveries of the SKA precursor telescopes, including ASKAP and the MWA at the observatory here in Australia, and MeerKAT and HERA in South Africa, and SKA pathfinder instruments from across the globe.

SKA-Low field technicians working on antennas for the SKA-Low telescope.

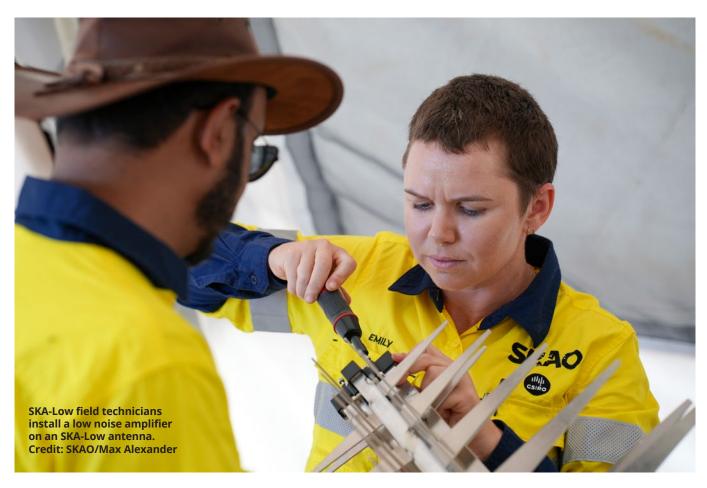
Building SKA-Low

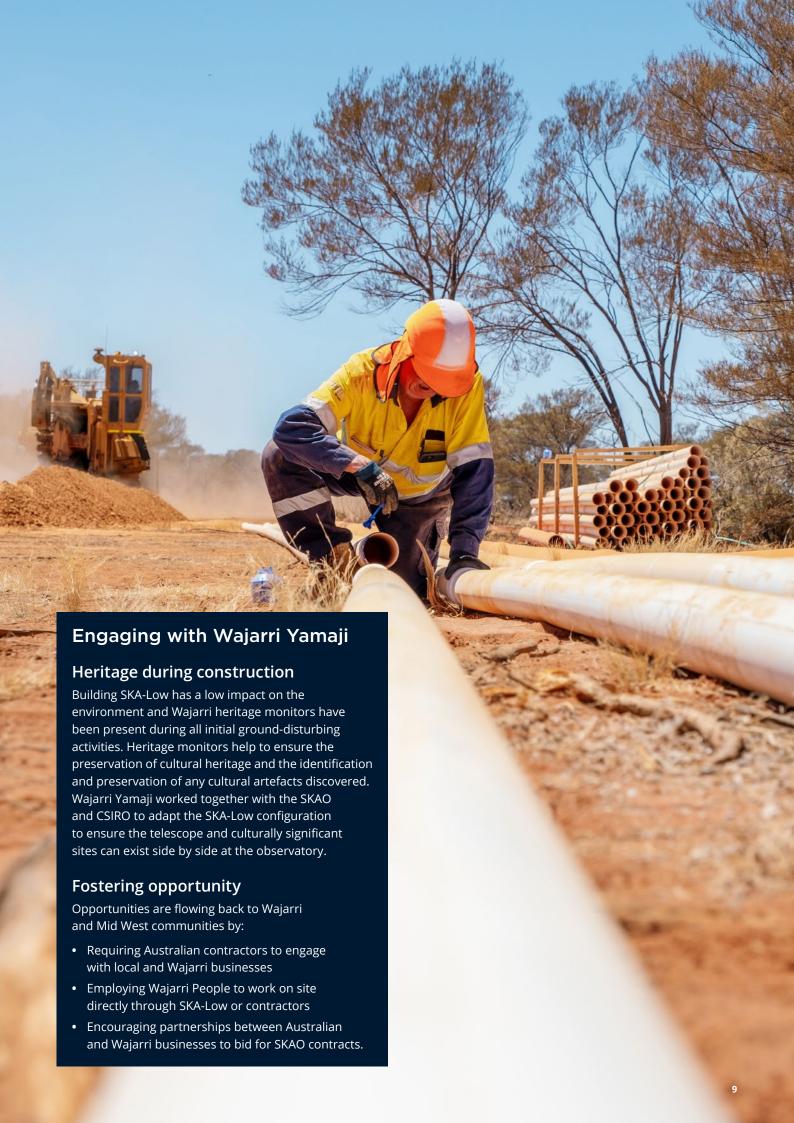
Since the SKAO marked the start of on-site construction in late 2022, SKA-Low has been gathering speed.

