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Executive Summary 
 

Marine debris is a growing environmental issue. It is a local, national, regional and globally relevant 

topic. Within the United States, there are clean-up campaigns and repeated surveys aimed to 

quantify the amount of debris on the coastline, but previously, a synoptic summary of the amount of 

debris and the relative contribution of particular items had not been carried out. To address this 

knowledge gap, this project set out to estimate the amount of debris on the coastline, based on 

coastal clean-up data collected by the International Coastal Cleanup (ICC), as well as two different 

NOAA debris surveys.  

Presently, there are numerous approaches to monitoring marine debris including coastal surveys, 

coastal clean-ups, surface trawl sampling, sediment core sampling and deep ocean sampling. Most 

sampling and recording of debris or litter takes place on land, where surveys are easier to carry out 

for a number of reasons. However, land-based surveys are conducted using numerous different 

approaches, with different objectives, aims, outcomes and inferences that can be made from the 

data. Given the increasing interest and concern about the amounts, types and sources from which 

debris, and plastic pollution in particular, are entering the ocean, there has been acknowledgement 

within the global community of a need for data harmonization and standardization of data collection 

approaches. Different survey types are suited for addressing different questions, and to be in a 

better position to not only estimate the quantities, types and sources of debris but to enact change 

to reduce the inputs (and their impacts in the marine environment), it is important to collect 

information in a way that will address the target questions.  

This project had two specific objectives: 

1) To determine the density and distribution of marine debris within the United States and  

2) To compare and contrast different survey/debris collection methods that have been used in 

collecting and reporting debris data.  

NOAA and Ocean Conservancy’s respective programs have different goals and thus use different 

approaches to collect data on marine debris. In particular, NOAA implements a comprehensive 

sampling regime with a group of trained volunteers who collect trash and quantify materials 

gathered per unit area at a relatively small set of representative beaches at regular time intervals. In 

contrast, Ocean Conservancy’s Cleanup is an annual citizen event, at which people with no formal 

training count individual items of trash they collect while they clean a stretch of shoreline over the 

course of a 1.5-2 hour community participation event at thousands of essentially randomly selected 

sites (since clean-ups are held where and whenever volunteers are willing to organize one) each 

autumn. The CSIRO method implemented in this project differs again, focusing on designed surveys 

conducted by trained professionals. While it is possible to use data from these various monitoring 

programs to understand debris baselines, drivers, and changes, combining them is a challenging 

problem. They each suffer from different sampling biases due to design and implementation 

differences. It is likely that they can be used in a complementary way, as illustrated here. When we 

compared sampling at the same sites and times using the methods, in some cases they give similar 

pictures. However, in other cases the underlying differences in the methods give conflicting 

conclusions. Moving forward, it will be important to consider the purpose of the investment these 

programs, and the relative weight among their value for engagement, attitude change, publicity, 

developing baselines, detecting changes, and understanding system dynamics.  
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The national and regional picture of debris loads that we built in this project can be used as a 

baseline for future comparison, and to understand both the general load and the distribution of 

specific items at regional and national scales. In the process of developing this picture we were able 

to identify a number of variables that could be used to remove sampling bias in the various datasets, 

improving their accuracy. Building on this, we extended the analysis originally proposed in the 

project to explore possible driving factors affecting debris loads. We found a wide range of factors 

make significant contributions to debris loads, including land use, land cover, urbanization, access, 

socio-economic levels, and drainage from nearby watersheds. These factors were important across 

the datasets, suggesting there are a consistent set of driving variables that determine the debris load 

at a site. 

Exploring the patterns in distribution of types of items found at a site, we were confronted by the 

complexity of these patterns. Using datamining tools such as regression trees and cluster analysis, 

we elucidated some patterns in the data. However, a number of key issues make transforming 

patterns into decision-ready information a challenge. First, items can have multiple sources and 

multiple sources can contribute items to one site. For instance, illegal dumping, tourism, marine 

transport, and littering by commuters can all contribute items to a single site. Thus, while the 

presence of tires might indicate dumping, it is confounded by the high abundance of cigarette butts 

left by beach users and commuters. Hence, identifying patterns in the distribution of items at a site 

is complex. Two paths forward are clear. Question driven analyses can help focus the process, and 

will likely be able to deliver useful answers. Second, much can be gained by using single item analysis 

in concert across a number of items suspected to be from a shared source or of common relevance.  

We make five specific recommendations based upon the analyses and field campaign undertaken. 

First, we suggest conducting a nationwide survey to provide a useful reference against which to 

compare trends, interventions, and geographic patterns. We suggest that the west coast surveys 

done as part of this study could be replicated on the Gulf and Atlantic coasts of the US at relatively 

minimal cost. Such a survey would be most usefully done on a periodic basis, perhaps every 5 to 10 

years, to track major changes in debris with time. Second, we recommend continuing the volunteer 

clean-up efforts undertaken by ICC participants. This dataset has extensive coverage, and in spite of 

some challenges with data analyses from clean-up events, this data has also provided a rich source 

of information. Next, we note that a further expansion of the analysis of drivers would provide 

useful information for understanding both the drivers of debris loads on the US coast and inland 

waterways and the data, and for targeting interventions through clean-ups, outreach, incentives, 

and regulation. The ICC data in particular could support a national analysis of bag ban, container 

deposit and other interventions, evaluating both their effectiveness and cost. 

Another key opportunity would be to link the available coastal data to information on debris loads 

and transport processes on land, building a better picture of the important processes and possible 

intervention points. In this project, we investigated the role of outflows from rivers and estuaries in 

driving local debris densities. There is clearly a relationship, however, from preliminary analyses the 

relationship has some complexities. Finally, designing a national monitoring system that provides 

high-quality data at a range of investment levels would mean NOAA could periodically put delivery 

of a national dataset out to tender, but with a clear picture of the likely person-hours required, the 

expected data structure and sampling design, and with a pre-existing analytical design and data 

management system. This would allow NOAA to establish a national baseline and implement 

periodic monitoring in a very cost-effective manner, and allow NOAA to deliver these outcomes in an 

inter-operable manner over time using the most cost-effective public or private sector providers. 
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1 Introduction 
 

Marine debris or coastal litter is a burgeoning environmental issue with myriad sources and impacts. 

This environmental issue is garnering attention around the world, with the United Nations general 

assembly focusing on marine debris in 2015-2016. Furthermore, recent and upcoming changes in 

legislation have demonstrated significant changes in the public’s relationship with plastic as plastic 

bag bans are enacted and microbead bans come into effect.  

As evidence of the public’s increasing interest in addressing and responding to the issue, In 2014 

alone, more than half a million volunteers in 91 countries picked up more than sixteen million 

pounds of trash as part of the International Coastal Cleanup (ICC) efforts. This annual effort led by 

the Ocean Conservancy, has long been supported by and has been working hand in hand with 

NOAA’s Marine Debris Program. The NOAA program, initiated in 2006, is authorized by the United 

States Congress and is the Federal government’s main program aimed at addressing marine debris 

related issues, with a mission of investigating and preventing the negative impacts of marine debris.  

Presently, there are numerous approaches to monitoring marine debris including coastal surveys, 

coastal clean-ups, surface trawl sampling, sediment core sampling, deep ocean sampling. Various 

survey types are suited for addressing different questions, but there has been acknowledgement 

within the global community of a need for data harmonization and standardization of data collection 

approaches if we are to be in a position to better estimate the amounts, sources and impacts of 

marine debris on people, communities, industry, tourism and wildlife.  

This work delivers directly to NOAA’s strategic goals to create healthy oceans and resilient coastal 

communities and economies. It further target’s NOAA’s objective to improve the coastal water 

quality that supports human health and coastal ecosystems services by providing an analysis of 

NOAA’s monitoring data with an aim of determining the baseline estimate of marine litter. 

This project consisted of two main objectives. Objective 1 was to develop a baseline estimate of the 

amounts, types and distribution of coastal litter, with a focus on US beaches. For this work, we 

focused our analyses on two types of coastal debris surveys, NOAA’s standing stock and 

accumulation monitoring and coastal clean-ups as carried out under the International Coastal 

Cleanup (ICC) activities. The goal within this main objective was to address a suite of questions about 

the state of marine debris along US coasts and waterways including:  

1) How much marine debris occurs on U.S. shores? 

2) Are there specific littered items that are most (and least) abundant? Do these change locally 

or regionally?  

3) Does the “diversity” (types and relative frequency) of marine debris vary spatially or 

temporally?  

4) Where are the “hot spots” or regions where marine debris is most prevalent? 

5) Do patterns of distribution and abundance of marine debris change over time (i.e., are there 

discernible temporal differences in characteristics of debris in regions with sufficient 

sampling)? 

 
Objective 2 was to compare data collection methods to improve data collection protocols. In this 

part of the project, we compared NOAA, ICC and CSIRO-developed protocols to estimate, quantify 

and compare debris amounts and types. Comparing between survey methods provided an 
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opportunity to evaluate the relative power of each method to uncover pattern and process in 

marine debris at local, regional and national scales. Based on analyses, we discuss the relative 

strengths and weaknesses of different sampling/clean-up methods, and we include 

recommendations to improve data collection protocols for NOAA and Ocean Conservancy going 

forward. 

We compared and contrasted the NOAA protocols with the CSIRO method by collecting new data 

during a field effort to take place in July 2016. Due to logistical constraints, ICC clean-ups were not 

conducted so we cannot directly compare all three methods based upon data collected 

simultaneously. However, we do discuss clean-ups and statistically designed surveys with respect to 

data quality, concerns and constraints and extent of data. Based on experience and analyses, we 

provide a suite of recommendations to improve statistical power, reduce data collection effort and 

associated costs, improve scientific inference, and maximize scientific and policy insights related to 

marine debris monitoring and clean-up efforts going forward. Using this approach, we: 

 
1. Attempted to develop a conversion factor to allow Cleanup data from more than 2,500 U.S. 

Cleanup sites to be used to calculate indices that are consistent with NOAA’s sampling 
regime;  

2. Determined if we can develop a conversion factor between CSIRO and NOAA methods so 
that statistical inferences can be drawn beyond the NOAA sampling sites; and  

3. Undertook a power analysis of the NOAA monitoring protocol to determine the minimum 
sampling intensity required to estimate temporal changes in debris at the 95 percent 
confidence level.  

 

To better address the marine debris issue, we clearly need more and better data on the sources, fate 

and impacts of marine debris to enable the design of solutions to match the scale of the problem. To 

date, however, a thorough analysis of both NOAA’s data and of the data collected by OC’s volunteers 

has been lacking.  

As we highlight in this report, the challenges of analysis of the three data sets used here points to 

the need for harmonization or standardization of methodologies. Of course, data are collected for a 

variety of purposes and different types of data have different utility, are aimed at different target 

audiences and can yield insights to different components of the problem. Nonetheless, clearly 

stating program goals and objectives and designing surveys to address questions about the sources, 

identify hotpots or accumulation sites, and to determine how effective policies and local efforts are 

reducing litter inputs to the coastal and marine environment will be likely to result in the highest 

level of success in answering such questions.  

The first section of the report (Chapter 2) focuses on the primary objective of presenting analysis of 

the amounts, types and distribution of debris within the US. Within this objective, we address 

several questions that were highlighted as priority by NOAA and the Ocean Conservancy. We present 

the major findings for each question, with details regarding the analytical approach taken to address 

those questions presented in appendices. The next part of the report (Chapter 3) focuses on the 

second objective of comparing survey types, challenges, and recommendations for data 

harmonization. We then provide a conclusions and recommendation section (Chapter 4), followed 

by an analytical appendix in which we provide detail regarding data, site characterization, and 

analytical details (Section 6).   
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2 Density and distribution of debris within the United States 
 

2.1 How much debris occurs on U.S. shores? 
 

We analysed data from four different sources to estimate the amount of debris on the shore of the 

United States. These included NOAA’s accumulation and standing stock survey data, along with 

clean-up data from the International Coastal Cleanup, and a survey of the west coast of the 

continental United States, using methods developed by CSIRO. On average, there were 16.5 (95% 

confidence interval: 9.8, 23.1) items per meter of beach based on the NOAA accumulation data, 0.2 

(95% confidence interval: 0.20 0.24) items per meter based on the NOAA standing stock data, 1.21 

(95% confidence interval: 1.12, 1.30) items based on the International Coastal Cleanup, and 12.1 

(95% confidence interval: 7.1, 17.1) items per meter based on the CSIRO data.  

These numbers differ widely for several reasons. First, the data sets cover different areas, with 

varying amounts of overlap. The ICC data is most widely distributed, covering much of the coast of 

the continental US (Figure 6.1.2.a). The two NOAA datasets are more limited in scope (Figure 6.1.3.a, 

Figure 6.1.4.a). The CSIRO dataset is further limited, covering only the US west coast (Figure 6.1.5.a). 

Second, the surveys differ in their sampling strategy. The CSIRO survey incorporates any items visible 

at the surface, from standing height. This generally equates to a lower detection limit on the order of 

1 mm. The NOAA surveys specify a lower size limit for inclusion of 25 mm. The ICC data has no lower 

detection limit, but in practice appears to be inversely related to the number of participants on 

clean-up events. Thus, the more people participating, the higher the count at a site, likely in part due 

to a reduction in the minimum size of particles people collect. Third, the methods differ in their 

control of searching behaviour. At one extreme, the CSIRO method controls the search effort per 

unit area per unit time, which is always held at 1 person per square meter at a walking pace. At the 

other, the ICC method records only the length of the beach, with no control on total area searched, 

search pattern, or the number people involved. The NOAA methods are somewhere in between, 

with some control on sampling effort and sampling pattern, but likely some double searching due to 

the search pattern used. Fourth, two of the methods are based on removing items repeatedly at 

sites (NOAA accumulation and ICC), while the other two survey but do not remove items (CSIRO and 

NOAA standing stock). 

Given these survey differences, it is not possible to combine the data sets directly to estimate the 

amount of debris on the coastline. It is still possible to use the data from each survey method to 

compare between sites or over time, or to investigate factors that are related to higher or lower 

loads at survey sites. Some progress can be made toward unifying the data sets, for instance the 

CSIRO method records the size distribution of items. This can be used to subset the data to match 

NOAA’s larger size categories. Similarly NOAA and ICC datasets both include types of items, which 

could be used to cross-reference the data between datasets. However, the fundamental differences 

in control of sampling effort remain, and thus direct amalgamation of the datasets is likely to remain 

difficult. Controlling for the removal of items in two of the methods is also difficult, as removing that 

effect would require estimating the time between surveys required for the site to reach equilibrium 

between deposition and resuspension of items. When we examined this relationship it appears to be 

shorter than the survey interval, and may even vary by site. 

An alternative approach is to use each dataset separately to estimate the amount of debris on the 

coastline, after standardizing the data for effects of area sampled, sampling effort, and other factors 
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that affect the density observed during the surveys. We used generalized additive models to do this 

task, as described in sections 6.4 and 6.5 below. These models can be used for exploring driving 

variables for hotspots, as described in section 2.2, but here we focus on using a simplified version 

focused on just controlling for sampling effort. For more details on the models and parameter 

estimates, see section 6.3, 6.4. If we standardize for the time since the last clean-up to be 1 year and 

the total number of people on a survey to be 29 (the median value), the ICC data gives an average of 

1.22 items per meter of coast (95% confidence interval: 1.129564, 1.317660). Standardizing the 

NOAA accumulation data for the number of participants, the time since the last survey, and the 

organization involved, gives a density of 1.49 items per meter of coast (95% confidence interval: 

0.62, 2.37). Standardizing the NOAA Standing Stock surveys for the number of participants gives an 

average density of 0.13 items per meter (95% confidence interval: 0.07, 0.18). The CSIRO data is 

largely standardized, as there are a constant number of participants on a survey, a constant survey 

width, the samples were taken at a single time by one group, and there is no removal of items for 

which to adjust. Thus, the density from the CSIRO survey method is 12.1 items per meter of coast. 

Adopting NOAA’s estimate of 95,471 miles for the total length of the coastline of the US at the tidal 

line (www.oceanservice.noaa.gov/facts/dshorelength.html), we have a total coastal length of 

153,649,118 meters. The linear concentrations of debris yield estimates of the total number of items 

on the US coast, ranging from 19,974,385 items (based on NOAA Standing Stock data) to 

1,859,154,328 items based on the CSIRO data. It is important to consider the biases involved in the 

various sampling methods in evaluating these numbers. First, the NOAA Standing Stock data likely 

underestimates the amount of debris, due to a mixture of some issues with organizations conducting 

the sampling which we were not able to address (see Figure 6.4.2.b and Figure 6.4.2.c and 

associated text; e.g.  number of people participating in surveys is not always reported) and the 

survey guidelines which specify sampling only items larger than 2.5 cm in diameter. Similarly, 

interpreting the upper bound based on the CSIRO survey method, it is important to keep in mind 

that this includes items down to rough 1mm in diameter, but is only based on samples from the 

continental US west coast.  

The US coast adjoins 4 major ocean basins, the Atlantic with 32% of the total coast, the Gulf with 

19%, the Pacific with 46%, and the Arctic with 3%. The datasets we examined vary substantially in 

their coverage of these coastal regions. The Pacific coast is included in all of the data sets. The 

Atlantic is included in the ICC data, and to a limited extent both NOAA datasets. The Gulf coast is 

represented only by the ICC data. There are no samples on the Arctic coast. Taking this into 

consideration, the load estimates are most reliable for the Pacific, which forms roughly half of the US 

coastline. Encouragingly, the Arctic, which is relatively little of the US coast makes only a small 

contribution to the estimate. Using the standardized concentration from the ICC data, one can make 

reasonably reliable estimates for the Gulf and Atlantic coasts. Importantly though, the ICC method 

has an unknown lower bound in particle size, and has only recently included the small fragments 

which are generally by far the most abundant, so the national estimate of 187,451,924 items on the 

coastline from the ICC data should be considered a lower bound.  

 

2.2 Where are the “hot spots” or regions where marine debris is most prevalent? 
 

We tackled the problem of hotspots in the marine debris data at two different scales, based on the 

data we analysed. Identifying hotspots requires a reasonably even distribution of samples over the 

region where the analysis is to be made. The ICC data provides enough coverage to tackle the 

http://www.oceanservice.noaa.gov/facts/dshorelength.html
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question of hotspots at a national scale, although with low resolution in some parts of the interior of 

the country. The CSIRO data covers the west coast of the continental US. The NOAA accumulation 

data provides similar coverage, although more limited in the southern portion of the west coast. The 

NOAA standing stock data is widely distributed, but covers relatively few locations and thus is 

difficult to use in this spatial context. 