The first year of construction was dedicated to preparing the site. Hundreds of kilometres of roads, power and optical fibre connections were laid, preparing the site for critical infrastructure at the core and spiral arms. A 176-bed construction camp, gifted the Wajarri name Nyingari Ngurra, was built to provide accommodation to people working on site. A 1,200m airstrip has also been established for emergency access and evacuation at the SKA-Low site. A wastewater treatment plant and evaporation pond was established, reducing our environmental footprint.

March 2024 saw the first antenna built and installed for SKA-Low. Now more than 13,000 antennas have been installed across the site, with production continuing at pace.

Our central processing facility is under construction, where data collected from the telescope will be processed by on-site supercomputers more than 60,000 times faster than the average home broadband speed.


Remote processing facilities that receive signals from the SKA-Low's spiral arms have been installed and are already processing data. These facilities link directly to supercomputers more than 600km away at the Pawsey Supercomputing Research Centre in Perth.


Remarkably, in less than three years, we now have an operating early working version of the telescope capable of producing images of the sky. The first image from the first 1,024 antennas of SKA-Low was released in March 2025.

SKA-Low in numbers

(at September 2025)

- Assembled and installed 13,000 antennas
- Laid 56,000 sheets of steel mesh for antenna stations
- Installed 330 drums of power cable stretching 200km
- Installed and connected 660km of fibre optic cable

Revolutionising our understanding of the Universe

The SKAO's science goals are broad and ambitious, tackling some of the most fundamental scientific questions of our time.

The unprecedented flexibility and sensitivity of the SKA radio telescopes will allow astronomers to look back in time to the infant Universe, when the very first stars and galaxies began to shine.

SKA-Low will be unique in its ability to explore this period at large scales, mapping the structure of the infant Universe in exquisite detail and revealing information that has until now been unattainable. Its flexibility will enable discovery of the most energetic and explosive events across the cosmos.

The SKA telescopes will provide insights into the nature of dark matter, track gravitational waves, understand planet formation, and chart the behaviour of black holes in distant galaxies. They will be the most sensitive available radio telescope for detecting technosignatures – evidence of life beyond Earth.

They are part of a suite of next-generation facilities that will complement each other, including the James Webb Space Telescope, ALMA Observatory, Extremely Large Telescopes and more. These facilities will together advance human knowledge and unravel the most puzzling mysteries of the Universe.

SKA-Low's first glimpse of the Universe

An early working version of SKA-Low captured its first image in March 2025, using just 1024 of its planned 131,000 antennas. In an area of sky about 25 square degrees – equivalent to approximately 100 full Moons – we see around 85 of the regions' brightest known galaxies, each containing a supermassive black hole.

When SKA-Low is complete the same area of sky will reveal much more – scientists calculate the telescope will be sensitive enough to show up to 600,000 galaxies in the same frame.

Moonrise over SKA-Low. Credit: CSIRO/DISR/Alex Cherney and Tom Fowler

ASKAP radio telescope

CSIRO's latest radio telescope, ASKAP, is designed for fast, comprehensive and detailed surveys of the sky.

ASKAP is an official precursor instrument to the SKA telescopes.