Hotspots can be addressed at three levels analytically, in something of a step-wise manner. First, 

one can ask where the raw densities are particularly high or low. This approach is straightforward, 

although it suffers from a lack of standardization. Thus, surveys with more effort may yield higher 

debris densities due to higher search efficiency or bias in sampling, and not necessarily a higher 

plastic load. The next level of analysis is to use a statistical model that takes account of sampling 

biases, effort, and other factors that can affect the sampling process. We estimated the spatial 

distribution of debris in this context by also including a spatial component in these models, either a 

line feature to represent the US west coast or a two dimensional plane to represent the continental 

US. The next step in the analysis is to include additional factors that might be driving hotspots, such 

as the presence of river mouths or local population density. These factors explain some of the spatial 

pattern in the distribution of the debris, and by incorporating their influence in the model, we can 

evaluate the remaining spatial pattern which is unexplained by either sampling error or other driving 

variables. This spatial pattern can help identify areas of uncertainty and suggest possible additional 

variables that could be important to include.  

The detailed models used to address hotspots are presented below in section 6.4. Here we primarily 

focus on the spatial pattern in the data at the three levels of analysis, focusing on identifying areas 

with particularly high debris concentrations. We first present the results for the US West Coast, and 

subsequently for the national scale. Figure 2.2.a illustrates the spatial pattern in the raw debris 

density data for the west coast, based on the NOAA accumulation dataset, and the estimated 

distribution of debris along the west coast based on these samples, after correcting for sampling 

bias, and the remaining spatial pattern after fitting the best overall model (Table 6.4.1.c). The 

sampling bias variable in this model are the number of people and days since last survey, while the 

remaining spatial pattern model was also standardised for state, year, land use, watershed area, 

month, the distance to the nearest river, rail, and road, as well as the population, poverty fraction, 

housing, and the number of roads within 50km. It is interesting to note that there are both sampling 

sites with consistently high and consistently low densities, for instance see the green and red strips 

of dots at sites 13 and 17, both along the northern Washington coast. In contrast there are also sites 

that are highly variable, such as site 19 in the same area. Interestingly, there is also no clear strong 

pattern of the influence of major urban areas visible in the raw data, northern Washington with 

relatively low populations has similar values to areas near San Francisco and Los Angeles, with very 

high populations.  

After standardizing the data for factors that can affect debris estimates such as sampling effort, area, 

state and survey date , the spatial pattern in the data is much more reflective of what one would 

assume drives debris loads. The coastal area near San Francisco, a major population center, has 

relatively high debris loads. It is important to note, that although the remote portions of central 

California are shown as having relatively high loads, this is a function of having only one survey point 

in Southern California, and thus interpolating the pattern between that site and northern California. 

Interestingly, some remote sites still have relatively high levels, such as on the northern Washington 

coast and near sampling site 34 in southern Oregon and 36 in northern California. 
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Figure 2.2.a Debris density from NOAA Accumulation data (2012-2015, west coast of USA).  

Cape Mendocino
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Green values represent lower debris levels, red indicates higher debris levels. The series of points on the left side of the plot are raw debris density data from 
each survey. The points are ordered by year from oldest surveys on the left to those that have taken place most recently (left-right). Dots in grey indicate 
surveys with zero debris found. Note that the debris density values are on a log scale. Bar plots next to each set of dots indicate the median density (not on 
the log scale) and 95% confidence interval around the median for each survey site. The ribbon plot along the coastline is the spatial pattern in these data, 
after correction for sampling error using the statistical model described in Table 6.4.1.cb, to account for sampling effort. See Table 6.4.1c for data associated 
with ribbon plot on right hand side of figure. The ribbon plot to the east of the coastline is the spatial pattern in the data after accounting for local 
population density, access, input from nearby watersheds, and a variety of other factors that drive debris loads. This ribbon represents the spatial pattern in 
the unexplained variation in the best fitting statistical model, as described in Section 6.4. 
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As described in section 6.4, there are a number of important driving variables that affect the debris 

load at a site in the NOAA accumulation data, including level of urbanization, land use, vegetation 

type, access, population density, socio-economic status, and inputs from local watersheds. If we 

include these in the model, allowing us to control for their influence, we can examine the remaining 

spatial pattern in the data (Figure 2.2.a). This points to a clear pattern of an area of high debris, 

unexplained by the sampling bias or driving variables included in the model. This area is in the Cape 

Mendocino region of the west coast. In contrast, the area from just south of the California border 

southward is lower than expected in terms of debris densities. The California Current is the 

dominant ocean current system in this region, and moves north to south along the US west coast. 

Interestingly, the area that is lower than expected has a slightly south-westerly orientation, while 

the region with a higher load has a north-westerly orientation. Given the strong component of 

northerly winds on the US west coast, these spatial differences could be due to slightly differing 

levels of onshore transport driven by the interaction between coastal orientation and wind 

direction. 

Examining the spatial pattern in the data collected according to the CSIRO transect method during 

July 2016 (Figure 2.2.b, Table 6.4.4.a), one can see that there is significant variation among the raw 

debris densities at the site level. Again, there does not appear to be a clear relationship between the 

raw debris densities and heavily urbanized areas or major estuarine/river systems.  

However, after standardization for sampling biases (in this case, substrate, backshore, and aspect), 

some patterns in the interpolated distribution on the west coast emerge. Coastal areas near the 

major urban centers, particularly in Los Angeles and the Strait of Juan de Fuca are significantly high 

in debris. In these two areas in particular, predicted debris densities were so high that we had to plot 

them on a separate scale. Although it is not unexpected for sites in the Strait of Juan de Fuca to be 

high, given that the populations of both Seattle and Vancouver would be included in the larger 

watershed, the extremely high levels seen in the model results may also be caused by an anomaly in 

the data. One of the significant factors in the CSIRO model is the aspect of the beach. The 

northernmost site, adjacent to the Strait of Juan de Fuca, happens to be the only northern facing site 

in the data set. When we standardised the data for the site-level variables, we choose the most 

common factor and set all levels at that factor. The model thus predicts what the debris levels at the 

site would be if it were a west-facing beach. 
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Figure 2.2.b Debris density ribbon plot from CSIRO data (2016, west coast of USA).  
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Green values represent lower debris levels, red indicates higher debris levels. The series of points on the left side of the plot are raw debris density data from 
each survey location. Dots in grey indicate surveys with zero debris found. The individual surveys at a site are offset horizontally to allow visualization of the 
variation in the samples. Note that the debris density values are on a log scale. Bar plots next to each set of dots indicate the mean density (not on the log 
scale) and 95% confidence interval around the median for each survey site. The ribbon plot along the coastline is the spatial pattern in these data, after 
correction for sampling error using the statistical model described in Section 6.4, to account for sampling effort, search time, coastal slope, substrate, 
backshore vegetation and other relevant variables. The purple segments are where predictions are significantly higher than the scale. The ribbon plot to the 
east of the coastline is the remaining spatial variation not explained by environmental variables.   
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After incorporating important driving variables for debris loads into the model (state, distance to 

nearest road and river, roads within 50km, watershed population and area, housing, work fraction, 

unemployed fraction, and median age within 50 km, and poverty fraction within 10 km), along with 

variables accounting for sampling bias (see above, and Table 6.4.4.a), we find a spatial pattern in the 

data (Figure 2.2.b) that is similar to that in the NOAA accumulation data (Figure 2.2.a). Again the 

region north of Cape Mendocino tends to have relatively high debris loads, which were not captured 

by either the variables for sampling bias or those for factors driving load. Given the consistency of 

this pattern, despite major differences in the two datasets and sampling protocols, it does suggest 

that there is an underlying mechanism creating the pattern. One clear candidate is marine transport, 

as discussed above.  

Turning to the national picture, based on a similar staged analysis of the ICC data, we can examine 

the spatial patterns in the ICC data at three levels: using the raw concentrations observed during the 

clean-ups, using those raw values, standardized for sampling bias due to sampling effort, and looking 

at the remaining spatial pattern after accounting for sampling bias and other factors such as local 

population density that might drive debris concentrations at a site. Based on the raw concentrations, 

Texas stands out as having particularly high debris loads (Figure 2.2.c, Table 6.4.3.c). Urbanized 

states along the central eastern seaboard also had relatively high debris loads. Several states on the 

Gulf coast and Illinois also had relatively high loads. In some cases, such as Illinois, this is driven by 

the coastal portion of the state (on the shore of Lake Michigan) also being heavily populated (by the 

Chicago metro area). In other cases, there is a significant contribution from inland waterways and 

lakes. This effect can be seen in the analysis of specific items, such as fishing waste, presented in 

Section 2.3. Based on the raw data, the west coast of the US appears to have relatively low densities 

of debris (Figure 2.2.c). 

Using a statistical model to standardize the raw data for effort and other variables that could 

introduce sampling bias, we find that the map of high and low debris load locations shifts 

significantly (Figure 2.2.d). Texas is still estimated to have relatively high loads. There is a consistent 

pattern of relatively high loads on the Gulf coast. The heavily populated central Atlantic coast states 

have higher loads after controlling for sampling effort. California also emerges as having relatively 

high loads. In considering these patterns, it is important to be conscious of the density of sample 

sites in the dataset. The interior of the US has relatively sparse sampling, and thus estimates in those 

regions should be treated with some caution (Figure 6.1.2.a). Extending the statistical model to take 

account of urbanization, access, population density, land use, vegetation type, and other variables 

driving debris loads, in addition to the sampling bias variables, we find a slightly different spatial 

pattern (Figure 2.2.e). Arkansas emerges as having a relatively high load at the sample sites, 

however, based on the very low number of sampling sites (Figure 6.1.2.a), this is likely to be an 

unreliable estimate. Debris densities in California and the states along central Atlantic coast now 

appear to be captured by the parameters for population, access and other driving variables, leaving 

little pattern in the spatial surface. Texas again has significantly higher debris loads than other 

states.  

This analysis suggests that most debris on California and central Atlantic coasts can be explained by 

variables such as population, suggesting they are driven by domestic sources. However, Washington 

and Texas have relatively high loads, even after accounting for local factors. This points to an 

interesting pattern, there are particularly high loads at several sites in Texas near the border with 

Mexico. However, there is no similar pattern at sites in southern California near the Mexican border. 

This may be due to an interaction between the directions of currents in these two regions, with a 

coastal current in the Gulf of Mexico moving material from the US Gulf coast south-westerly along 
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the coast. This could lead to concentration of debris at the southern portion of the Texas coastline. 

Similarly, Washington is subject to both a current moving southward, potentially bringing material 

from the northern Pacific Ocean and drainage through the Strait of Juan de Fuca, which drains a 

major a major urban area in Canada, not captured in our model. Again, as with the hypothesized 

pattern on the US west coast as noted in the NOAA and CSIRO data, this transport explanation could 

be a focal point for further investigation.   
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Figure 2.2.c Median debris density (pounds per mile) for raw data from ICC surveys, on a per-state basis.  
Green values represent lower debris levels, red indicates higher debris levels. Note that the values are on a log scale. Grey states are those for which we had 
fewer than 5 survey locations. Bars to the side of each state show the median value (in blue) and the 95% confidence interval of the median (black lines). 
Bars are not on a logged scale.  
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Figure 2.2.d Debris levels for ICC GAM site-level modelling, on a state-by state basis.  
This model represents predicted debris levels after correction for sampling error using the statistical model described in Section 6.4, to account for sampling 
effort and other relevant variables. Green values represent lower debris levels, red indicates higher debris levels. Note that the values are on a log scale. Grey 
states are those for which we had fewer than 5 survey locations. Bars to the side of each state show the median value (in blue) and the 95% confidence 
interval of the median predicted values (black lines). Bars are not on a logged scale (black lines).  
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Figure 2.2.e Debris levels for ICC GAM spatial smooth, on a state-by state basis.  
This model represents only the spatial pattern in the data, after accounting for local population density, access, input from nearby watersheds, and a variety 
of other factors that drive debris loads. This ribbon represents the spatial pattern in the unexplained variation in the best fitting statistical model, as 
described in Section 6.4. Green values represent lower debris levels, red indicates higher debris levels. Note that the values are on a log scale. Grey states 
had fewer than 5 survey locations. Bars to the side of each state show the median value (in blue) and the 95% confidence interval of the median (black 
lines).Bars are on logged scale.   

16

12

4

8

0 5 10 15 20 25 30

no surveys

Log pounds
per mile

Log pounds per mile

DC

TX

CO

LA

AR

MS

MO

AL

GA

SC

NC

TN

VA

MD
DE
NJ

RI

CT

MA

ME

VT

NH

NY

PA

OH

MI

IN

IL

WI

MN

UT

CA

FL

MT

WY

NV

AZ NM

ND

SD

OK

IA

KY
WV

ID

WA

OR

KS
NE



18 
 

2.3 Are there specific littered items that are most (and least) abundant? Do these 

change locally or regionally?  
 

For both the NOAA and ICC data, we calculated the mean proportion of the top 10 most common 

items, plus items that pose a high threat to wildlife; balloons and fishing items (Figure 2.3.a). 

Cigarette butts, food wrap, plastic beverage bottles, and lids are all common items in both datasets. 

However, there are distinct differences in relative abundance, with cigarette butts reaching nearly 

25% of all items in the ICC data, while they are only 6% in the NOAA data. This is due to the fact that 

the most abundant items in the NOAA data set are plastic fragments (hard plastic, filmed plastic, and 

foamed plastic), as well as plastic rope. Together these categories make up about 50% of the NOAA 

data. It is difficult to isolate a reason for this difference, as there are a number things that differ 

across the data sets including site, sampling protocol, and survey effort. However it is likely that ICC 

clean-up volunteers are more likely to pick up large items as opposed to smaller fragments which are 

collected during all NOAA surveys. Conversely, cigarette butts may be smaller than 2.5cm, which is 

the size limit for NOAA surveys. However, these items are well publicized in ICC literature as being 

the top item found in beach surveys, and they are very recognizable as litter in the United States due 

to litter education campaigns, so they may in fact be a target item for clean-up volunteers.  
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Figure 2.3.a The mean proportion of commonly found items from coastal surveys.  
Panel a) ICC coastal cleanup data. Error bars show the standard error of the estimates.  
Panel b) NOAA standing stock and accumulation survey data.  
 

We investigated the distribution of a number of common items across sites at the nation scale, using 

the ICC data. In this analysis we standardized the data to control for sampling bias, but did not 

incorporate any additional variables as we wanted to allow the spatial surface in the models to 

retain all of the site level variation in the data (See Section 6.4 for detail). A key point to consider in 

evaluating these estimated surfaces is that they are not reliable in areas where there is little data. 

The underlying reason for this is that the models attempt to match the pattern of change in the data 

across the landscape. However, in areas with no data there is nothing to constrain their shape and 

they tend to carry over curvature imposed by nearby areas with larger amounts of data. Even in 

areas where there are data, but the points are sparse, nearby areas with large amounts of data will 

influence the shape of the spatial surface over the sparse areas. An example in the following plots is 

the effect of the very dense sampling in Texas and southern California, which has a strong effect on 

the estimates in the sparsely sampled interior area of the US in between these regions. 

We modelled the abundance of 5 different types of items: fishing gear, plastic bags, balloons, plastic 

beverage bottles, and cigarette butts. These specific items were chosen as a subset of them (fishing 

gear, bags, and balloons) came out as posing the highest threat to wildlife in a recent analysis 

(Wilcox et al. 2016). Several of them are among the most common items found in clean-up efforts 
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generally (bags, bottles, and cigarette butts). Two of the items have been the focus of significant 

industry engagement (bottles and bags), including in some states economic incentives to reduce loss 

into the environment (bottles).  

Starting with items with predicted high ecological impacts, we examined both the absolute load and 

the relative portion of the total items at each sampling site. Fishing gear was particularly common on 

the Texas coast, followed by the northern Atlantic coast, and subsequently the coastal margin of 

southern Florida. Interestingly, it makes a relatively high proportion of debris in these areas also. It 

also forms a high proportion of items along the northern part of the Pacific coast, where loads in 

general are much lower. Balloons follow quite a different pattern, with a relatively constant 

distribution across the US in both their absolute abundance and in their relative contribution to 

loads at a site. Plastic bags were relatively common in Texas and in southern California. However, 

this was not reflected in their relative frequency in debris loads – they composed a similar fraction of 

the total load across the US.  

Plastic beverage bottles form a relatively large component to debris loads at inland sites in the 

eastern United States. This pattern is reflected to some extent in the absolute number of bottles 

removed at clean-up sites, although as with load in general, beverage bottles appear to be 

particularly high in Texas. The absolute load of cigarette butts was relatively high in the coastal 

eastern US, and the southern and northern ends of the US west coast. Their relative contribution to 

debris loads was also high on the US east coast, but did not show particularly strong spatial patterns 

elsewhere. 
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Figure 2.3.b Items with predicted high ecological impacts at ICC clean-up sites in the United States.  
Colors represent the spatial density on a log scale, from lowest values in green to highest in red. The data are standardized for sampling bias (i.e. sampling 
area and number of people on the clean-up), but otherwise unadjusted. Black points in the plots illustrate the locations of sampling sites. Points with white 
centers are those sites with the top 10% of densities for the items in question. Plots on the left of each pair show the proportion the item forms of the total 
number of items at a survey site; plots on the right show the absolute count for the number of items. See Section 6.4 for model details.  
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Figure 2.3.c Items commonly found at ICC clean-up sites in the United States.  
Colors represent the spatial density on a log scale, from lowest values in green to highest in red. The data are standardized for sampling bias (i.e. sampling 
area and number of people on the clean-up), but otherwise unadjusted. Points in the plots illustrate the locations of sampling sites. Points with white centers 
are in the top 10% of densities for the items in question. Plots on the left of each pair show the proportion the item forms of the total number of items at a 
survey site; plots on the right show the absolute count for the number of items. See Section 6.4 for model details.  
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2.4 How effective are policies/legislation in reducing debris loads? 
 

One of the key questions often asked is whether there is a relationship between legislation and 

debris. Given the increasing profile of debris on wildlife, tourism, economies, etc., there are a 

number of consumer items that have been under consideration for legislative action. These include 

everything from microbeads in facial scrubs to plastic bag bans and beverage container deposit 

legislation. Evaluating policy responses to particular consumer items is possible in the context of the 

survey methods, depending on the item of focus. For instance, microbeads are too small to be 

sampled effectively using the NOAA, ICC or CSIRO survey methods, but plastic bags and beverage 

containers fall under those items that are both commonly found on beaches (see section 2.3) and 

that are associated with significant impacts on wildlife (Wilcox et al. 2015).  