ASKAP is part of the Australia Telescope National Facility, owned and operated by CSIRO. All of ASKAP's 36 antennas have been gifted a Wajarri name, selected by the Wajarri Yamaji to represent items of importance to Country, community and the telescope's construction.

Each ASKAP antenna is a 12m wide dish with an advanced phased array feed receiver. The receivers allow for a wider view of the Universe, making ASKAP one of the fastest survey telescopes in the world.

Fast surveys generate an enormous amount of data which means supercomputing is an essential part of the telescope. ASKAP sends 100 trillion bits of raw data every second from its outback location. At the Pawsey

CSIRO

Australia's National
Science Agency

csiro.au/askap

Supercomputing Research Centre in Perth the raw data is converted into maps of the sky that are used for astronomical research using custom CSIRO software.

One of the main science goals of ASKAP is to study the origins and evolution of galaxies, which are the building blocks of the Universe. Over the next five years, ASKAP will detect tens of millions of galaxies and reveal the cosmic environments in which they live. This will help us to understand the Universe as a dynamic place that has evolved over 13.7 billion years – all the way from the Big Bang to the state in which we find it today.

A new era for astronomy

Rapid survey telescopes bring astronomy into a new era of discovery. ASKAP's first all-sky survey discovered one million new galaxies and that was only the beginning.

Hundreds of astronomers from Australia and around the world have gathered into survey science teams with unique research goals that rely on ASKAP data. These include:

- mapping the velocity of cosmic gas clouds
- measuring the strength of magnetic fields in space
- understanding star formation throughout cosmic history
- discovering new phenomena throughout space (such as 'odd radio circles'), and
- studying the origins of transient and variable sources – intermittent signals from deep within our own or other galaxies.

ASKAP antenna | Wajarri names

Our ASKAP radio telescope has 36 antennas and each one has its own Wajarri name.

- 1 Biyarli | galah
- 2 Birliya | tree with edible gum
- 3 Bundara | star
- 4 Bimba | edible gum
- 5 Gagurla | bush pear
- 6 Wilara | moon
- 7 Irra barndi | good talk
- 8 Jirdilungu | milky way
- 9 Balayi | look out

- 10 Bardi | witchetty grub
- 11 Manggawarla | hat
- 12 Yalibirri | emu
- 13 Jabi | lizard
- 14 Gagu | crow
- 15 Birri-birri | butterfly
- 16 Jindi-jindi | willy wag tail
- 17 Marlu | kangaroo
- 18 Ilgarijirri | things belonging to the sky

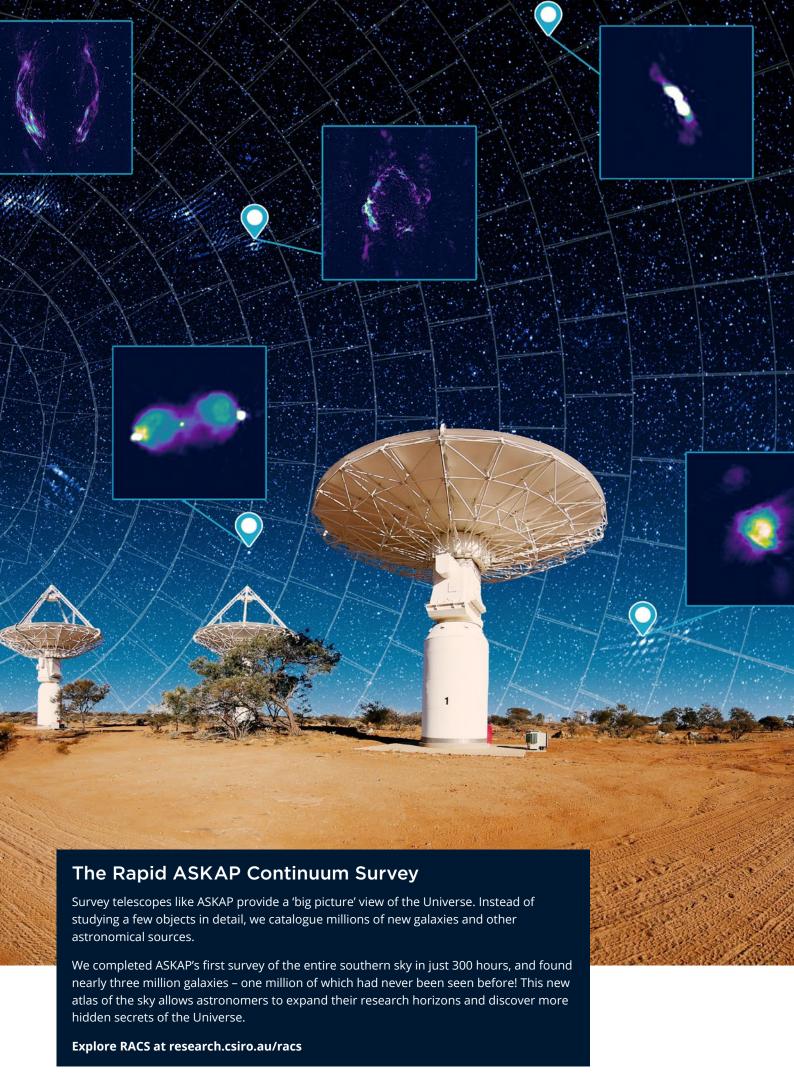
- 19 Biji-biji | caterpillar
- 20 Wana | women's hitting stick
- 21 Minda | shade
- 22 Nyingari | zebra finch bird
- 23 Nyambi | traditional dance
- 24 Janimaarnu | Chinese
- 25 Magumarra | Wajarri Elder
- 26 Yamaji nyarlu | woman
- 27 Yamaljinggu | Wajarri Elder

- 28 Yagu | mother
- 29 Diggiedumble | table top
- 30 Nyarluwarri | seven sisters
- 31 Mungal | morning
- 32 Woodrudda | hill in Yallalong
- 33 Budara | hill on Wooleen Station
- 34 Jinawirri | Wajarri Elder
- 35 Ngubanu | dingo
- 36 Birli | lightning

A new era of technology

As well as making new discoveries, telescopes like ASKAP push the boundaries of technology. Experience gained with ASKAP has guided the design and construction of the SKA telescopes. The receiver technology has been developed by CSIRO for other international observatories and has been further purposed into a new receiver for Murriyang, CSIRO's Parkes radio telescope.

But it's not just what is on the dishes that is pushing boundaries. ASKAP's torrent of survey data provides the motivation to develop a new generation of data processing methods which will be used when the SKA telescopes come online in the future.


Fast radio bursts

The first fast radio burst was detected in data collected using Murriyang, CSIRO's Parkes radio telescope. When ASKAP began operating, it was the best instrument in the world for finding them. Innovative use of the antennas' wide-field of view meant that more bursts could be discovered in one year than had been in the previous decade. While the origin of the bursts remain a mystery, they have been used to solve other long-standing questions like how matter is distributed across the Universe.

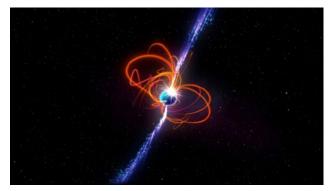
Wajarri artist Judith Anaru's *CRAFT*, 2019, is a depiction of a fast radio burst.

Murchison Widefield Array

The Murchison Widefield Array (MWA) is a radio telescope made of 8,192 spider-like metal antennas.

These antennas are arranged in regular grids known as 'tiles', which are spread over 30 square kilometres of the observatory. The MWA is an official precursor instrument to the SKA-Low telescope.

The MWA is tuned to receive radio frequencies between 70 and 300MHz, and is special for its very wide field of view, high angular resolution, nanosecond time resolution, and digital pointing agility. This makes the MWA invaluable for quickly mapping the sky and studying rare and faint events as they happen.