We analysed the NOAA and ICC datasets to ask how effective is container deposit legislation (CDL)? 

To address this, we determined the total number of containers that would be eligible for the 

container deposit scheme for both the NOAA Accumulation and the ICC data sets. We determined 

the mean proportion of containers within each survey by state (Figure 2.4.a; Figure 2.4.c) for NOAA 

and ICC data respectively). The analysis includes plastic beverage containers, glass beverage 

containers and cans. containers.  

Beverage containers compose a smaller proportion of the debris collected in states with CDL 

(California, Hawaii and Oregon) compared to states that do not provide a cash incentive for recovery 

of beverage containers (Alaska, Texas, Virginia and Washington) based on NOAA’s data (Figure 

2.4.a). The same pattern holds for the ICC data, which includes data from more states than those 

monitored by NOAA’s accumulation surveys, though it is less clear-cut. Of the 43 states in which 

clean-ups took place during 2012-2015, six of the nine states with the lowest mean proportion of 

beverage containers have CDL. Additionally Connecticut and New York have CDL in place, and are in 

the bottom 45% of the states in terms of beverage container frequency (Figure 2.4.c).  
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Figure 2.4.a. The mean proportion of beverage containers from NOAA’s accumulation data (2012-
2016).  
Note that states in black are those which have CDL and those in grey do not provide cash for 
containers. Error bars are standard error of the mean. Letters above the bars indicate statistically 
significant differences. 
 

 

Because it is conceivable that people in certain states simply consume higher proportions of 

beverages than other states, we also calculated the proportion of lids to containers. 

Under current container deposit legislation, containers have value; lids do not. We would generally 

expect that every plastic or glass bottle would have a corresponding lid, and it is likely that lids and 

containers would be discarded together. Aluminium cans are, of course, slightly different, with the 

pull tab typically remaining with the container. The container calculations incorporate all beverage 

containers, both aluminium cans as well as plastic and glass bottles. Therefore we would not expect 

to see a 1:1 ratio of lids to containers, but would still expect a difference in the ratio of lids to 

containers between CDL and non-CDL states, because a significant proportion of containers are 

either plastic or glass.  

The three states with CDS captured within the NOAA Accumulation data tend to have higher ratio of 

lids to beverage bottles than states without CDS (Figure 2.4.b). The results are similar, though not 

quite as pronounced for the proportion of lids to beverage containers from the Ocean Conservancy 

data (Figure 2.4.d). All but one of the states with CDLs falls in the upper half of the states in terms of 

lids to bottles. Similarly, none of the 10 states with the lowest ratios had a CDL.  
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Figure 2.4.b Mean proportion of lids to containers in NOAA Accumulation surveys (2012-2016).  
Error bars are standard error of the mean. Letters above the bars indicate statistically significant 
differences. Black bars are states with container deposit schemes in place, grey bars do not have CDL. 
 

Overall there appears to be strong evidence that CDLs affect the chance that bottles end up in the 

environment. It is unclear if this reduction is due to consumer behaviour, or subsequent removal by 

scavengers. However, in either event the outcome for the environment is similar. The pattern we 

identified in the data relative to CDLs would probably be yet stronger if we included economic 

factors driving recovery rates, such as local materials prices and socio-economic levels near the 

survey sites. 
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Currently, there are a number of states considering CDL, such as Maryland, Virginia, Massachusetts 

and Texas (and the District of Colombia), though this is a contentious issue. Nonetheless, this 

provides great opportunity for pre- and post-legislation information which can be used to evaluate 

the effectiveness of legislative changes on the proportion of beverage containers being mismanaged.  
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Figure 2.4.c Mean proportion of containers in ICC surveys.  
Error bars are the standard error of the mean. Green bars are states with container deposit schemes 
in place, black bars do not have CDS. The red bar, Delaware, formerly had a CDS and now has a 
unified recycling scheme. 

 
Figure 2.4.d Mean proportion of lids to containers in ICC surveys (2012-2015).  
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Error bars are the standard error of the mean. Green bars are states with container deposit schemes 
in place, black bars do not have CDS. The red bar, Delaware, formerly had a CDS and now has a 
unified recycling scheme.  
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2.5 Does the “diversity” (types and relative frequency) of marine debris vary 

spatially or temporally?  
 

What seems like a straightforward question actually has a complex set of questions and factors 

embedded. If there are particular questions about patterns of diversity to drive analysis, they can be 

tested. For example, asking questions of specific items (as in 2.3) yields interpretable, useful results. 

Because of the high number of data categories, variety of survey types, uneven sampling and variety 

of sources at the site level, however, this is a difficult question to ask of all the data at once (even of 

a single survey or clean-up type).  

 

In the absence of clear, explicit questions, data mining may not necessarily yield clear patterns (see 

Sections 6.5, 6.6). We used a number of data mining tools to look for patterns in the distribution of 

items across the categories recorded by NOAA and the ICC to evaluate whether we could identify 

different types of sites or identify drivers that created different debris profiles. This effort produced 

patterns in some cases, however, the analyses tended to group at two ends of the spectrum: either 

too many types of sites and possible drivers to make sensible interpretations or too few in order to 

identify meaningful differences among sites. While returning to this line of investigation might prove 

fruitful in further work, it will be essential that it is question driven rather than based on a data 

mining approach.  

 

Working with individual loads of particular items, as in the 5 items we analysed specifically (Section 

2.3) or asking specific questions will result in clearer patterns. For example, if the goal is to identify 

dumping sites, investigating the frequency of items that are unambiguously associated with the 

source might be fruitful. In this case, one might look for tires, concrete, car parts or something that 

would be linked to illegal dumping, and then ask specific questions of the data (Do we find these 

items in remote sites far from roads? Are they at sites with easy road access along urban margins?). 

In a case like this however, it is not clear that there is much to gain from a multivariate approach, 

considering all the types together. A simpler approach could be to make individual models for each 

candidate across the items that have been identified as being relevant. The outputs from these 

analyses can then be combined to infer locations or contexts that appear to be hotspots across all of 

the candidate items. 

 

Part of the complexity of the issue is because items are not unambiguously connected to sources. 

So, although you might like to simply use frequency of different items to indicate a source, there is 

not a one to one match. Furthermore, because sites have multiple sources, the ‘assemblage’ of 

items is going to be well-mixed. This means there are not necessarily sites with specific 

characteristics or specific items that solely occur at them. For many purposes (such as looking at 

policy effectiveness, what are particular items to target for reduction campaigns, etc.), analysing the 

load of each item at a site separately (for example, at the individual level) can answer the question 

with greater clarity. 
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Figure 2.5.a How is the category described/arranged? 
Description of what questions might be asked of data (1, 2 in orange and purple), how or what is 
measured, with how the data may be collected, described or arranged and what questions and 
analyses might be conducted to address particular questions and different types of data. 
 

Fundamentally, there is a trade-off among the analytical approaches that can be taken to marine 

debris data arising from the various survey types that have been carried out (NOAA surveys, ICC 

clean-ups, CSIRO transects, Figure 2.5.a). At one extreme, the data can be aggregated up into a total 

count of items across all categories or a total weight (Figure 2.5.a, lower left). The advantage of this 

approach is that by using a single category of data modelling efforts can focus on the full complexity 

of space and time patterns, incorporating both driving variables, such as local population size, and 

nuisance variables, such as sampling effort. This is the approach detailed in Section 6.4 of this report.  

At the other extreme, one might model the abundance of items in each category, across the tens of 

categories that are recorded in the NOAA or ICC data. The challenge in taking this approach is that 

models describing the abundances in each category may differ, leading to a very complex 

interpretation of the data (Figure 2.5.a, lower right). Furthermore, categories may be positively or 

negatively correlated so the direction of the link between items and abundance may be difficult to 

interpret (consider the case of bottles and caps presented in section 2.4; see Section 6.4 for details 

of results from modelling debris loads for NOAA and ICC data). Intermediate tools such as richness 

curves or rank order distributions, as typically used in fields like community ecology (Figure 2.5.a, 

central bottom) do not seem to be particularly linked to useful questions in this context, though this 

is something we considered and explored. 

 



34 
 

2.6 Do patterns of distribution and abundance of marine debris change over time 

(i.e., are there discernible temporal differences in characteristics of debris in 

regions with sufficient sampling)? 
 

If there is a time trend in the debris loads at survey sites, the final statistical models we fitted should 

include a year term and that term should be statistically significant. These models are detailed in 

Section 6.4, but in this section we focus primarily on the time trend indicated by the analyses. The 

models for the NOAA accumulation data had a year term in the best-fit model, with a positive 

coefficient, suggesting that debris densities were increasing with time. This was by far the most 

important coefficient, based on effect sizes, indicating that the temporal trend is an important 

explanatory component in the model. The best fitting model for the ICC data also included a year 

term, indicating there was a temporal trend in the data. In contrast to the NOAA accumulation data, 

the ICC data had a negative time trend, with a coefficient of -0.049. The effect size for this term was 

the largest of the terms in the model, indicating that the temporal trend was important in explaining 

the volume of debris removed from ICC sites.  

It is difficult to interpret the difference in the time trend in these two data sets. The samples do not 

occur at the same sites, there is some variation in sampling over time in both data sets, and sampling 

protocols differ in the two datasets. Given that the ICC data comes from clean-ups, one might expect 

sites that are repeatedly visited to be cleaner each time, generating a negative time trend driven 

primarily by the sampling method.  

A possible explanation for the negative trend in the ICC data is site selection changes with time. If 

sites with the highest loads have been chosen for clean-ups early in the program, with lower load 

sites added later, this could produce a negative trend. In the absence of randomization in site 

selection, this is a difficult bias to identify. It could be possible to look at clean-up events by the 

individual organizations over time to investigate this site selection-driven effect. 

The time trends could be complicated by the interval between surveys. When we investigated the 

effect of the time between clean-ups on the ICC data it was significant, but negative. This suggests 

that past clean-ups are affecting the amount found in future ones, however, in the opposite 

direction one would expect – the longer since the last cleanup, the less debris found. Again, this 

could be due to choices by organizations conducting cleanups. The organizations might not choose 

to revisit a site if they perceive it as still being clean from their last cleanup, thus generating a 

positive correlation between the debris load at a site and the time since it was last cleaned. In 

contrast, we found that the longer the time between surveys for NOAA accumulation surveys, the 

more debris reported, as one would expect. The NOAA protocol does control for some of these site 

choice biases, as established sites are cleaned on a regular interval.  

However, the overall positive time trend in the NOAA data may also be affected by sampling bias. 

There is variation among the NOAA sites in the times at which they were sampled. Only 3 of the 11 

sites sampled in the first sampling periods are also sampled in the last periods (see points at left, 

Figure 2.2.a). Similarly, only 3 of the 15 sites sampled in the last period were also sampled in the first 

period of the survey (see points at left, Figure 2.2.a). There is also variation in the relative load 

across these sites, which together with changes in sites sampled, could generate a temporal trend. In 

the first period of sampling, there were roughly 10 sites, of which six seem to have relatively low raw 

debris densities (see points at left, Figure 2.2.a). In the last period of sampling, several very high 

density sites had been added (sites 50 and 51, see Figure 2.2.a), creating a possible temporal bias in 
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sampling. Overall, examining the pattern in the raw data there is not a general trend of increase or 

decrease with time in the NOAA accumulation data (see points on left, Figure 2.2.a), suggesting that 

the temporal trend is likely due in part to sampling variation and not an overall shift in load. 

 

In summary, while we found support for a temporal trend in our analysis it appears likely that this is 

due to a sampling bias. Overall there does not appear to be a clear trend in the NOAA data, and we 

would expect a similar case in the in the ICC data. A fundamental problem in evaluating a time trend 

is the lack of balance in sampling over time across sites. If a time trend is a key interest for program 

design, it will be critical to address this sampling issue. 

 

 

2.7 Do we find that coastal sites at river outlets have higher debris loads? 
 

We investigated a few different ways of determining whether sites with river outlets had higher 

debris loads. First, we incorporated the distance to the nearest river into the statistical models to 

determine whether simple proximity explains any of the variability in the data. However, a simple 

distance measurement does not take into account the size of the river or how the amount of debris 

input into that river from upstream may vary. To determine the magnitude of these factors, we 

calculated the size and population of the watershed of the river nearest to the site, which we then 

evaluated in the statistical models of debris loads.  

The USGS delineates watersheds at several different scales. We wanted to use a scale that would 

accurately reflect the terrestrial input into the rivers exiting close to the survey sites. However, we 

found that the appropriate scale varied slightly between survey sites. Some rivers were better 

represented by the scale 5 watersheds, others by scale 4. We therefore calculated the watershed 

area and population within that watershed for both 5 and 4 scales, to determine which was most 

reflective of the data (see detail in section 6.2.4).  

We incorporated both the distance to the river and watershed factors into the GAM model selection 

for the CSIRO west coast data, new NOAA Standing Stock data from 2016, and both existing and new 

NOAA Accumulation data sets (see Tables in Section 6.4). We were unable to carry out watershed 

analyses for the ICC data, because with so many inland sites, it is much more complicated to 

determine proximity to river mouth.  

In the CSIRO models, the distance to the nearest river was included in the best-fit model, and was 

statistically significant. The coefficient was positive, indicating that sites further from river mouths 

had more debris. Watershed area (5) and watershed population (5) both appeared in the model. 

Interestingly, the area was negatively correlated with debris, while population was positively 

correlated. This may be driven by watersheds comprising large, undeveloped tracts of land. All three 

effect sizes, however, were relatively small (Figure 6.4.4.a). 

In the NOAA Standing Stock data collected in 2016 watershed population (4) was included in the 

best model, and was positively correlated with debris. Again, effect size was relatively small. The 

sample size, however, was relatively small in this model, given the number of surveys, so these 

results should be interpreted with caution. 
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In the Accumulation model based on pre-2016 data, watershed area (4) was a statistically significant 

factor in the model, though with a small effect size. It was negatively correlated with debris 

amounts, similar to CSIRO GAM results. River distance was not statistically significant, but negatively 

correlated, meaning that NOAA accumulation survey sites further from a river have lower debris 

levels.  

By their appearance in the best-fit models, it is clear that distance to nearest river, as well as the 

watershed characteristics, influence the amount of debris at a site. However, the story is not 

necessarily straightforward for all survey methods and sites. Again sampling bias may play a role in 

the complexity of this story. Survey sites in the NOAA data do not appear to have been chosen at 

random, and thus there may be some underlying bias generating relationships between debris loads 

and river proximities. One option for addressing this question would be to set up a structured 

sampling system around several river systems. This could be done as a single investigation at one 

point in time, and analysed specifically to understand the effect of rivers on loading.  
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3 A comparison of data collection methods  
 

As part of Phase II of the collaboration, we compared NOAA, ICC and CSIRO-developed protocols to 

estimate, quantify and compare debris amounts and types. Comparing among these methods 

provides an opportunity to evaluate the relative power of each method to uncover pattern and 

process in marine debris at local, regional and national scales. We first provide a discussion of the 

sampling design considerations relevant for marine debris surveys. From this discussion we illustrate 

some considerations for the various survey methods. We then turn to comparing the methods based 

on data collected in the field using the NOAA and CSIRO methods in July 2016. Due to logistical 

constraints, ICC clean-ups were not conducted, so we cannot directly compare all four methods 

based upon simultaneously collected data. However, we do discuss clean-ups and statistically 

designed surveys with respect to data quality, concerns and constraints and extent of data. Based on 

experience and analyses, we provide a suite of recommendations to improve statistical power, 

reduce data collection effort and associated costs, improve scientific inference, and maximize 

scientific and policy insights related to marine debris monitoring and clean-up efforts going forward.  

 

3.1 Differences in survey design across the data sources 
 

Survey design is a key component in developing a quality data set. It is useful to consider design at a 

number of levels, working down through a hierarchy. First, at an overall level, surveys should be 

balanced across any variable for which inference is to be made. Thus for temporal trends, surveys 

need to cover the period in question. Similarly, for spatial trends it is best if all locations are covered 

consistently. If effects of river outlets are of interest, sampling should be structured according to 

their locations and balanced across factors that could affect their effects, such as the population in 

the watershed. Deviations from balanced sampling, for instance variations in sampling over time or 

location, can create confounding in the data, making it difficult to interpret. Second, it is important 

to control bias in site sampling. This is particularly true in a situation like the one at hand, where 

there is correlation between the chance of choosing a site and the variables affecting the site. For 

instance, access to coastal sites might be part of the survey location choice, but is also likely to affect 

visitation rates by the public and thus deposition rates for debris. It is important to use tools like 

randomization to avoid these biases to the extent possible, and where not possible to collect data to 

allow estimation of their effects in the analysis. Third, due to variation at the sites it is important to 

have within-site replication. Coastal locations vary significant in their loads even at small spatial 

scales (compare sites 10 & 24, Figure 2.2.a). Replication at the site level, and stratification of these 

replicates across the conditions at each site can assist in reducing variability at each site and allowing 

estimation of the driving variables for the variation where it appears. Finally, at the finest level, 

controlling survey effort and observation error is a key consideration. Ideally, any item in a survey 

should have an equal probability of detection, irrespective of size, shape, location, and observer. 

This is clearly an impossible task, thus it is important to control observer effort and detection 

probability to the extent possible. This can be done through standardizing search area, search time, 

and search speed. Recording information on the size and color of items can help with standardizing 

observations for detection error, particularly when considered in the context of survey conditions 

like substrate type and color. Finally, if the study goal includes predicting outside the observed 

conditions, it is essential that the sampling hierarchy described above covers the range of conditions 

for which predictions will be made. Analysis of different data types requires a multitude of statistical 



38 
 

tools. Clearly identifying the main questions or goals of the project at the outset allows for 

appropriate analysis and interpretation of data. For example, if one wants to identify the baseline 

level of litter on the coastline and the goal is to make projections outside of where litter was 

collected or reported at sites, it is important to stratify the sampling such that various coastal types 

are sampled in proportion to their occurrence. If survey sites only encompass one substrate type or 

are of one shape, aspect, or slope, it is difficult to make predictions about the amounts of debris that 

occur at other sites within the region. However, if that is not a goal of the monitoring, such factors 

need not be incorporated into the survey design. With these considerations in mind, we evaluate 

each of the methods in turn. 

Table 3.1.a Design characteristics for the data collection efforts. 