Since its launch in 2013, the MWA has collected tens of petabytes of data which are sent over dedicated fibre and the National Broadband Network to Perth. From there, the data are accessed and analysed by hundreds of researchers from around the world using the All-Sky Virtual Observatory.

mwatelescope.org

Research using the MWA is examining the Universe in more detail than previously possible at low frequencies. The MWA's five broad areas of investigation are:

- Early Universe cosmology searching for and studying the Epoch of Reionisation, the time when the first stars and galaxies began to light up the Universe approximately 13 billion years ago.
- The dynamic Universe high-sensitivity surveys of the dynamic radio sky, searching for short-timescale and highly variable phenomena.
- Galactic and extragalactic research studies of the Milky Way and distant galaxies.
- Solar, heliospheric and ionospheric studies investigating our Sun and its effect on near-Earth space weather, including applications such as improving early warnings of solar storms.
- Pulsars and fast transients studying flashes of radio light in more detail than ever before.

An artist's impression of the ultra-long period magnetar – a rare type of star with extremely strong magnetic fields that can produce powerful bursts of energy. Credit: ICRAR

Some of the scientific achievements made by MWA astronomers include:

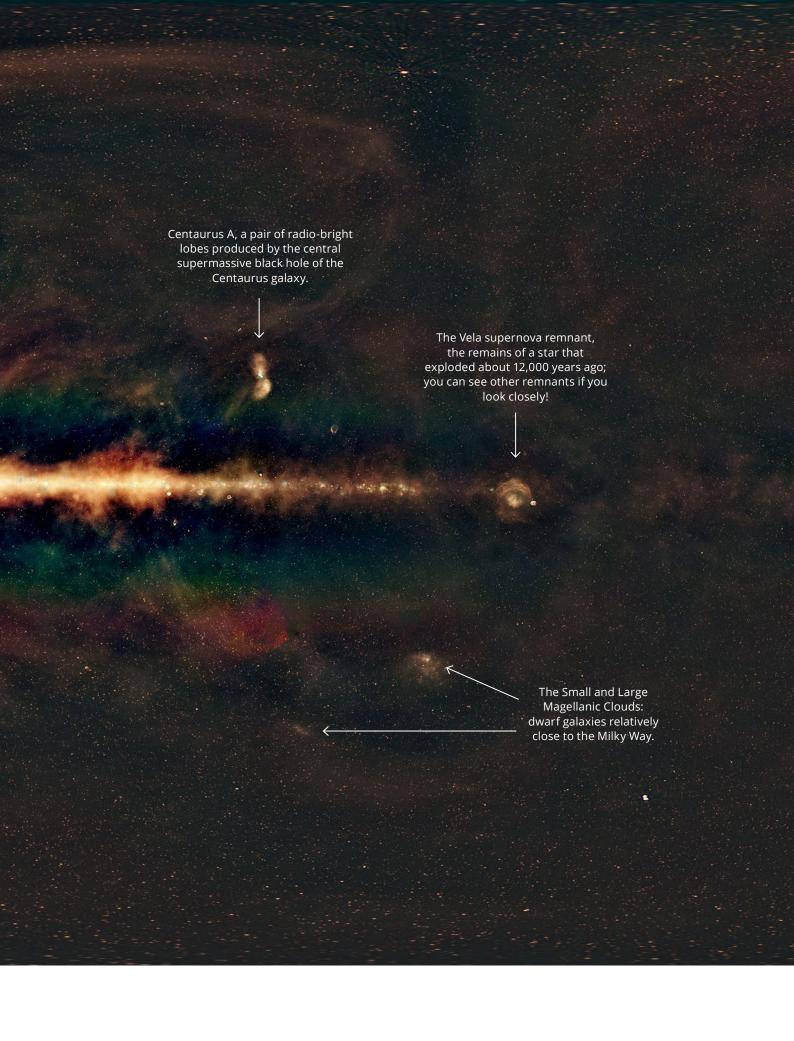
- detecting the largest known eruption in the Universe since the Big Bang
- solving the century-old coronal heating problem
- putting limits on the first-ever fast radio burst with a traceable origin
- the breakthrough discovery of plasma tube structures in the Earth's ionosphere
- involvement in the world's first detection of gravitational waves and radiation from a neutron star merger
- the creation of a catalogue of 300,000 galaxies and the first radio-colour panorama of the Universe in the Galactic and Extra-Galactic All-Sky MWA and Extended (GLEAM and GLEAM-X) surveys, and
- the discovery of new pulsars and an ultra-long period magnetar.