Issue International 

Coastal Cleanup 

NOAA 

Accumulation 

Surveys 

NOAA Standing 

Stock Surveys 

CSIRO Surveys 

Stratification of 

sites 

No Partial No Yes 

Randomization of 

site location 

No No No Yes 

Replication within 

sites 

No No Yes Yes 

Stratification 

within sites 

No No No Yes 

Randomization 

within sites 

No No Yes Yes 

Control of survey 

effort 

No Yes Yes Yes 

Control of 

detection 

probability 

No Yes Yes Yes 

 

The various data sources we analysed address the sampling design issues outlined above to varying 

extents, as illustrated Table 3.1.a. The data sources can basically be grouped into volunteer driven 

clean-up efforts (ICC and NOAA Accumulation) and designed surveys (NOAA Standing Stock and 

CSIRO). Volunteer efforts are to some extent driven by the availability and initiative of volunteers, 

and thus various aspects of the resulting sampling design reflect this process. At one extreme among 

our data sets are the ICC data, which are typical for data from litter removal and beach clean-up 

efforts elsewhere. Site choice is driven in part by volunteer initiative, replication and randomization 

typically are not a feature of the data collection effort, there is some level of information on 

sampling effort collected, but little prescription about how effort is expended in the field, and 

detection probability is generally not controlled. While it is possible to control for biases introduced 

by this protocol to some extent, where data is available, the survey methods introduce sampling 

variation and to some extent reduce the inferences that could be made from a similar sized dataset 

collected in a more structured manner. Clearly, clean-up data is a side benefit of an activity that is 
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not designed generally as a data collection exercise. Thus, any changes to the protocols need to 

recognize this situation and embrace any limitations imposed by the primary goals of the clean-up 

activity. It is possible to address some of these issues with formal protocols, as in the case of the 

NOAA Accumulation data. In this context there is some stratification in site location, particularly in 

the northern portion of the US west coast, and some effort to control survey effort and detection 

probability by providing guidance on the search pattern and minimum item size for the surveys.  

However, even with structured protocols as in the NOAA accumulation data case, there remain 

some issues with volunteer driven sampling designs. Variation in the spatial and temporal patterns 

of sampling lead to biases that may affect estimates of temporal and spatial trends, as noted in 

Sections 2.6 and 2.7. Moreover, for both the ICC and the NOAA Accumulation data there is a 

correlation between the number of people surveying a site and the amount of debris found at the 

site, even when we control for area and other variables driving debris loads (see Section 6.4). This 

suggests either an increase in sampling effort or an increase in detection probability with more 

people. This is true even for the NOAA accumulation data, where the protocols attempt to control 

sampling effort and detection probability. There are at least two possible mechanisms driving these 

biases. The first mechanism has to do with search effort. The overlap among the area people search 

likely increases as more people participate in a survey. This reduces the distance between an 

observer and any given item, increasing the chance it is spotted. Second, this same effect means that 

a single location is searched multiple times. Other factors may also contribute. For instance, 

although the NOAA method uses a constant search pattern, larger groups may make navigating this 

pattern more precise, reducing the chance that portions of the area are unsearched. There may also 

be some expansion of the search area, particularly where participants are focused on cleaning a site, 

as opposed to data collection, as the primary objective. The second mechanism has to do with 

detection probability. Adding additional people to a sampling team may result in a shift in the 

detection of items at the lower bound. This is particularly likely in contexts where participant’s 

primary objective is a clean-up. As larger items are found and collected, a picture of the appropriate 

level of removal effort may emerge across the group. As larger items are removed, this may inspire 

participants to seek smaller items that would otherwise not be targeted. In the NOAA accumulation 

protocol this should be minimized due to the specification of a lower size limit on items collected. 

However, it could still increase detection of items at the lower end of the allowable size range. In the 

ICC protocol there is no lower size range, thus one would expect this effect to be even stronger. 

Exacerbating this phenomena is that smaller debris items are generally more abundant than larger 

ones. Thus as more participants leads to the targeting of smaller items, the total count increases 

because of better detection rates, but also due to sampling size classes of items that are more 

abundant. Based on anecdotal observations of staff involved in clean-ups, this social dynamic does 

appear to occur during clean-ups, as does expansion of the area boundaries with more participants.  

The NOAA Standing Stock method is closer to a designed survey. In this context there is replication 

within sites, and those replicates are chosen in a randomized manner. As with the Accumulation 

method, there is a minimum size for items to be included, which should help control observation 

error. There is control on effort, although we found that there is significant variation in the amount 

of debris found, depending on how many people participate in the survey (Section 6.4). However, 

the pattern suggested that the number of people on a survey might be correlated with the 

organization conducting the survey, and that variation among organizations in survey execution 

could be driving the differences (Section 6.4). 
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The CSIRO method is a designed survey, including stratification and randomization at both levels in 

the hierarchy (site choice and survey location choice). Observation effort is tightly controlled, with 

area surveyed constant across surveys, and structured in a manner that precludes variation between 

surveys. Detection error is controlled by standardizing visual acuity among surveyors (i.e. controlling 

for the distance between the observer’s eye and the area searched) and the rate at which items are 

encountered. The effect of these controls on observer effort and detection error are visible in the 

similarity of the colored dots at a site for the CSIRO data (see left side, Figure 2.2.b), despite the fact 

that the surveys are stratified across different substrates at a site (such as beach, rock slab, or 

cobbles) which would expect to result in different debris densities on transects within a site.  

 

3.2 Comparison of survey protocols at shared survey locations 
 

We wanted to determine whether the NOAA Accumulation, NOAA Standing Stock, and CSIRO survey 

methods yielded similar results based on a set of common survey sites. We also wanted to evaluate 

how accurately a model fit to data from each method can predict outside of the survey sites. For 

instance, since NOAA surveys are all conducted on sandy beaches, how well will they predict debris 

on other substrates? The analysis is based on data collected by project staff, in collaboration with 

NOAA and Ocean Conservancy staff, during July 2016 for the CSIRO and NOAA Standing Stock 

methods. These surveys were conducted at the same sites, typically at adjoining locations. We 

utilized data collected as part of NOAA’s existing accumulation sampling program, collected between 

15 June and 15 August 2016 in the same region for comparison. We limited comparisons to 

Accumulation surveys that were within 5 km of the CSIRO or NOAA Standing Stock survey to be 

compared. For the CSIRO and NOAA Standing Stock data we used the mean across the replicates at a 

site to compare with the single value reported in the NOAA Accumulation surveys. In total we were 

able to compare 9 sites across the three methods, with the CSIRO data overlapping an additional site 

for both NOAA datasets, allowing a 10th comparison.  

The three datasets do not appear to be strongly correlated, indicating that densities measured by 

the datasets are relatively different (Figure 3.2.a). If the protocols yielded similar answers, one 

would expect the points in all three graphs to be lined up diagonally. Note that these are only for the 

9 sites in common between all three data sets, and only for the survey closest in date to the CSIRO 

survey date at that location. The two NOAA protocols appear to be almost negatively related, with 

high standing stock surveys having low accumulation surveys and vice versa.  

We tested for correlation among the data from each of the surveys. We used two measures from the 

datasets, the total number of items collected and the density of items. Because the data are non-

normally distributed, we tested if the relative order of the total debris counts or debris densities 

among the surveys was correlated, using a Spearman’s rank order test. The correlation tests showed 

that the CSIRO and Standing Stock methods were positively correlated on a rank order basis, 

although the correlations were not particularly strong (Table 3.2.a).  
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Figure 3.2.a The mean density for NOAA Standing stock sites (July 2016 data) and density of correlated NOAA Accumulation sites (Jan-Aug 2016). 
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The effect of the lower boundary on the size of items recorded can also be seen in the comparison 

among the data sets (Figure 3.2.a). The CSIRO method, which includes much smaller sized debris, 

consistently measures much higher densities of debris at a site, even when compared to the NOAA 

Standing Stock protocol, which was conducted by the same staff in the same location and time. This 

difference also likely leads to a difference among the sources that are being measured. Larger items 

tend to be more associated with litter, as can be seen in the comparison between frequencies of 

items recorded in the NOAA Accumulation and Standing Stock surveys, to those recorded by the ICC 

surveys (Figure 3.2.a). The frequency of large, identifiable objects is significantly lower in the NOAA 

surveys than the ICC surveys, while fragments are more common. Similarly, the CSIRO methodology 

will pick up even smaller fragments than those found in the NOAA surveys. Small plastic fragments 

dominate the CSIRO surveys. These small fragments are typical of materials found in coastal 

environments and offshore, and likely the result of marine transport to the survey sites, as opposed 

to direct deposition of litter.  

This difference in the importance of marine and terrestrial sources of litter at various sites might 

explain the low level of correlations between the CSIRO and NOAA Standing Stock surveys. For 

instance, sites near urban areas appear to be strongly influenced by local, and likely terrestrial, 

sources of material. Remote sites, particularly ones that are difficult to access, appear to be more 

strongly influenced by marine sources. The urban sites typically have higher numbers of large 

consumer items, and thus higher densities recorded following the NOAA protocol. The CSIRO 

protocol would include these materials. However, at remote sites, where materials are generally 

smaller, likely marine sourced, fragments, the NOAA method would find much lower densities as 

items would frequently be smaller than the 2.5 cm diameter minimum size for inclusion in the data. 
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Table 3.2.a Results of correlation tests for raw data. 
Because the numbers of transects varied between methods, values (mean or by plot) were either 
repeated to correlate with multiple transects from other methods, or mean values were compared. 
The statistic value represents the strength of the correlation. Higher absolute values mean that the 
two data sets are more strongly correlated. The sign of the statistic indicates whether the values are 
positively or negatively correlated. The p-value indicates whether the correlation is statistically 
significant. Spearman’s index tests the rank-order correlation between values.  
 

 Spearman’s test 

Accumulation: CSIRO    

Test Statistic P-value  

Total items by transect 0.054 0.778  

Density by transect -0.259 0.167  

Mean total items per transect 0.073 0.841  

Mean density -0.292 0.413  

    

CSIRO:SS    

Test Statistic P-value  

Total items by transect 0.543 0.002 * 

Density by transect 0.348 0.059 + 

Mean total items per transect 0.555 0.104  

Mean density -0.006 1.000  

    

SS:Acc    

Mean dens -0.653 .-57  

Mean tots -0.350 0.359  

 

There were no other significant correlations among the sampling methods, either in debris counts or 

density, based on their rank orders (Table 3.2.a).  

To determine how well each survey methodology can predict outside its range, we selected all NOAA 

transects for both the Accumulation and Standing Stock methods on the west coast that were 

conducted between 15 June and 15 August 2016. We fitted a GAM model to each of the two 

datasets, incorporating all potential covariates, including the location along the west coast (see 

Appendix for details). We fit a similar model to the CSIRO data collected on the US west coast during 

July 2016 (see Appendix for details). Because the data vary, the best-fit GAM models contain 

different terms for each of the data sets. We then used the best-fit model for each dataset to predict 

the values at each of the transect sites for the other datasets, as well as for its own sites. In some 

instances, we were not able to use the full GAM model to predict outside of the range of the data, 

either because the site-level details were not collected in the same way, or because the levels of 

certain factors found within a data set were not within the reference data used to create the best-fit 

model. For example, CSIRO methods include collecting data on the composition of the land behind 

the transect site (backshore), as well as the shape of the coastline (concave, convex, etc.). These 

variables were included in the best-fit model, but because the NOAA data sets did not record such 

information, we were unable to include these variables in the full model comparing the three survey 

methods.  
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We worked around this in two ways. First, we fitted a simplified model to the full data set (Table 

3.2.b). Next, we selected the common sites, determined the backshore and slope for the NOAA sites, 

and fitted the full model to a truncated data set (Table 3.2.c). Additionally, one of the covariates we 

collected from GIS layers was land use category. CSIRO surveys covered a much larger range of land 

use than did the NOAA surveys, so NOAA models did not have all of the reference levels within their 

data set. We therefore had to amalgamate land use into three categories which were common to all 

data sets (Barren, vegetated, and developed). 

We then compared the predictions to the actual data gathered using the relevant methodology 

(Table 3.2.b, Table 3.2.c). We compared them based on the correlations between the predicted and 

observed values for each comparison, at the transect level. We used the correlation between the 

rank ordered values for each transect. In other words, we asked how well the models predicted the 

density of debris, and how well they could rank them in the order of their debris density. 

Table 3.2.b Results of correlation tests for full data sets using truncated models to predict data. 
Density values for the 2016 data set for each of the three methods (CSIRO, NOAA Standing Stock, and 
NOAA Accumulation) are predicted using the best-fit model from each of the survey methodologies, 
and compared to one another. These results use the entire data set, so each data set has some sites 
that are not common to either of the other methods, and therefore in some cases the models are 
truncated to suit the available data. The sign of the statistic indicates whether the values are 
positively or negatively correlated. The p-value indicates whether the correlation is statistically 
significant Spearman’s index tests the rank-order correlation. 
 

 

 Spearman's rank test 

CSIRO sites    

Prediction Model Statistic p-value  

CSIRO 0.53 0 * 

NOAA SS -0.09 0.42 

 NOAA A 0.27 0.01 * 

    

Standing Stock sites    

Prediction Model Statistic p-value  

CSIRO 0 1 

 NOAA SS 0.91 0 * 

NOAA A 0.3 0.02 * 

    

Accumulation Sites    

Prediction Model Statistic p-value  

CSIRO -0.01 0.97 

 NOAA SS -0.4 0.01 * 

NOAA A 0.92 0 * 
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Overall, models were reasonably good at predicting within their own data set, but not particularly 

good at predicting outside of the data. We then repeated the same analysis, but allowing the models 

to make use of all the covariates collected according to each survey protocol. 

Table 3.2.c Results of correlation tests using the full models, but only on sites in common between all 
methods. 
Density values for the 2016 data set for each of the three methods (CSIRO, NOAA Standing Stock, and 
NOAA Accumulation) are predicted using the best-fit model from each of the survey methodologies, 
and compared to one another. These results use the full model, but only on the common sites. The 
sign of the statistic indicates whether the values are positively or negatively correlated. The p-value 
indicates whether the correlation is statistically significant. Spearman’s index tests the rank-order 
correlation. 
 

 Spearman's rank test 

CSIRO sites    

Prediction Model Statistic p-value  

CSIRO 0.7 0 * 

NOAA SS 0.12 0.51 

 NOAA A 0.21 0.23 

     

Standing Stock sites    

Prediction Model Statistic p-value  

CSIRO 0.11 0.46 

 NOAA SS 0.88 0 * 

NOAA A 0.05 0.77 

     

Accumulation Sites    

Prediction Model Statistic p-value  

CSIRO -0.01 0.97  

NOAA SS 0.19 0.6  

NOAA A 0.54 0.11  

 

With full models predicting on common sites, correlation was even less often statistically significant, 

likely because there were many fewer sites.  

There are a couple of potential reasons for failing to find significant correlation between survey 

methodologies. First, although NOAA Standing stock surveys were generally collected on the same 

dates as the CSIRO surveys, there was as long as 5 months between the CSIRO survey and the closest 
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Accumulation survey. Hence, seasonal differences could account for the lack of correlation. Second, 

there are some significant differences in methodology between the Standing Stock and CSIRO data 

collections. In Figure 3.2.a, the mean CSIRO density is two orders of magnitude higher than the 

Standing stock measurements. This may be partially a result of the differences in survey area 

covered by the two methods. CSIRO surveys cover a much smaller area, and observers may 

therefore be able to more comprehensively collect debris in that area before observer fatigue sets 

in. More importantly, however, the NOAA methods are limited to items over 25 mm (~2 ½ inches) in 

diameter, while the CSIRO methods collect items down to 1 mm in diameter. It is possible that the 

densities of the smaller items included in the CSIRO method differ substantially across sites from the 

larger particles which are included in all three sampling methods. This is a likely explanation, given 

that smaller items are more likely to be from marine sources, whereas larger ones are more likely to 

be littered by beach users.  

Considering the person-effort in evaluating survey methodology is also useful. As an indication of 

labor intensity, we determined the mean person hours required for carrying out the various survey 

methods (Table 3.2.d). Statistical analyses were carried out using data provided after October 2015 

through August 2016. Although we were unable to conduct surveys using the ICC protocol during the 

2016 sampling period to compare methodology, we do report mean statistics for the full ICC data set 

as a comparison. Note that the times reported in standing stock data should be taken with caution, 

as it is not recorded whether transects are conducted simultaneously or sequentially.  

Table 3.2.d. The average number of person hours, transects per site, the mean and median area 
surveyed during 2016 surveys using NOAA standing stock and accumulation methods and CSIRO 
transects. ICC data also reported as a comparison.  
 

 Mean 

person-hrs 

per site 

# Transects 

per site 

Mean area 

surveyed (m2) 

Median area 

surveyed (m2) 

NOAA Standing stock 2.04 1-4 3,927 3,130 

NOAA Accumulation 3.14 1 18,721 6,000 

CSIRO transect 1.45 3 119.12 84 

ICC data (full data 

set) 

N/A N/A 4924 lineal 

meters of 

shoreline 

1609 lineal 

meters of 

shoreline 

 

There are always trade-offs in survey design. By reporting or collecting only larger items, observers 

can cover a larger area, and the variability in the sampling is therefore reduced. However, selecting 

for larger items potentially biases the sample more towards littered items as opposed to ocean-

borne debris, which is usually smaller in size (e.g. fragments). This difference may account for the 

lack of correlation both between the raw data, as well as among the predicted data sets. Certain 

areas are likely to be more prone to littering, while others may have a higher abundance of ocean 

debris. If the methods differ such that ocean debris is less represented, the correlation even 

between rank order of sites will be less likely. 
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3.3 Power analysis  
We were able to distinguish effects of a number of variables in the current sampling design for the 

NOAA surveys, CSIRO surveys, and the ICC clean-ups (see tables Table 6.4.1.c, Table 6.4.2.d, Table 

6.4.3.d, Table 6.4.4.a). Given this pattern, it appears that the current data collection protocols have 

adequate power to distinguish important features in the data. For the NOAA and ICC datasets we 

were able to identify time trends based on the current sampling strategy. 

Despite the conclusion that the current protocols do have adequate power, we chose to investigate 

the future power of the NOAA Accumulation Survey to distinguish annual changes in debris levels. In 

order to do this we used the model given in Table 6.4.1.c to simulate data from two possible years. 