The MWA telescope and its science have been developed by engineers and astrophysicists from across the globe. Institutes in Australia, Canada, China, Japan, Switzerland and the United States currently form the MWA Collaboration, providing funding and critical hardware to the telescope.

The MWA project is led by Curtin University, and the telescope is maintained and remotely operated by a small team based at the Curtin Institute of Radio Astronomy. Funding for MWA operations is provided by the Australian Government via the National Collaborative Research Infrastructure Strategy (NCRIS), administered by Astronomy Australia Limited (AAL).

Engineering a telescope

MWA technology has been developed to withstand the challenges of the Murchison outback, including extreme temperatures, lightning storms, highly acidic soil, and curious fauna.


The MWA has grown in both size and capability over the years. The original prototype had 32 tiles (512 antennas) in 2011, which was expanded to 128 tiles (2048 antennas) in 2013. The next upgrade in 2016 added another 128 tiles, giving a total of 256 tiles (4096 antennas). These tiles were placed in specific patterns; two hexagonal groups close to the centre of the array, and the rest scattered far away. This doubled the resolution of the telescope and increased its sensitivity by a factor of 10, permitting the detection of finer structures and even fainter objects. In late 2021 the MWA received a significant upgrade with the replacement of its aging 'correlator', the computational engine that acts as the telescope's 'brain'.

This was followed by instrumentation upgrades through to 2025, with the deployment of a new fleet of digital receivers designed and built by the MWA Collaboration. These complement the existing receivers, and now allow observations with all 256 MWA antenna tiles. This upgrade, known as 'Phase III', means the MWA's maximum instantaneous sensitivity is doubled and its data output is quadrupled, providing a clearer and more expansive view of the universe.

Gurlgamarnu is the Wajarri name given to the MWA telescope, meaning 'the ear that listens to the sky'.

Credit: Dr Natasha Hurley-Walker (ICRAR/Curtin University) and the GLEAM Team.

Observatory impact

Facilities like the radio telescopes at the observatory site create impact beyond science.

Benefits at a local, national and global level are being delivered from the observatory and the instruments there, with impact across technology and innovation, education, society and the economy.

Australia has been a global leader in radio astronomy since the emergence of the field in the 1940s. The past decade has seen the Australian astronomical community grow substantially, with the number of graduates doubling. Much of this growth can be attributed to Australia's investment in the SKA project and the observatory site.

Technology and innovation

Landmark science facilities like those at the observatory have a strong track-record of facilitating the transfer of new technology into commercial outcomes.

ASKAP is designed as a survey telescope, with a very wide field-of-view enabled by 36 revolutionary receivers. The technology behind the phased array feed receiver has been replicated by CSIRO for other telescopes around the world.

Production of ASKAP's receivers required large volumes of complex electronics boards to be manufactured to a high level of accuracy. CSIRO worked with an Australian high-reliability electronic assembly service provider to jointly develop and produce 20,000 sophisticated electronic components required for ASKAP's digital systems. This partnership has contributed to the expansion of the company's production base and enhanced domestic capability.