In order to do the simulation we removed the year term from the model, refit it to the whole 

dataset, and then used it to predict the values in the 2015 data without a year term. This data served 

as our base year. We then simulated a second year after the base year, using the fitted model as 

before, but adding a small proportional change to the accumulation data.  We then added a random 

deviate to both the baseline and the second year data, based on the variance in the residuals of the 

model fitted to the full Accumulation Data. We then fitted a new model, now including a term for 

the change between the baseline and the second year and evaluated whether the model was able to 

detect the change or not. We repeated the data simulation and change detection 100 times for each 

level of proportional change. We explored the range of possible changes from 1x10-13 to 1x10-2. This 

range spans the values from well below that detected in the existing NOAA Accumulation Data (see 

Table 6.4.1.c, Year term) to well above it. Detections of change were considered successful when the 

term for the change in the statistical model was significantly different from 0 with a p value of less 

than 0.05. 
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Figure 3.3.a Probability of detecting a change between years and the estimated value of the change 
for the NOAA Accumulation Survey in Washington, Oregon, and California.  
Change detections are based on a Monte Carlo simulation using 100 samples. Detection is considered 
successful when a term representing time is significantly different from 0 with a p value of less than 
0.05. The log of the ratio of debris densities between years is the proportional change, e.g. 1.01 is 
equivalent to a 1% increase in debris density values between years. In log terms, -2 in the plot. 
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Figure 3.3.b Estimated change between years given a known change for the NOAA Accumulation 
Survey in Washington, Oregon, and California.  
Change detections are based on a Monte Carlo simulation using 100 samples. Each point in the plot 
represents the value of the regression term for the difference between the baseline and the next 
year, using the model for the NOAA accumulation data given in Table 6.4.1.c. The log of the ratio of 
debris densities between years is the proportional change, e.g. 1.01 is equivalent to a 1% increase in 
debris density values between years. In log terms, -2 in the plot. 
 
Assuming the sampling design and effort for the NOAA Accumulation Data in 2015, the current 

methodology can detect annual changes in debris densities of 0.0005 or more with high confidence. 

Values below 0.0001 are not possible to detect. Thus, a twentieth of a percent or greater change 

overall in the density of debris between years, assuming it is evenly distributed across all sites, 

should be detectable using the current approach. This should also hold true for a decrease in 

densities, as well as the increase analyzed here. 

 

Two important caveats to keep in mind are the effect of the lower detection threshold on the survey 

approach and the effect of asymmetry across survey locations. Since the NOAA Accumulation Survey 

uses a fixed area search, as debris densities decrease, there will be fewer items in the survey area. If 

densities decrease to a level where surveys return counts of zero items, it will no longer be possible 
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to estimate changes as the densities will be below the detection limit of the survey design. One 

possible solution is to adapt the survey method to increase search effort in locations where no 

debris has been found. The CSIRO method uses this adaptive sampling approach, increasing 

sampling effort until an item is encountered or the maximum number of surveys per site is reached. 

Spatial variation in the changes over time will also be harder to detect than the scenario examined 

here. The capacity to detect the trend will depend on the number of sites it affects, and how strong 

the effect is. One would anticipate a trend of the magnitude examined here, but occurring over a 

subset of the sites, would be harder to detect. The exact effect will depend on the aggregation of the 

sites affected, the size of the effect, and the variation in the remaining sites.  

Further power analysis would be possible using a similar approach, either examining the power 

gained/lost by adding samples, or the capacity to detect other types of changes such as spatial 

effects or impacts of new variables not explored in this project. The key steps are to fit a model to 

the data not including the term of interest, project the data, add relevant noise into the data, and fit 

a new model incorporating the terms used to predict the new data, along with the new term of 

interest. 

 

4 Conclusions 
 

The International Coastal Cleanup data, together with NOAA’s Accumulation and Standing Stock 

datasets represent a rich and informative source of information for understanding debris along the 

US coastline, and in portions of the interior waterways. With the addition of data collected during 

2016 using a stratified random design, developed by CSIRO, we were able to investigate a number of 

major questions concerning the distribution, sources, and dynamics of marine debris in the 

continental US. We estimate there are somewhere between 20 million and 1.8 billion pieces of 

plastic on the coastline of the continental US. Given sampling biases and detection limits of the 

various sampling methods, the number is likely at the upper end of this range. In terms of hotspots, 

areas near cities, near rivers, and in some cases near international borders appear to have 

particularly high loads of debris. There is also some variation across political units, with states such 

as Texas, Alabama, Mississippi, and Washington having higher debris loads than one would 

otherwise expect. Some of this effect appears to be due to cross border oceanographic currents, 

which show clear effects on the US west coast and potentially in Texas. Some of these geographic 

patterns are also likely due to policy differences. We found a very strong and clear effect of 

container deposit legislation on the composition of waste at the state level, suggesting that other 

policies could also make major differences across communities and states. 

The ICC and NOAA protocols result in data that is relatively aligned in terms of the types of items and 

frequencies of those items. Evaluating the ICC data, which has by far the widest spatial and temporal 

coverage, it is clear that individual items differ substantially in their frequency in the environment. 

For instance, fishing gear is particularly prevalent along various parts of the east coast. It also forms 

a high proportion of the relatively small amount of debris on the west coast. By contrast, plastic bags 

and balloons form a roughly constant fraction of the debris across the US, but appear particularly 

abundant in the southwest. These analyses point to the critical value of the item-by-item data 

collected by the ICC and NOAA surveys. While we found it very challenging to produce meaningful 

information using data mining tools on the profile of all items collected at clean-up sites, the data 

was very useful for asking questions about effects of policies, patterns for items where there has 
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been significant industry engagement, or for items that are expected to be particularly ecological 

harmful. While this data across item types is somewhat more onerous to collect, it has tremendous 

value when examined with specific questions in mind. It would be impossible to answer these same 

questions with data on aggregate loads, in which items were not separated out.  

In the second phase of this project, we evaluated the strengths and weaknesses of the various 

sampling methods, ranging from the ICC’s volunteer clean-up data to the CSIRO’s stratified random 

survey method. Much of the available data on marine debris is sourced from volunteer clean-up 

activities, either through the International Coastal Cleanup or through NOAA’s two monitoring 

programs. These programs necessarily strike a balance between volunteer engagement and data 

collection. This balance is key for engaging participants, but implies some compromises from a 

survey design and data quality perspective. This is not to say that the data from these efforts is not 

useful, clearly it is. The technical appendices present analyses of this data, identifying a range of 

important factors affecting debris loads, including socio-economic levels, urbanization, access, inputs 

from rivers and estuaries, and a variety of other driving variables. However, as noted in Section 2 of 

the report, there are a number of biases in the clean-up based data which make interpretation of 

patterns challenging.  

Considering survey design principals such as stratification, randomization, and replication, we 

suggest the protocols examined in this study increase in design rigor from the ICC, NOAA 

accumulation survey, NOAA standing stock survey, and CSIRO survey. There are a range of options 

that could help improve the data quality resulting from these sources, including developing a better 

understanding of the site selection process and search dynamics of volunteer participants to 

attempting to develop better spatial and temporal coverage in the survey designs. Some of these 

improvements can likely be done through interviews or detailed evaluation of the existing data, 

others will require modification of methods or survey designs, some improvements may require field 

experiments to understand human dynamics during clean-ups. 

A key finding from our field evaluation of the two NOAA and the CSIRO method at common sites is 

that the distribution and dynamics of coastal debris are highly variable. Estimates of debris densities 

from the CSIRO and NOAA Standing stock methods at the same location were correlated at a rank 

order level, but gave quite different estimates of actual densities. Neither was correlated with 

nearby NOAA accumulation surveys, even on a rank order basis. This difference in the patterns 

across sites and methods suggests that not only is good survey design important in order to reduce 

variability in the surveys, but also that the system itself is just highly variable even at within a coastal 

site. Notably, the CSIRO surveys also identified much higher densities, due to the smaller minimum 

size of items included in the sampling (25 mm for NOAA, 1 mm for CSIRO). Comparing the ability of 

models fitted to each of the survey datasets to predict densities at sites outside their survey, models 

fitted to either the CSIRO or the NOAA accumulation datasets were able to make reasonable 

predictions. However, the NOAA standing stock surveys did not support accurate predictions of 

either the CSIRO or NOAA accumulation sites. This is a curious result, particularly given that the 

standing stock surveys and CSIRO surveys were conducted at the same sites in adjoining locations. 

This may be driven by differences in the minimum size of items included in the two surveys, 25 mm 

for the standing stock versus roughly 1 mm for CSIRO. This implies that the NOAA method may be 

biased more toward litter from terrestrial sources, while the CSIRO method includes these items, but 

also smaller and more abundant fragments transported by ocean currents. Anecdotally, based on 

staff observations during fieldwork this difference in source influence seemed to be born out, with 

CSIRO estimates generally higher than NOAA, but much more so at remote sites with little influence 
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from nearby urban areas. We compared the cost, in person hours, of the 3 survey methods. The 

CSIRO method is much more expensive on a cost per unit area basis, covering 57 square meters per 

person hour as compared to 1,534 square meters for the NOAA standing stock method. However, 

the CSIRO method may be more cost effective overall, requiring only 70% of the time per site in 

comparison with the NOAA standing stock protocol, and 40% of the time in comparison with the 

accumulation protocol. Thus, from the perspective of implementing a more formal large-scale 

survey, there may be some efficiencies and improvement in accuracy in adopting some aspects of 

the CSIRO method. 

The technical appendices to the report present results from an in-depth examination of a wide range 

of factors affecting debris loads at coastal and inland sites. These analyses were a necessary part of 

developing the supporting information to evaluate the key questions covered in the body of the 

report. However, as these variables were outside the scope of the key questions we have not 

provided an extensive discussion of the results or their implications. In brief, we did identify a 

number of important drivers of debris loads, which are similar across all four datasets we examined 

in this study. Debris loads increase with poverty, population and access, and are strongly affected by 

land use and vegetation type. Further investigation of these drivers of debris loads could be useful, 

as they could be used to identify key opportunities for intervention. The ICC, NOAA standing stock, 

and NOAA accumulation data were all also affected by the number of participants on a survey, with 

more people resulting in higher counts of debris per area surveyed. This result suggests that there 

are some aspects of survey effort that are not well controlled in these protocols. Again, the 

statistical analyses, particularly with some addition follow-up, could be useful in guiding 

improvements in design and analysis of the available data. 

 

4.1 Specific Recommendations and next steps 
 

4.1.1 Develop a national baseline 
 

There is currently no nation-wide structured survey available as a baseline. While the ICC data does 

provide national coverage, it is to some extent hampered by compromises inherent in volunteer 

data collection. A nationwide survey designed using the principals presented here would require 

relatively little time and cost, and could provide a useful reference against which to compare trends, 

interventions, and geographic patterns. We suggest that the west coast surveys done as part of this 

study could be replicated on the Gulf and Atlantic coasts of the US at relatively minimal cost. The US 

west coast required roughly three weeks by two staff members to complete. This survey would be 

most usefully done on a periodic basis, perhaps every 5 to 10 years, to track major changes in debris 

with time.  

 

4.1.2 Continuation of volunteer based data collection 
 

While we have extensively covered the issues arising with data collected from volunteers during 

clean-up events, this data has also provided a rich source of information in our analysis. We suggest 

that a small number of investigations of the existing data and organizations, such as understanding 
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how sites are chosen or how volunteers search a location, could significantly improve the value of 

this data. However, even in its current form without any modification the data from these volunteer 

efforts provides a rich picture of the debris load in the US. 

 

4.1.3 Investigate the effect of drivers and responses to marine debris 
 

We did not expound on the in-depth models we used for our analysis, and only covered the effect of 

local government and state policies at a cursory level. We suggest that a further expansion of the 

analysis of these drivers could provide useful information for understanding both the drivers of 

debris loads on the US coast and inland waterways and the data, and for targeting interventions 

through clean-ups, outreach, incentives, and regulation. The ICC data in particular could support a 

national analysis of bag ban, container deposit and other interventions, evaluating both their 

effectiveness and cost. Based on experience from a similar analysis in Australia, it is likely that 

effects of these interventions are discernible in the coastal debris data. Moreover, combined with 

data on cost, it would be possible to provide feedback to decision-makers on the return on 

investment for the various interventions available from adding garbage cans at beaches to 

prosecuting illegal dumping. 

 

4.1.4 Understand the linkages between land-based activities and inputs to the marine 

system 
 

Clearly much of the load of marine debris is a result of losses from land. Currently there is not a clear 

picture of the processes driving these losses and their relative importance. A key opportunity would 

be linking the available coastal data to data on loads and transport processes on land, building a 

better picture of the important processes and possible intervention points. In this project we 

investigated the role of outflows from rivers and estuaries in driving local debris densities. There is 

clearly a relationship, however, from a preliminary analysis the relationship appears to have some 

complexities. Understanding the role of riparian transport could assist in evaluating existing 

infrastructure for solid waste control, and identifying opportunities for effective investments. 

Furthermore, because survey sites in the NOAA data do not appear to have been chosen at random, 

there may be some underlying bias generating relationships between debris loads and river 

proximities. One option for addressing this question would be to set up a structured sampling 

system around river systems. This could be done as a single investigation at one point in time, and 

analysed specifically to understand the effect of rivers on debris loads.  

 

4.1.5 Establish design parameters and a sampling system for a national monitoring program 
 

Establishing the goals of a national monitoring system and creating a design that could achieve those 

goals could help increase the effectiveness of NOAA’s investments in data collection and analysis. 

Currently the NOAA data collection efforts appear to be driven by a mix of local opportunities and 

historic programs. Designing a national monitoring system that could provide high quality data at a 

range of investment levels would mean NOAA could periodically put delivery of a national dataset 
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out to tender, but with a clear picture of the likely person-hours required, the expected data 

structure and sampling design, and with a pre-existing analytical design and data management 

system. This would allow NOAA to establish a national baseline and implement periodic monitoring 

in a very cost-effective manner, and allow NOAA to deliver these outcomes in an inter-operable 

manner over time using the most cost-effective public or private sector providers. A fundamental 

issue to consider if one goal is to evaluate changes through time, is the currently lack of balance in 

sampling over time across sites. If a time trend is a key interest for program design, it will be critical 

to address this sampling issue. 

  

4.1.6 Issues with current data and benefits of a national survey 
 

A key outcome of using a structured survey would be the ability to control site selection and survey 
effort. Section 3 in the report provides a discussion of the benefits of randomization and controls on 
survey effort. One key benefit is the capacity to resolve a number of the factors that cause bias in 
the current NOAA and ICC data. For instance, in the analysis of the NOAA standing stock data there 
does appear to be some effect of the quality of the local group on the debris density recorded (see 
Figure 6.4.2.c and related text). Using a trained survey team following a clear protocol could resolve 
this issue. Similarly, in the NOAA Accumulation and the ICC data there is an effect of the number of 
people on the survey, with higher debris densities recorded when there are more people. This 
suggests that sampling is more thorough with more people, independent of the density at the site. 
While more thorough sampling is good in principal, it suggests that sites with fewer people are being 
under sampled. Ultimately the issue is that there is not tight control on sampling effort, so effort 
itself is driving the debris estimates, in addition to the dirtiness of a site. 
 
In section 6 of our report, at the end of each analysis subsection we presented the output of a 
thorough analysis of the drivers of debris densities at each site. Improving the quality of the 
underlying data, through use of a designed survey, could allow these analyses to be improved, 
yielding more clear understanding of what drives the debris load. In addition, most of the US is not 
covered by the existing data. Only the US west coast has adequate coverage in the existing datasets, 
and only for the accumulation data. The NOAA standing stock data is limited to concentrated efforts, 
but in relatively few places. Having a comprehensive data set covering the continental US coast 
would allow the analysis to be extended to cover other regions outside the US west coast. This could 
be useful in understanding other emerging patterns, such as the very high loads suggested by the 
ICC data on the southern Texas coastline. Finally, there is currently no comprehensive national 
baseline for debris densities on the coast. This hampers monitoring change as policies or other 
interventions are implemented, in addition to more general tracking of the state of debris in the 
environment.    
 
 

4.1.7 Timing, labor, and cost of a national survey 
 

Roughly speaking, both NOAA’s standing stock and the CSIRO transect method are relatively similar 

in their labor requirement. We provided a table in the report in section 3 giving the labor required 

per unit area. Assuming a sampling intensity on the order of what we used for the US west coast of 

approximately 1 survey site per 100 km, we estimate that a team could cover approximately 3 sites 

per day. On the west coast, this equated to roughly 2 weeks for the whole west coast using the 

CSIRO transect method. Assuming an 8 hour day, the CSIRO method with 2 people requires 45 
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minutes per site, which yields 2 hours and 15 minutes of survey work per day. Thus roughly 5 hours 

and 45 minutes are transit time and other activities. The NOAA standing stock method is slightly 

slower, requiring 0.6 more person hours per site, and thus to achieve the same efficiency one would 

need a 3rd person.  

The coasts of Washington, Oregon, and California, (totaling around 14,160 km) were surveyed in 

roughly 10-12 days of fieldwork using the CSIRO method during the second phase of the project. 

Using this as a guide, the cost for a national survey can be estimated. The Gulf coast is roughly 

26,000 km, and thus should require approximately 1.8 times the time to cover. The Atlantic coast is 

roughly 46,000 km, and thus should require 3.3 times as long. Based on these estimates, about 104-

110 person-days would yield a dataset with a sampling site with three replicate samples every 100 

km of coastline. Given a team of two, a national scale survey at 100km resolution would require 52 

days.  

Based on this estimate, one could make decisions about the frequency of sampling, and coverage, 

given a known budget. For example, it should be possible to get a scaled down dataset with a survey 

site every 300km (as driving costs are 5/8 of the time requirement doing 3 surveys per day, a 

reduction does not translate to an equivalent reduction in surveys). Using a pre-determined survey 

design and analysis methods, it would be possible to establish a national monitoring system that 

could be contracted out to providers, but which would provide structured and comparable data over 

time and locations, with a reasonably predictable cost. This would mean that NOAA could determine 

its monitoring goals (identify change over time, identify hotspots, etc.) and structure the survey 

tendering process to achieve those goals at reasonable cost. 
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6 Appendices 
 

This appendix section is divided into a multitude of sections in which the details that inform or were 

used for analyses presented in Sections 2 and 3 are contained.  

6.1 Data 
A number of different data sets and data types were used in various components of the analysis to 

answer each of the two objectives. In addition to survey data from NOAA, OC and CSIRO (see details 

in Section 6.1.1 below), we also collated information that characterises the actual survey locations. 

This includes features such as roads, rivers, railways, watersheds, land use/land cover, and human 

population. We included these data in modelling debris or order to assess some of the potentially 

important factors or drivers that may help to explain any variation in amounts of debris reported at 

different survey sites (details in Sections 6.2 and 6.3 below).  