Developing cutting-edge technology for the SKA project is also exposing Australian businesses to new skills and capabilities. WA-based company AVI is manufacturing 'SMART boxes' to manage fibre optic signals and power for the SKA-Low antennas. This represents the largest contract for the SKA-Low telescope in Australia, outside of on-site infrastructure.

The original design of the SMART boxes was first produced by the Curtin University node of the International Centre for Radio Astronomy Research, where engineers drew on their experience in the Murchison Widefield Array's development and construction to produce a system that met the SKA project's unprecedented electromagnetic interference specifications. AVI has refined the design for large scale production and to match the challenges presented by the environmental conditions at the observatory.

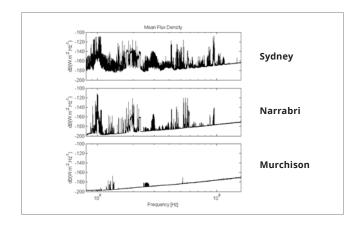
Social impact

Sustainability is a foundational value of observatory activities for both CSIRO and the SKAO. ASKAP and the MWA are powered by a solar-hybrid power station, and the SKA-Low telescope's long-term hybrid power station is scheduled to begin construction in 2026. The SKAO and its partners are also helping to address global challenges by contributing to some of the United Nations Sustainable Development Goals to achieve a better and more sustainable future for all.

In collaboration the Wajarri Yamaji Aboriginal Corporation, CSIRO and the SKAO work to preserve and promote Wajarri

knowledge, culture and heritage. The Wajarri community have been observing the night sky and expressing what they see through stories and artwork for thousands of years. Some of this history is represented in the 2024 art exhibition Cosmic Echoes, featuring paintings and stories from Wajarri Yamaji and South African artists.

ASKAP, the MWA and the construction of the SKA-Low telescope are also helping to generate an interest in STEM subjects as future generations of students are inspired by discoveries enabled by these instruments and Australia's role in hosting part of the SKA project.


Local benefits

Observatory operations and construction of the SKA-Low telescope provide opportunities for local companies. Australian company Ventia was awarded the infrastructure contract for SKA-Low in 2022, bringing employment and contracting opportunities for local and Indigenous people and businesses. Local and medium-sized businesses are also contributing to telescope construction – Ventia has awarded sub-contracts and established accounts with more than 80 businesses in Western Australia.

The observatory also fosters job creation for the Wajarri community, through both direct employment in the ASKAP operations and SKA-Low teams, as well as through contracting and business opportunities.

The SKAO and Australian Government have required that Australian contractors engage with local and Wajarri Yamaji businesses in delivering their work. Ventia and Wajarri Enterprises Limited, a sustainable business enterprise established for the benefit of Wajarri People, also established a Joint Venture partnership. This partnership was awarded a contract by the SKAO to manage the SKA-Low construction village, Nyingari Ngurra, where 180 telescope staff and contractors are accommodated while working on site.

The observatory also provides infrastructure benefits to the region, such as fibre connectivity for communities local to the observatory – the Murchison Settlement and the Pia Wadjarri community.

The radio quiet zone

Radio telescopes are designed to detect faint natural radio signals from space, but this also makes them very sensitive to the interference caused by human-made radio transmissions. This radio frequency interference can be caused by radio transmitters such as mobile phones, two-way radios and broadcasting towers, or by electrical equipment such as vehicles, appliances or electrical machinery.

The main reason to build an observatory in such a remote location is to avoid Earth-based radio transmissions that interfere with sensitive radio astronomy receivers. In the same way that it is necessary for us to avoid city street lights when trying to observe the night sky with our eyes, radio astronomers must distance themselves from radio communications networks that allow mobile phones and other services to operate

The radio quiet zone was established by the Australian and Western Australian Governments to protect this unique radio astronomy site, ensuring radio astronomy receivers can operate with limited impact from harmful radio interference, while allowing opportunities for coexistence with other activities.