 

6.1.1 Survey Data 
Site debris survey and clean-up data was sourced from Ocean Conservancy (OC) and the National 

Oceanic and Atmospheric Administration (NOAA). Due to the distinct nature of the data, it was split 

into three sets of data to be analysed individually (Table 6.1.1.a). More details on the survey 

procedure of NOAA may be found in NOAA’s field guide (Lippiatt et al., 2013). ICC data collection 

protocols can be found at 

http://act.oceanconservancy.org/site/DocServer/ICC_Eng_DataCardFINAL.pdf?docID=4221.  

 

Table 6.1.1.a Sources and types of survey data used in analysis 
 

Data source Description 

Ocean Conservancy International Coastal Clean-ups (ICC) 

National Oceanic and Atmospheric Administration Accumulation surveys 

National Oceanic and Atmospheric Administration Standing stock surveys 

 

 

The entire survey data consists of 16,486 records across all three data sources. This includes 6,379 

site locations with some sites being surveyed at multiple times spanning 2009 to 2015. Sites were 

each given a unique identifier which was carried throughout the analysis and used to identify sites. 

The data was projected into World Mercator and all distances and areas were calculated in 

kilometres unless otherwise noted. Various covariates were collected to answer questions about 

what important factors correlate with or influence the volume and mix of debris identified in the 

surveys.  

 

 

 

 

http://act.oceanconservancy.org/site/DocServer/ICC_Eng_DataCardFINAL.pdf?docID=4221
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Table 6.1.1.b Details of survey data used in analyses from NOAA and Ocean Conservancy 
 

Site Type # of unique locations/sites # of survey 

dates 

Date range 

Accumulation 284 (unique) 894 Jan 2012 – Aug 2016 

 1443 surveys over multiple dates   

Standing Stock 66 (unique) 372 July 2009 – Aug 2015 

 826 surveys over multiple dates   

ICC 6223 (unique) 517 June 2010– Oct 2015 

 12822 (over multiple dates)   

 

6.1.2 International Coastal Clean-ups 
 

The Ocean Conservancy coordinates an annual voluntary debris clean-up known as the International 

Coastal Cleanup (ICC). Debris is collected, categorized, counted and weighed on a voluntary basis 

each year at a variable number of sites around the globe. For this study only data from the United 

States were assessed. With the ICC data, sites are visited and cleaned. These sites are of varying sizes 

with a varying number of participants. Some sites may be revisited each year, but not all sites are 

revisited annually, nor are the exact same sites necessarily cleaned up each year, though there is 

some consistency between years. More information on the ICC may be found at 

http://www.oceanconservancy.org/our-work/international-coastal-cleanup/do-it-yourself-cleanup-

tool.html.  

 

Figure 6.1.2.a Location of ICC survey sites 

http://www.oceanconservancy.org/our-work/international-coastal-cleanup/do-it-yourself-cleanup-tool.html
http://www.oceanconservancy.org/our-work/international-coastal-cleanup/do-it-yourself-cleanup-tool.html
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Table 6.1.2.a Number of ICC surveys by year and state 
 

State 2010 2011 2012 2013 2014 2015 

Alabama 25 23 23 30 31 0 

Alaska 21 11 9 1 4 0 

Arizona 5 1 1 4 3 0 

Arkansas 5 3 2 2 1 0 

California 628 598 401 482 535 2 

Colorado 2 2 2 4 0 0 

Connecticut 58 54 40 37 53 0 

Delaware 36 38 38 42 46 0 

District of Columbia 4 2 3 0 3 0 

Florida 417 351 481 502 392 1 

Georgia 120 141 158 128 160 1 

Hawaii 69 55 62 54 66 0 

Idaho 2 1 2 3 1 0 

Illinois 62 48 57 46 53 0 

Indiana 23 14 19 13 17 0 

Iowa 3 0 0 0 0 0 

Kansas 2 2 2 2 2 0 

Kentucky 0 0 1 1 0 0 

Louisiana 24 24 23 4 30 0 

Maine 6 12 41 46 51 0 

Maryland 23 30 27 36 35 0 

Massachusetts 66 53 80 83 78 0 

Michigan 102 93 111 111 107 0 

Minnesota 13 7 19 28 6 0 

Mississippi 55 76 69 52 0 0 

Missouri 2 2 4 2 2 0 

Nebraska 17 15 10 20 18 0 

Nevada 2 1 0 1 1 0 

New Hampshire 32 35 27 29 32 0 

New Jersey 52 91 13 55 52 0 

New Mexico 2 0 0 1 0 0 

New York 207 174 151 159 203 1 

North Carolina 79 92 81 85 82 0 

Ohio 13 13 21 48 47 0 

Oklahoma 2 0 0 0 0 0 

Oregon 44 85 14 47 93 2 

Pennsylvania 54 78 97 78 109 0 

Rhode Island 79 78 71 47 78 0 

South Carolina 99 100 43 67 51 1 

South Dakota 1 1 1 2 1 0 

Tennessee 0 0 8 5 0 0 

Texas 33 35 31 30 35 1 

Utah 11 17 25 14 1 0 

Vermont 0 2 4 1 10 0 

Virginia 150 123 147 126 127 1 

Washington 22 14 5 31 40 0 

West Virginia 1 1 1 0 0 0 

Wisconsin 43 38 38 31 44 0 

Wyoming 1 2 1 0 0 0 
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6.1.3 Accumulation surveys, NOAA 
 

Accumulation surveys collected over time provide an estimate of the flux of debris onto the 

shoreline (in units of #items/m2 /time). This is achieved by recording and removing all debris from a 

site at a particular frequency. Because of the repeated survey approach, these surveys are resource 

intensive. NOAA recommends that some consistency exists in the timing of accumulation surveys at 

a site. The methodology calls for a single transect per site, with all debris to be removed at each 

survey, and for sites to be visited repeatedly. Their guidelines suggest that sites are surveyed daily, 

over 12 days, or monthly over the year. The timing is influenced by the study lifetime and objectives 

for the data collected and resources available. Accumulation surveys have been used to look for a 

spike in debris deposition from major debris-generating events or variations due to climactic events. 

 

 

Figure 6.1.3.a Location of accumulation survey sites (NOAA) 
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Table 6.1.3.a Number of Accumulation surveys by year and state 
 

State 2012 2013 2014 2015 2016 

California 27 139 95 78 53 

Oregon 11 21 41 48 33 

Washington 45 182 207 130 88 

Alaska 0 5 6 18 8 

Virginia 0 1 36 25 0 

Texas 0 0 0 7 1 

Hawaii 37 65 17 6 1 

 

 

6.1.4 Standing stock surveys, NOAA 
 

Standing stock surveys collect information about the amount and type of debris within discrete 

transects along a shoreline. Survey data integrity is maintained by not removing debris from the site. 

Replicate transects of 5m in length occur within sites. Typically, four of twenty transects are 

randomly selected and surveyed each sampling period. These data are used to determine the 

density (# of items per unit area) of debris present. These surveys are less intrusive and resource 

intensive than accumulation surveys, as observers report or record information about debris items 

observed but do not remove an litter or debris found. Debris density reflects the long-term balance 

between debris inputs and removal and is important to understanding the overall impact of debris. 

This data is used to characterise drivers for debris deposition and attrition. 
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Figure 6.1.4.a Location of standing stock survey sites 
 

 

Table 6.1.4.a Number of Standing-stock surveys by year and state 
 

State 2009 2010 2011 2012 2013 2014 2015 

Alaska 0 0 0 101 60 12 12 

California 0 0 0 108 230 223 140 

Delaware 0 0 432 0 0 0 0 

Hawaii 0 0 0 0 16 57 11 

Maryland 12 36 504 0 2 0 0 

Virginia 0 0 0 0 0 148 80 
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6.1.5 CSIRO coastal debris surveys 
 

To address each of the two objectives for this project, we also carried out a stratified random coastal 

debris survey along the west coast of the United States in July 2016 (Table 6.1.5.a). We selected the 

initial survey site to correspond with a NOAA site to the west of Seattle Washington and then 

selected sites approximately every 100 km down the west coast of the US to San Diego (See Figure 

6.1.5.a). At each site we recorded the GPS location where we accessed the site, date, observer, 

weather conditions, wind speed and direction, human visitors visible on the beach and time of day. 

For each transect we recorded the time it took to carry out each transect, the transect start and end 

location and the transect length. To account for factors that may affect debris deposition and 

retention, we recorded the coastline shape and aspect, substrate type and color, gradient and 

backshore type at each transect (Supplementary Information). We surveyed 2 one-meter belts (one 

observer per belt), along each transect running perpendicularly from the waterline to the endpoint 2 

meters into the terrestrial vegetation above the coastal zone. Only items detectable on the surface 

from head height were recorded. We recorded all items observed, along with the material type and 

color. For further detail see Hardesty et al. 2014; 2016 in press).  

 

 

Figure 6.1.5.a Location of CSIRO coastal debris survey sites (2016) 
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Table 6.1.5.a Number of CSIRO sites (total number of surveys) by year and state, with total count of 
items.  
Note that the total count of items in California is driven by a high number of items from a single site 
(near the river mouth at Long Beach).  
 

 

 

 

 

6.2 Site characterisation 
 

Data was sampled to characterise each site and to quantify if they have an influence on debris load 

and type. A single distance to features was calculated or the density of attributes was collected using 

the covariate sample design presented in 6.2a. Covariate segments are concentric circles with a 

radius of a given distance (1km, 5km, 10km, 25km, and 50km) from the survey sites. This allows for 

an analysis of the distance at which site characteristics have an influence on debris type and volume. 

Where data can be safely be assumed to be constant over the time that the surveys occurred, the 

most reliable data source was used. For data that changes through time, data was derived from a 

linear model of multiple samples across time for the day each survey occurred. 

 

 

Figure 6.2.a Covariate sampling design depicting the concentric distance around survey points for 
which information was collated or summaried for inclusion in modelling and statistical analyses. 
 

6.2.1 Roads 
 

We used the distance to the nearest road as a proxy for the potential number of people accessing 

sites. To do this, we determined the distance in kilometres to the nearest road. Sites were further 

characterised by the amount of road within the covariate sample segments (within 1km, 5km, 10km, 

State 2016 Total item count 

California 19 (62) 5850 (4629 items from one site)  

Oregon 7 (21) 482 

Washington 2 (6) 370 
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25km and 50km). The data used in this analysis is the USGS Major Roads dataset (USGS, 2015) and is 

produced by joining the individual state roads layers. The dataset provides detail on road type (Table 

6.2.1.a). This allowed for the amount of each type of road within each covariate segment to be 

calculated.  

Table 6.2.1.a USGS Major Roads dataset functional road classes 
 

Functional Road Class (FRC) ID Description 

0 Freeway or Other Major Road 

1 Major Road Less Important than a Freeway 

2 Other Major Road 

3 Secondary Road 

4 Local Connecting Road 

5 Important Local Road 

 

6.2.2 Railways 
 

As another proxy for determining the accessibility and presence of people near each site, we looked 

at the proximity to railway stations. For this, we collated information on the distance in kilometres 

to the closest railway station from each survey site. The rail data used for this analysis was the 

Railroad Stations dataset (USGS, 2014) collected as part of the United States Geological Society 

(USGS) Small-scale Dataset. This map layer includes Global Map data showing Amtrak intercity 

railroad terminals in the United States. The data are a modified version of the National Atlas of the 

United States data set of railroad and bus passenger stations of the United States. There are no 

Amtrak stations in Alaska or Hawaii.  

 

6.2.3 Rivers 
 

To examine if the outflow of a river has any influence on the amount of debris at a particular site we 

looked at the proximity of survey sites to river mouths or river outlets nearby. To do this, we 

calculated the distance in kilometres to the nearest river mouth from each survey location. The river 

layer used for this analysis was the USGSs (2010) USA Rivers and Streams. To determine where the 

river mouth was we intersected the rivers layer with the coast and where the 2 layers met within 

200m (to account for spatial variance of the two layers) of each other we called a river mouth. This 

point was then used as the feature to which the closest distance from the survey sites was 

calculated. 

 

6.2.4 Watersheds 
 

The watersheds of the US are subdivided into 6 nationally consist levels of detail. For this analysis we 

looked at 2 levels. The 8 digit Watershed Boundary Dataset (Natural Resource Conservation Service 

(NRCS, 2013) version (4th level) and the 10 digit Watershed Boundary Dataset (NRCS, 2013 version) 

(5th level). We used these watershed levels to look at the population within each watershed 
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boundary. The purpose of including this watershed factor in models was to determine the potential 

influence of terrestrial (land-based) input into the rivers and hence potential for the flow-on effects 

on coastal sites.  

 

6.2.5 Land cover 
 

To determine what the land use at each survey site we accessed the land cover as described by the 

National Land Cover Database 2011 (NLCD, 2011). The National Land Cover Database 2011 (NLCD) is 

the most recent national land cover product created by the Multi-Resolution Land Characteristics 

(MRLC) Consortium. NLCD contains 16 land cover classifications (Table 6.2.1.a), applied consistently 

across the United States at a spatial resolution of 30 meters. NLCD is based primarily on a decision-

tree classification of Landsat satellite data (circa 2011). 

 

Conterminous United States  

 
 
Figure 6.2.5.a A generalized summary of the main NLCD and cover classes for the conterminous 
United States. 
(Note: Some NLCD land cover classes have been grouped for display purposes. A detailed 
conterminous United States class proportions are described in Table 6.2.5.a. 
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Table 6.2.5.a Conterminous National Land Cover Database 2011 classifications and distribution 
 

NLCD Land Cover Class Percentage 

11. Water  5.22 

12. Perennial Ice Snow  0.02 

21. Developed, Open Space  3.26 

22. Developed, Low Intensity  1.46 

23. Developed, Medium Intensity  0.68 

24. Developed High Intensity  0.22 

31. Bare Rock/Sand/Clay  1.23 

41. Deciduous Forest  10.84 

42. Evergreen Forest  11.56 

43. Mixed Forest  2.00 

52. Shrub/Scrub  21.61 

71. Grasslands/Herbaceous  14.56 

81. Pasture/Hay  6.65 

82. Cultivated Crops  15.51 

90. Woody Wetlands  3.87 

95. Emergent Herbaceous Wetlands 1.30 

Total 100.00% 

 
Note: This table is for illustrative purposes only, we encourage you to download the most recent 
NLCD data file to complete detailed land cover analysis.  
 
 

Alaska 

 
 
Figure 6.2.5.b. A generalized summary of the main NLCD2011 land cover classes for Alaska.  
(Note: Some NLCD2011 land cover classes have been grouped for display purposes. A more detailed 
description of Alaska class proportions is described in Table 6.2.5.b).  
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Table 6.2.5.b Alaskan National Land Cover Database 2011 classifications and distribution 
 

NLCD2011 Land Cover Class for Alaska Percentage 

11. Open Water  14.16 

12. Perennial Ice Snow  4.11 

21. Developed, Open Space  0.02 

22. Developed, Low Intensity  0.06 

23. Developed, Medium Intensity 0.01 

24. Developed High Intensity  0.00 

31. Bare Rock/Sand/Clay  7.78 

41. Deciduous Forest  3.24 

42. Evergreen Forest  13.75 

43. Mixed Forest  3.27 

51. Dwarf Shrub  17.10 

52. Shrub/Scrub  22.57 

71. Grasslands/Herbaceous  1.72 

72. Sedge/Herbaceous  5.71 

74. Moss  0.03 

81. Pasture/Hay  0.00 

82. Cultivated Crops  0.02 

90. Woody Wetlands  3.48 

95. Emergent Herbaceous Wetlands 2.98 

Total  100.00% 

 
Note: This table is for illustrative purposes only, we encourage you to download the most recent 
NLCD data file to complete a more detailed land cover analysis. 
 

 

6.2.6 Population and building density 
 

Population, building density and socioeconomic factors were evaluated for each of the covariate 

segments for the date of each survey at each site. The highest spatial and temporal resolution data 

available for this task is the American Community Survey operated by the United States Census 

Bureau (USCB). The American Community Survey (ACS) is a mandatory, ongoing statistical survey 

that samples a small percentage of the population every year which is extrapolated across the 

country. The annual national data uses a continuous measurement methods. In this survey, a series 

of monthly samples produce annual estimates for the same small areas (block groups) formerly 

surveyed via the decennial census long-form sample. Boundaries are defined by the USCB’s Master 

Address File/Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) database. 

The geodatabases include information for the fifty states, the District of Columbia, Puerto Rico, and 

the Island areas (American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and 

the United States Virgin Islands). ACS is available as 1, 3 and 5 year estimates, each of these datasets 

using a different basis and extent to determine values. 
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Values from the 5-year estimate ACS dataset were used in this study for several reasons: 

1. The longest period of data is used (60 months) as a basis for value, 

2. There is data for all areas (block groups), 

3. It contains the largest sample size, and 

4. The values are the most reliable, however are also the least current 

For this study the following data were gathered: 

Table 6.2.6.a Variables, codes and descriptions used for the 5 year estimated American Community 
Survey (ACS) in this study. 
 

Variable ACS Code Definition 

Population B00001e1 Total count of population 

Housing B00002e1 A housing unit may be a house, an apartment, a mobile home, a 
group of rooms or a single room that is occupied (or, if vacant, 
intended for occupancy) as separate living quarters. Boats, 
recreational vehicles (RVs), vans, tents, railroad cars, and the like 
are included only if they are occupied as someone's current place 
of residence. 

Median age B01002e1 The median age is the age that divides the population into two 
equal-size groups. Median age is based on a standard distribution 
of the population by single years of age and is shown to the 
nearest tenth of a year. 

Median earnings B20002e1 Earnings represent the amount of income received regularly for 
people 16 years old and over before deductions for personal 
income taxes, Social Security, bond purchases, union dues, 
Medicare deductions, etc. The median earnings represent the 
value that divided the standard distribution of earnings in two. 
Values are in units of United States dollars ($US) 

Workforce B23025e2 This category includes all civilians 16 years old and over who 
either (1) were “at work,” that is, those who did any work at all 
during the reference week as paid employees, worked in their 
own business or profession, worked on their own farm, or 
worked 15 hours or more as unpaid workers on a family farm or 
in a family business; or (2) were “with a job but not at work,” 
that is, those who did not work during the reference week but 
had jobs or businesses from which they were temporarily absent 
due to illness, bad weather, industrial dispute, vacation, or other 
personal reasons. Excluded from the employed are people whose 
only activity consisted of work around the house or unpaid 
volunteer work for religious, charitable, and similar 
organizations; also excluded are all institutionalized people and 
people on active duty in the United States Armed Forces. 