Centred on the observatory, the radio quiet zone is a circular area 520 km wide. Within the radio quiet zone signal levels from radio transmitters and electrical devices are controlled to limit interference to radio telescopes. Within the inner 70 km radius area of the radio quiet zone, radio astronomy is the primary radio-communications activity, with other activities considered secondary.

Image: These plots show the radio noise at three Australian locations. The horizontal axis is frequency (the same for all three) and the vertical axis is the strength of the radio noise detected. Sydney is the noisiest location, Narrabri, home of CSIRO's Australia Telescope Compact Array, is better, and the Murchison is much better again. (Note the strength shown is not linear but in decibels.)

Powering the observatory

As part of CSIRO's long-term commitment to Australian astronomical research and future energy technology, a dedicated power station has been constructed for the existing telescopes at Inyarrimanha Ilgari Bundara, the CSIRO Murchison Radio-astronomy Observatory.

The station consists of a 1.85 MW solar array, a lithium-ion battery that can store 2.5 MWh of electrical energy, and four diesel generators. It is the world's first hybrid-renewable facility to power a large remote astronomical observatory. It was built in partnership with Horizon Power and Energy Made Clean.

CSIRO modelling indicates that using this photovoltaic system and storage battery saves up to 800,000 litres of diesel a year and cuts carbon dioxide emissions by about 2,000 tonnes a year. What makes this power station unique is the CSIRO-designed shielding. The shielding keeps electromagnetic interference to levels that don't harm the radio astronomy observations.

The SKA-Low telescope will require an additional 3 MW of power at the observatory, intended to be sourced by an additional hybrid-renewable power station.

Precursors control building

The precursors control building houses on-site computing facilities, called correlators, for ASKAP and the MWA.

The 8,000 fibre optic cables across the observatory transport signals from the antennas to the control building.

ASKAP antennas send analog radio signals through the optical fibres to the building, where they are converted to digital signals and combined to make the 36 antennas into one giant telescope.

The MWA correlator uses off-the-shelf fast computing hardware to combine signals from 256 tiles of antennas.

The control building also houses chillers that extract waste heat from the correlators and transfer it underground maximising cooling efficiency and minimising energy usage.

The control building doorways are an airlock-style pair of doors. The massive steel doors seal tightly shut to ensure that the radio frequency emissions from the computers inside can't escape outside to pollute the radio-quiet environment of the site. The control building also includes workshops where maintenance is conducted on ASKAP's electronic systems, including the receivers, correlator electronics, plus the networking and computing equipment that keeps the observatory operating.

Similar buildings are under construction across the observatory for the SKA-Low telescope – a large central processing facility near the core and many smaller remote processing facilities along the spiral arms.

EDGES

The EDGES experiment led by Arizona State University has been operating at the observatory since 2009. The goal of EDGES is to study the first stars and galaxies. These objects formed when the Universe was less than 500 million years old, more than 13 billion years ago. The assumption might be that EDGES looks for light from early stars, but it actually looks for the cosmic fingerprints of early star formation. When stars first formed, they altered primordial hydrogen gas that filled the early Universe, leaving a tiny imprint in the radio spectrum that we can still see today.

Susan Merry, Our Home, 2023

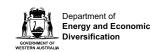
"Our home: years ago our old people used to walk everywhere hunting for food and water.

Our home: we used to live on Boolardy and go and stay at the top shed. My uncle and brothers and other family members used to go mustering sheep for shearing.

Today all you can see are the antennas large and small, with the wildflowers and hands representing that we all come as one on Land."

- Susan Merry, 2023

Susan Merry, *Our Home*, 2023. The SKAO Council assisted in the creation of this artwork during their visit to the observatory site in 2023.


We acknowledge the Wajarri Yamaji as Traditional Owners and Native Title Holders of Inyarrimanha Ilgari Bundara, the CSIRO Murchison Radio-astronomy Observatory.

csiro.au/mro

The SKA project in Australia