Unemployed B23025e7 All civilians 16 years old and over are classified as unemployed if 
they (1) were neither “at work” nor “with a job but not at work” 
during the reference week, and (2) were actively looking for work 
during the last 4 weeks, and (3) were available to start a job. Also 
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included as unemployed are civilians who did not work at all 
during the reference week, were waiting to be called back to a 
job from which they had been laid off, and were available for 
work except for temporary illness. Examples of job seeking 
activities are:  

• Registering at a public or private employment office  
• Meeting with prospective employers  
• Investigating possibilities for starting a professional 

practice or opening a business  
• Placing or answering advertisements  
• Writing letters of application  

 Being on a union or professional register 

Population poverty B17021e1 The data on poverty status of households were derived from 
answers to the income questions. Since poverty is defined at the 
family level and not the household level, the poverty status of 
the household is determined by the poverty status of the 
householder. Households are classified as poor when the total 
income of the householder’s family is below the appropriate 
poverty threshold. (For nonfamily householders, their own 
income is compared with the appropriate threshold.) The income 
of people living in the household who are unrelated to the 
householder is not considered when determining the poverty 
status of a household, nor does their presence affect the family 
size in determining the appropriate threshold. The poverty 
thresholds vary depending on three criteria: size of family, 
number of related children, and, for 1- and 2-person families, age 
of householder 

Population male B01001e2 Total count of male population 

Population female B01001e26 Total count of female population 

Median age male B01002e2 Median age of males 

Median age female B01002e3 Median age of females 
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6.3 Analytical approach 
 

Our mathematical approach to analysing the NOAA and ICC data incorporated the various categories 

of items and their relative frequency of occurrence at replicate beaches. We used a number of 

different models in analysing the data, depending on the particular question which was being 

addressed. Generally speaking, from the data we want to know the following: 

 

 What is the baseline quantity of litter at a site? 

 Is the amount of debris at a site changing with time? 

 Are there different types of sites? 

 Can we make predictions about why or how sites may change? 
 

 
We investigated patterns in the total load of debris in three datasets, NOAA’s Accumulation data 

(ACC), NOAA’s Standing Stock data (SS), and the International Coastal Cleanup data (ICC). In each 

case we focused on three questions: 1) what is the average load at a site, i.e. what would a baseline 

look like, 2) how does this load differ by location, time, and other explanatory variables, 3) which 

regions or sites appear to be the best or worst in terms of how much debris is observed (by count)? 

We considered a number of issues in our analysis. First, the data are composed of counts of items, 

weights of items, or volumes of items. Therefore, any model of the data needs to accommodate the 

statistical nature of the data, that is, it is bounded between zero and infinity, and in some cases it 

may be composed of integers. Second, sampling effort will likely be strongly related to load, and 

thus our models need to take sampling effort into account. Third, there may be historical factors 

that are important, such as the time since the last clean up or survey. This is particularly true for the 

ACC and ICC datasets, as both involve removal of items. 

Models incorporated date (year and month), distance to nearest city, and a number of beach 

characteristics (e.g., beach shape, beach slope, direction of dominant winds, and beach substrate 

type). We independently applied these models to NOAA and Ocean Conservancy data sets to 

uncover unique insights from each approach.  

In Phase 2 of the project we conducted fieldwork on the west coast of the US, in cooperation with 

staff from NOAA and Ocean Conservancy. During this fieldwork we collected additional data using a 

structured survey design developed by CSIRO, along with sampling paired sites using the NOAA 

standing stock protocol. With this additional data in hand, we then revisited the load modelling 

described in Section 6.4 a second time. We used similar models to those described above to analyse 

the new CSIRO protocol data, and then revisited the NOAA and ICC data analysis with an expanded 

set of variables as described in Section 6.2. These analyses are presented below, as an addendum to 

the preliminary models developed during Phase 1 for the NOAA and ICC data sets.  
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6.4 Modelling Debris Loads 
 

This section presents the key results from the analysis of the NOAA and ICC data sets. Each of the 

subsections presents the preliminary analysis of the data done during Phase 1 of the project, with an 

addendum containing the final analysis outputs based on revisiting the datasets during Phase 2 of 

the project. The CSIRO data analysis differs, in that it was only available during Phase 2, and is thus 

condensed into a shorter section. As modelling the drivers of debris loads was not a key objective of 

the project we do not provide a detailed discussion of the final models and their implications. 

However, development of these models was necessary in order to control for the variation in the 

data to allow us to estimate the various quantities required to meet the key objectives. For instance, 

in estimating the effect of rivers on coastal debris loads, it is necessary to control for sampling bias, 

local land use, access, and a variety of other factors that could affect debris loads. Understanding the 

other driving variables allowed us to develop a more sensitive test for rivers for instance. 

Table 6.4.a provides a framework for understanding which analyses were used for which data 

products. 

Table 6.4.a GAM analyses and their associated results tables and data products.  

Data set Date range Analyses 

completed 

Data products 

from this 

analysis (page) 

Results Table 

(page) 

NOAA 

Accumulation 

2012-2015 Preliminary 

analyses 

Figure 6.4.1.b 

(77) 

Table 6.4.1.b (76) 

  Full covariates Figure 2.2.a (8) Table 6.4.1.c (79) 

 Summer 2016 Correlation 

analysis 

  

NOAA Standing 

stock 

2009-2016 Preliminary 

analysis 

Figure 6.4.2.b 

(83), Figure 

6.4.2.c (84) 

Table 6.4.2.b (82), 

Table 6.4.2.c (85) 

  Full covariates  Table 6.4.2.d (86) 

Table 6.4.2.d (86)  

 Summer 2016    

ICC 2010-2016 Preliminary 

analysis 

Figure 2.3.b 

(23), Figure 

2.3.c (25) 

Table 6.4.3.b (89), 

Table 6.4.3.c (90) 

  Full covariates Figure 2.2.c (15) 

Figure 2.2.d 

(16), Figure 

2.2.e (17) 

Table 6.4.3.d (92) 

CSIRO 2016 Full covariates Figure 2.2.b (11) Table 6.4.4.a (96) 
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For each of the final models developed for the datasets we present a statistical table giving the 
important variables included in the model (see Table 6.4.a). 
 
These tables are all structured in a similar manner to allow evaluation of the results and comparison 

across driving variables and between datasets. Moving from left to right, the tables are labelled as 

follows.  

 

  

The estimate column gives the coefficient that was estimated for each variable. For instance, for a 

continuous variable such as “distance to road”, the Estimate column provides the coefficient that 

the distance is multiplied by in the best fitting model. For continuous variables, such as distances or 

population densities, the coefficients give the slope of linear relationship between a variable and the 

debris density. A negative coefficient means a negative slope to the relationship. For variables that 

are categories, the sign gives the effect of having that category present. For instance, if State is 

Oregon, then the coefficient presented is the effect on the density of debris of being in Oregon. The 

direction of the relationship is as one would expect, positive implies debris densities increase with an 

increase in the variable, negative implies a decrease. The term labeled intercept is the value the 

model would take when all continuous variables are 0, and the categorical variables are all at their 

reference levels. In order to estimate the effect of a categorical variable, one of the categories must 

be designated as the reference level, the coefficients of the other levels thus represent the deviation 

one would expect from the value at the reference level. The reference level for each categorical 

variable is specified in the table captions. The Std. Error column gives an estimate of the uncertainty 

in the value of the coefficient in the Estimate column. The larger the standard error, the more 

uncertain the value. The t value and Pr(>|t|) columns give the statistic and significance test for 

whether the parameter is significantly different from 0. By convention, if the significance test has a 

value less than 0.05 the parameter estimate is considered statistically significant (i.e. different from 

0, and so important). The Median value column gives the median value of the variable that is 

relevant for the coefficient. This value, multiplied by the parameter in the Estimate column is 

displayed in the last column, labelled Effect size. This is a measure of the effect of the variable (at its 

median value) on the outcome. The Effect size can be used to measure the relative impact of the 

different variables included in the statistical model. The importance of the variables can be directly 

judged by the absolute value (i.e. excluding the sign) of the effect size. The sign gives a measure of 

the direction – i.e. given an increase in the variable, does the debris density increase (positive effect 

size term) or decrease (negative effect size term). 

The generalized additive models used the in analysis also include what are known as smooth terms. 

These are functions used to approximate relationships with variables that are not easily represented 

using parametric terms as discussed above. These terms are described at the foot of each of the 

statistical tables, with the following column headings. 

 

In this case the terms generally include a two dimensional function of latitude and longitude, and 

sometimes other functions, such as a cyclic term for time of day or month of the year. These 

Estimate Std. Error t value Pr(>|t|) 

 

Median value Effect size 

edf Ref.df F p-value 
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functions are constrained to have an average value of 0, and allow the model to incorporate 

deviations upward or downward from the model prediction in certain parts of the parameter space. 

For instance, the surface plots used to illustrate the hotspot analysis in Section 2.2 are visualizations 

of the two dimensional latitude and longitude smooth term in the relevant models. The first two 

columns, edf and Ref.df, give a measure of the actual and possible flexibility of the function used in 

the model. The F column gives a test statistic for the term, and the p-value column the measure of 

the statistical significance of the term. Again, by convention if the p-value column is less than 0.05 

the term is considered to be significant.  

 

6.4.1 Modelling total load of debris in the NOAA Accumulation data 
  

NOAA’s accumulation data is based on complete counts of items removed from a fixed site 

repeatedly over time. Survey sites include the west coast of the continental US, Alaska, three sites 

on the east coast of the continental US, and several sites in Hawaii (Table 6.4.1.a and Figure 6.1.3.a). 

 

 

Table 6.4.1.a Accumulation survey total item count by year and state 
 

State 2012 2013 2014 2015 2016 

California 1997 15513 9280 11453 21055 

Oregon 976 1099 3330 3342 225 

Washington 3303 8998 9677 8259 8380 

Alaska NA 149 1368 3124 2218 

Virginia NA 29 1378 2444 3549 

Texas NA NA NA 4267 0 

Hawaii 24833 50547 27226 2467 150 

 

The accumulation data varies widely, with loads distributed between 0 and 375 items/m2/day. Most 

observations are near zero, with a median value of 0.0002 items/m2/day. There are a few high 

outlying values, resulting in a mean of 0.3503 items/m2/day, much higher than the median. Rescaled 

using a log transform, the large number of small observations is clearly visible, with most 

observations below -5 on the log scale.  
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Figure 6.4.1.a Histogram of the total debris flux observations from the NOAA Accumulation data.  
 

 
The total flux data is typical of count data, with most of the values at or near zero, and a few large 

values. This type of data typically requires a specialized distribution for analysis. In this case we use a 

negative binomial distribution, which is often used to model count data with long tails. The negative 

binomial distribution includes a rate parameter, typically the focus of modelling in regression, and a 

scale parameter that adjusts how variable the distribution is. In this case we first fitted a simpler 

model, incorporating a terms for state and county, which allowed us to estimate the scale parameter 

in the distribution. The optimal scale parameter was 0.162. We then used this scale parameter to 

build a more complex mode that incorporated state, and county.  

To evaluate the contribution of a spatial component to the model, we limited the analysis to the 

west coast of the continental United States. In this region the sample intensity is relatively high, in 

comparison with the complexity of the geography. We represented the spatial structure in the data 

using the distance along the coastline, starting from the first sampling site in the Puget Sound area 

and moving west and then southward along the coast, ending at the sampling sites in the California 

Bight (Figure 6.4.1.b, Figure 6.4.1.c, Other factors subplot). 

We found that the three states along the west coast of the US differed significantly, with California 

having the highest debris densities, followed by Oregon, and subsequently Washington (Table 

6.4.1.b, Table 6.4.1.c, Figure 2.2.a left ribbon). The spatial smooth for distance southward in the 

sampling region was highly significant, indicating that there is a significant spatial pattern in the data 

(Figure 6.4.1.b, Figure 2.2.a right ribbon). Sampling sites in the Puget Sound and in the Strait of Juan 

de Fuca had elevated flux values, relative to other locations in Washington. Flux values declined 
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moving southward along the coast to a minimum just north of San Francisco, California, and then 

increased southward toward the California Bight in southern California. It is important to note in 

interpreting these patterns that the spatial component models the residual variation across 

locations in the context of the state coefficients in the model. Thus, although the spatial surface 

shows high values in the Puget Sound area, overall California has higher flux values than 

Washington. The year term in the model was not significant, indicating there is no temporal trend in 

the flux data. 

The two terms that we incorporated in to the model to address sampling effort, the period between 

samples and the number of people assisting in the sampling, were both significant. The amount of 

debris found in surveys decreases with the time since the preceding survey. This suggests that sites 

with small amounts of debris may be getting sampled less frequently than sites with larger amounts 

of debris. An alternative interpretation of this relationship could be that there is periodic 

resuspension or burial of debris that has been deposited on the coast. This mechanism would also be 

expected to lead to a negative relationship between flux and time between surveys. Indeed, Smith 

and Markic found that the amount of debris collected during monthly accumulation surveys was an 

order of magnitude less than the amount of debris collected in daily surveys (2013). However, the 

resuspension/burial mechanism would require that resuspension is episodic, potentially due to 

storms, while deposition is continuous. It might be possible to separate these hypotheses through a 

mixture of considering the ocean and atmospheric conditions between surveys, and discussion with 

survey staff as to scheduling of surveys at sites. 

 

Table 6.4.1.b Parameter estimates for a statistical model of total debris flux in NOAA Accumulation 
samples from the west coast of the continental US. Flux values are log(x+1) transformed.  
Note that the term for State: California is incorporated into the intercept in the model. The median is 
the median value of the relevant covariate, multiplying it times the coefficient gives a measure of the 
effect size of each term. Factors can be taken to have a value of 1 using treatment contrasts, as in 
this case. Smooth terms in the model are constrained to have mean values of zero, and thus are best 
interpreted as deviations around the parametric components. 

 

A. Parametric Covariates Coefficient Std. Error p Value 
Median Median 

Effect 

Intercept -0.17 0.091 0.059 NA -0.17 
State:Oregon -0.004 0.0012 0.00071 NA -0.004 
State:Washington -0.0049 0.0013 0.00029 NA -0.0049 
Year 8.70E-05 4.50E-05 0.054 2014 0.18 
Days since last survey -1.70E-06 8.40E-07 0.046 29 -4.9E-05 
(Number of Persons 
Assisting)2 2.70E-06 4.50E-07 1.90E-09 2 5.4E-06 

      
B. Smooth Components edf Ref.df F p-value  

Month 4.7 8 1.3 0.045  
Distance 8.9 9 15 3.0E-23  
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Figure 6.4.1.b Spatial variation in the flux of debris along the sample sites on the west coast of the 
Continental US.  
The solid line is the coefficient for the effect of location on flux, while the dotted lines are the 95% 
confidence interval on the value of the coefficient at each location. The spatial component of the 
model is constrained to have a mean value of 0, thus this coefficient can reasonably be viewed as 
describing the deviation across the locations from the parametric components of the model. See 
Figure 6.1.4.a for a map of survey locations. 

 

The second term we incorporated into the model to address sampling effort was the number of 

people participating in the survey. There was a small but significant positive relationship between 

the (second power of the) number of people and the density of debris recorded. Examination of the 

residuals from an initial model fit with a first order linear term suggested that the relationship 

between the number of people and the debris observed might be more than linear. We explored a 

more complex relationship using a smooth term, and concluded that a second order linear model 

might provide an adequate fit. Based on this exploration we compared a models including the 

number of people, the number of people squared, both terms, and a smooth of the number of 

people. Using AIC we found the best model to include the second power of the number of people 

participating (AIC N2: -9913.9, N: -9907.4, N + N2: -9912.5, s(N): -9912.6).  
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This result suggests there is a sampling effect, in which more observers at a site are able to identify 

more material within the same area. Moreover, additional observers at a site increase the count of 

debris at the site in a more than linear fashion. One possible mechanism for this phenomena may be 

saturation of observers. If survey sites have much more debris than an observer is able to find, 

within the constraints of the operation such as time, observer fatigue, observer selectivity, then 

adding additional observers would be expected to yield higher density measurements. This could be 

particularly true if larger debris items are less frequent than smaller ones. By definition of the lower 

cut off in sizes of items reported in NOAA data, this is certainly true. This is also likely true for ICC 

data as well (GL, NM, pers. obs.). In this case additional observers might be focusing on smaller 

items, which are more frequent than larger ones. A similar effect has been noted in other debris 

surveys, particularly where volunteers are involved (Hardesty et al. unpublished data), and may be 

related to a general pattern of shifting baselines. In this sense, the size distribution of items collected 

at a site sets a baseline for the search image that survey staff use – adding more staff reduces the 

baseline size as smaller things are identified, resulting in larger counts. One possible avenue for 

investigating this mechanism would be to look for a relationship between the size distribution of 

items at a site and the number of observers participating in the sampling. It would be necessary to 

control for the total amount of debris found at the sites in this case, as one would be trying to 

separate true rarity from saturation of the observers. 

After fitting a model incorporating the full range of covariates, both state and year (from the original 

model) had extremely high effect sizes, but other factors, in particular certain land use categories, as 

well as rail distance and the fraction of people living in poverty within 50km of the site, also 

explained significantly amounts of the variability within the data. Notably, unlike in the simpler 

model, time since last survey was statistically significant, and positively correlated with debris, 

indicating that there is some measurable accumulation of debris between surveys. Thus the model 

can be used to estimate flux, as intended when the data collection protocol was designed. In 

addition, we found that the squared term for the number of observers was not included in the best 

model incorporating the full range of covariates, with a first order term resulting in a better fit 

between the model and data. As demonstrated here, adding explanatory variables can allow the 

model to better fit the data, simplifying some relationships and exposing underlying patterns in the 

data that are masked in simpler models (Table 6.4.1.c, Figure 6.4.1.c).  
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Table 6.4.1.c Table showing values for model of NOAA Accumulation Data (2012-2015).  
Distance to river and railway is included, state (OR, WA) are included, year, distance to roads, land 
use category and socio-economic factors. Factors included in the intercept are State: CA, and 
LandUse: Barren. 
 

A. Parametric Covariates Coefficient Std.Error p Value   Median 
Median 

Effect 

 
(Intercept) -189.099 87.282 0.031 * 1.000 -189.099 

 
River Distance KM -0.005 0.005 0.321 

 
7.496 -0.037 

 
Rail Distance KM 0.063 0.007 0.000 * 104.955 6.583 

 
State  

     

  
OR -47.315 4.212 0.000 * 1.000 -47.315 

  
WA -45.448 3.865 0.000 * 1.000 -45.448 

 
Year 0.111 0.043 0.011 * 2014.000 223.708 

 
Roads 50km -0.002 0.001 0.004 * 466.485 -1.030 

 
Distance to nearest road -0.146 0.027 0.000 * 0.959 -0.140 

 
Land Use  

     

  
Developed, High Intensity 0.273 0.538 0.612 

 
1.000 0.273 

  
Developed, Low Intensity 2.863 0.423 0.000 * 1.000 2.863 

  
Developed, Medium Intensity 7.920 1.722 0.000 * 1.000 7.920 

  
Developed, Open Space 1.206 0.647 0.063 * 1.000 1.206 

  

Emergent Herbaceous 
Wetlands -0.508 0.250 0.042 * 1.000 -0.508 

  
Evergreen Forest 2.118 0.294 0.000 * 1.000 2.118 

  
Grassland/Herbaceous 2.052 0.427 0.000 * 1.000 2.052 

  
Open Water 0.286 0.154 0.064 

 
1.000 0.286 

  
Shrub/Scrub 0.346 0.416 0.405 

 
1.000 0.346 

  
Woody Wetlands 3.406 0.569 0.000 * 1.000 3.406 

 
Number of Persons Assisting 0.041 0.012 0.000 * 2.000 0.081 

 
Population (50km) 0.000 0.000 0.000 * 36325.910 0.395 

 
Watershed area (04) 0.000 0.000 0.000 * 7704.280 -1.307 

 
Poverty fraction (50km) -15.745 4.256 0.000 * 0.976 -15.363 

 
Housing (50km) 0.000 0.000 0.019 * 2115.344 -0.522 

 
Days since last survey 0.002 0.001 0.011 * 29.000 0.057 

         B. Smooth Covariates edf Ref.df F   p-value   

 
s(InterpointDistance) 8.906 8.996 39.917 

 
0.000 * 

 
s(Month) 5.697 8.000 8.212 

 
0.000 * 
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Figure 6.4.1.c Effect sizes for GAM modelling for NOAA Accumulation data (2012-2015)  
Effect sizes give an indication of the relative importance of each model coefficient to the overall 

results of the model.  
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6.4.2 Modelling total load in the NOAA Standing Stock data 
 

The NOAA standing stock data is collected following a different protocol from the NOAA 

Accumulation data. However, it displays similar characteristics in terms of its distribution, most 

observations are concentrated at the lower end of the values near 0, with a few observations at very 

high values. 

 

Table 6.4.2.a NOAA Standing-stock survey total item count by year and state 
 

State 2009 2010 2011 2012 2013 2014 2015 

Alaska 0 0 0 1249 400 16 25 

California 0 0 0 760 1750 2292 1112 

Delaware 0 0 3468 0 0 0 0 

Hawaii 0 0 0 0 614 1285 328 

Maryland 744 1914 6366 0 293 0 0 

Virginia 0 0 0 0 0 593 537 
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Figure 6.4.2.a Frequency distribution of observations in the NOAA Standing Stock data.  
Panel a) the frequency of counts of items in the standing stock surveys. Panel b) the frequency of 
densities of items, based on correcting the counts for the area surveyed. 
 

Spatial coverage of the standing stock surveys is similar to the NOAA Accumulation surveys, although 

there is less comprehensive coverage of the west coast of the continental US (see Figure 6.1.4.a).  

We fit a base model to the data, incorporating explanatory variables for state, month, year, and 

number of people assisting in the survey. The base model only explained 6% of the variation in the 

data, based on a deviance comparison against a null model (Table 6.4.2.b).  

 

 

 

 

Table 6.4.2.b Statistical model of the density of debris recorded in NOAA Standing Stock surveys.  
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A. Parametric Covariates Coefficient Std. Error p Value 
Median Median 

Effect 

Intercept 1400 99 8.70E-44  1400 

State: CA 0.36 0.14 0.0086  0.36 

State: DE -0.9 0.15 5.10E-09  -0.9 

State: HI 1.5 0.18 6.80E-17  1.5 

State: MD 0.56 0.15 0.00018  0.56 

State: VA -0.43 0.17 0.014  -0.43 

Year -0.7 0.049 3.50E-44 2012 -1408.4 

Number of Persons Assisting 0.76 0.041 7.10E-73 1 0.76 

      
B. Smooth Components edf Ref.df F p-value  

Month 7.6 8 39 8.10E-62  

 

However, there appears to be a pattern in the residuals with respect to the number of people 

assisting (Figure 6.4.2.c). 

 

Figure 6.4.2.b Residual variation from the fitted model for the NOAA Standing Stock surveys.  
Note the variability when 1-2 observers are present, but the consistency when 0 or 3-6 observers are 
present. Presumably 0 observers means no additional observers aside from the person recording the 
data. 
 

We refit the model using a smooth term to allow for variation in the results across the number of 

people assisting in a survey, and obtained a related result. There appears to be significantly low 
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densities at sites where one person is assisting, and significantly high values where more than one 

person is assisting (Figure 6.4.2.c). It is likely that the pattern in this smooth term is resulting from 

the model using the number of people as a proxy for variation in survey quality among sites or some 

other variation in density across sites. One clue to this is that when this smooth component is 

included, the model explains a much higher proportion of the total variation in the data (48% based 

on a deviance comparison) and all of the parametric terms become highly significant (Table 6.4.2.c). 

 

 

Figure 6.4.2.c Smooth component for number of people assisting in surveys from the base model for 
debris densities in the NOAA Standing Stock surveys.  
The solid line is the value of the coefficient for the effect of the number of people on the debris 
density, the dotted lines are the 95% confidence intervals on the coefficient. The strong significant 
difference between 0 and 3 observers suggests that the smooth is acting as a proxy for some other 
driving variable. Sites differ significantly in the number of people assisting, with consistent numbers 
at many sites over time. Thus, the number of people assisting could be acting as a proxy for individual 
site identities. 
  
 
We also constructed a unique identification for each site using its latitude and longitude. When this 

term was included in a model it was highly significant for 23 of the sites, and nonsignificant for the 

remaining 21. In this model, the smooth term for the number of people assisting was no longer 

0 1 2 3 4 5 6

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

1
.5

Number of people assisting

C
o
e

ff
ic

ie
n
t 

v
a
lu

e



85 
 

significant, suggesting that the site level variable had captured the variation that had previously 

been represented by term for the number of people. One possible route for exploring this 

mechanism would be to obtain data on the organizations and staff members conducting the surveys. 

It is possible if there is enough overlap among surveys between organizations and individuals that it 

might be possible to estimate the quality of the surveyors, and thus remove its effect. It is also 

possible that the model could be expanded to include a component to model the variance 

introduced through different samplers, and thus control for it in attempting to estimate the effect of 

other variables.  

 

 

Table 6.4.2.c Statistical model of the density of debris recorded in NOAA Standing Stock surveys, with 
the number of people assisting included as a smooth term instead of a parametric term.  
 

A. Parametric Covariates Coefficient 
Std. 
Error p Value 

Median Median 
Effect 

Intercept 1100 110 5.50E-22  1100 

State: CA 0.056 0.14 0.69  0.056 

State: DE 0.12 0.19 0.5  0.12 

State: HI 1.8 0.19 6.10E-22  1.8 

State: MD 1.1 0.17 6.00E-10  1.1 

State: VA -0.54 0.17 0.002  -0.54 

Year -0.54 0.055 3.20E-22 2012 -1086.48 

      
B. Smooth Components edf Ref.df F p-value  

s(Month) 8.4 9 32 2.40E-58  

s(No. of Persons Assisting) 5.7 6 83 2.90E-97  

 

Although there are issues that remain with aliasing in the smooth for the number of people 

participating in the surveys, we moved on to do some preliminary exploration of the effect of 

environmental variables on the density of debris. We incorporated the total length of roads within 

5km of each site as a proxy for the density of urbanization in the area around the site. We also 

incorporated a measure of the urbanization in a larger area around the site by using the residuals of 

the relationship between the length of road within 5km of the survey location and 50km of the 

survey location. By using the residuals we are able to remove any issues with co-linearity between 

the 5km and 50km values, allowing us to distinguish between areas where there is urbanization both 

locally and regionally, locally only, regionally only, and neither locally nor regionally. We also moved 

to using standardized versions of the continuous variables (Year, roads within 5km, roads within 

50km, and number of persons assisting) to improve the model estimation. This model captured 68% 

of the variation in the data, based on a deviance comparison. Based on a goodness of fit test the 

model also has an adequate fit to the data overall, with no major issues due to over-dispersion. 

However, model fit to extreme high values could be improved, if we can identify appropriate 

covariates. 

In terms of interpreting the estimated effects, there do appear to be some differences among the 

states in terms of debris densities. All of the states had lower values than Alaska, with the exception 
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of Hawaii which was not significantly different from Alaska. Debris densities at coastal sites increases 

with the density of roads within 5km of the site, suggesting that debris scales with both access and 

population density at the local scale. Interpreting the effect of residuals between 5km and 50km, it is 

important to understand what the residuals mean. High residuals suggest that road densities at 

50km are greater than 5km, so that urbanisation increases away from the site. Low residuals suggest 

the density at the local scale is higher than the regional scale; for example, small coastal 

communities. In this model, the coefficient for the residuals from the model is negative. Therefore, 

at high residual values, where road densities are greater away from the site than close by, we find 

lower debris levels. Conversely, sites that have more urbanization at the site itself than regionally 

will have higher debris levels. In effect, outlying coastal communities appear to have more debris on 

their coastlines. Of the substrate types, only the medium density one had a significant effect. These 

sites had less debris than the remaining categories, which did not differ from the overall average. 

Overall this model provided a reasonable fit to the data, explaining 69.5% of the variation in the 

data, based on a deviance comparison. 

 

Table 6.4.2.d Statistical model of the density of debris in the NOAA Standing Stock surveys, including 
environmental covariates.  
The substrate covariates are drawn from NOAA’s survey data. Median effects are only shown for 
significant variables. Median effects for factors are reported for the case where each factor is in 
effect. The reference levels, which are incorporated into the intercept term are State: AK, Substrate: 
NA. 
 

A. Parametric Covariates Coefficient 
Std. 
Error p Value 

Median Median 
Effect 

(Intercept) -3.8 0.25 8.00E-51  -3.8 

State: CA -1.5 0.14 2.80E-24  -1.5 

State: DE -1.1 0.22 2.70E-07  -1.1 

State: HI 0.37 0.26 0.15  0.37 

State: MD -0.82 0.17 8.70E-07  -0.82 

State: VA -2.1 0.18 3.20E-30  -2.1 

Year -0.27 0.07 1.00E-04 -0.26 0.07 

5 km roads 2 0.1 2.50E-79 -0.43 -0.86 

5-50 km road residuals -1.8 0.086 1.50E-87 -0.48 0.87 

Substrate: Barren -0.9 0.2 3.80E-06  -0.9 

Substrate: Developed, High -1.4 0 0  -1.4 

Substrate: Developed, Med -2.5 0.29 9.80E-19  -2.5 

Substrate: Wetlands 0.07 0.21 0.74  0.07 

Substrate: Grassland 0 0.7 1  0 

Substrate: Open Water -1.1 0.22 1.30E-06  -1.1 

Substrate: Scrub -0.64 0.22 0.0037  -0.64 

      
B. Smooth Components edf Ref.df F p-value  

s(Month) 7.5 8 30 1.20E-48  

s(No. of Persons Assisting) 5.7 5.9 17 2.20E-19  
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6.4.3 Modelling total load of debris in the ICC Data  
 

The ICC data records the number of people participating, along with the length of the site. There was 

no area calculation possible, as the site shape or dimensions beyond length were not available. We 

found some other minor issues with the data. For instance, for sites with less than 10 total items the 

counts for each category were listed as NA. Given this, sites with low debris or litter levels are likely 

underrepresented in the data we were able to analyse.  

 

Table 6.4.3.a ICC survey total item count by year and state 
 
State 2010 2011 2012 2013 2014 2015 2016 

Alabama 68585 85613 80176 134523 204885 NA NA 

Alaska 17388 13234 7123 13508 11386 NA NA 

Arizona 5153 162 2254 2905 2948 NA NA 

Arkansas 5410 4149 2697 4229 2971 NA NA 

California 886147 854496 616425 757482 1261970 2123 NA 

Colorado 5703 61 5880 2214 NA NA NA 

Connecticut 93432 68516 61838 58617 83963 NA NA 

Delaware 28451 64596 41022 65904 69872 NA NA 

District of Columbia 11023 11183 9578 NA 10471 NA NA 

Florida 606766 555859 583130 809352 715107 0 0 

Georgia 0 97952 65087 135260 110010 6 NA 

Hawaii 165254 179263 210536 189090 231764 NA NA 

Idaho 573 323 1984 2744 134 NA NA 

Illinois 99800 75679 61814 79854 94984 NA NA 

Indiana 28885 13381 18808 27327 34067 NA NA 

Iowa 757 NA NA NA NA NA NA 

Kansas 3977 2506 4483 2974 2292 NA NA 

Kentucky NA NA 910 1368 NA NA NA 

Louisiana 21751 36791 24954 10169 51006 NA NA 

Maine 49800 49700 33347 47986 33144 NA NA 

Maryland 55532 60030 65817 103881 132785 NA NA 

Massachusetts 103358 88607 107418 150176 128284 NA NA 

Michigan 73403 80945 72131 86756 100249 NA NA 

Minnesota 12077 4396 12349 11930 4387 NA NA 

Mississippi 47746 60338 63762 58041 NA NA NA 

Missouri 484 349 1740 1323 2648 NA NA 

Nebraska 9613 6744 4705 20849 14569 NA NA 

Nevada 858 2335 NA 4347 3472 NA NA 

New Hampshire 46726 44768 41401 43539 45503 NA NA 

New Jersey 101583 130378 18085 195947 103367 NA NA 

New Mexico 557 NA NA 234 NA NA NA 

New York 347654 280997 206408 277830 317720 162 NA 

North Carolina 86844 70861 85622 153310 102850 NA NA 

Ohio 53028 34256 53663 69206 75400 NA NA 

Oklahoma 1783 NA NA NA NA NA NA 

Oregon 9433 8911 5800 7545 15020 8002 NA 

Pennsylvania 95921 71338 102791 48722 111304 NA NA 

Rhode Island 131598 114294 124913 87477 157579 NA NA 

South Carolina 120110 116249 48121 155027 103005 185 NA 

South Dakota 565 141 476 846 240 NA NA 

Tennessee NA NA 6652 3945 NA NA NA 



88 
 

Texas 188364 197953 185041 354776 313507 13409 NA 

Utah 7741 7474 7318 3757 868 NA NA 

Vermont NA 4195 2558 659 2890 NA NA 

Virginia 131871 105808 154890 152026 169559 0 NA 

Washington 28173 15689 3253 39661 42371 NA NA 

West Virginia 66 94 170 NA NA NA NA 

Wisconsin 25138 27583 29639 24712 45737 NA NA 

Wyoming 789 1836 927 NA NA NA NA 

 

 

 

Figure 6.4.3.a Pounds of material removed by International Coastal Cleanup staff and volunteers at 
US sites between 2010 and 2015. 
 

We were able to analyse 9,647 clean-up records, across 4,995 sites from the total 13,119 clean-up 

records. We excluded records that were missing distance records, total weight of debris, or were 

outside the window 2010 to 2015. The average site in the ICC data has a load of approximately 100 

lb of material per mile. The values are nearly normally distributed on the log scale (Figure 6.4.3.a). In 

order to focus on the areas with significant sampling effort, we further focused our analysis down to 

sites within the continental USA, reducing the sample size to 9,207 surveys. 
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We modelled the ICC data based on the number of pounds of material per mile surveyed, in order to 

control for variation in the size of different clean-up sites. Our base model included a term for the 

total number of people participating in the clean-up, as a control on sampling effort. We explored 

terms for year and month in order to capture temporal variation in loads. We also explored a fixed 

effect for State, as we wanted to investigate whether different states had significantly different 

debris loads. We included County as a random effect, as it is possible that county level variables, 

such as waste collection rates, could add variation to the data. We also explored the inclusion of an 

underlying spatial surface for the data.  

The ICC model explained 39.3% of the variation in the data, based on a deviance comparison. 

However, the model suffers from over-dispersion in the data, in particular there are a number of 

very high values that we have not been able to capture. Thus, this model should be taken as 

indicative, but parameter estimates are likely to change to some extent if we are able to adjust the 

model to better fit the data, either through incorporation of additional covariates or a change in the 

underlying distribution we are using to model the variation in the data. The model identified 

Massachusetts and Texas has having significantly high debris levels, while the remaining states with 

significant coefficients had lower levels than the overall mean (Table 6.4.3.b). States not listed in the 

table did not differ from the overall mean. There was a negative relationship between the amount of 

debris per mile and year, with a small notable decline over time. This equated to a 5% decline 

between years, based on the change between 2014 and 2015.  

 
Table 6.4.3.b Statistical model of debris per mile surveyed from the ICC data from the United States.  
The full model included all of the states in the ICC data. The reference level for the State term, which 
is included in the intercept, is Alabama. 

A. Parametric Covariates Coefficient 
Std. 
Error p Value 

Median Median 
Effect 

Intercept 110 21 3.30E-08 NA 110 
State: Maine -1.8 0.54 0.00077 NA -1.8 
State: Massachusetts 1.4 0.52 0.0056 NA 1.4 
State: Michigan -1.6 0.52 0.002 NA -1.6 
State: Minnesota -2.5 0.78 0.0017 NA -2.5 
State: Mississippi -2.5 0.59 1.60E-05 NA -2.5 
State: Missouri -1.4 0.68 0.035 NA -1.4 
State: New Hampshire -1.9 0.65 0.0039 NA -1.9 
State: Oregon -1.4 0.6 0.017 NA -1.4 
State: Texas 1.5 0.58 0.011 NA 1.5 
State: Wisconsin -1.4 0.59 0.017 NA -1.4 
Year -0.054 0.01 1.70E-07 2010 -108.54 

      
B. Smooth Components edf Ref.df F p-value  

s(Month) 7.4 8 13 7.1E-20  
s(No. of Persons Assisting) 5.7 6 17 3.2E-19  

 
Note that for brevity, we only include states that have significant coefficients The remaining states 
are: Alaska, Arizona, Arkansas, California, Colorado, Connecticut, Delaware, District of Columbia, 
Florida, Georgia, Hawaii, Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maryland, 
Nebraska, Nevada, New Jersey, New Mexico, New York, North Carolina, Ohio, Oklahoma, 
Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, Utah, Vermont, Virginia, 
Washington, West Virginia, Wyoming. For full dataset, please see Figure 6.1.2.a.  
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We extended the model to include a smooth spatial surface for location within the continental 

United States. We also included a term for the time since the preceding clean-up, as there is a 

possibility that past clean-ups affect the debris found at a site in subsequent clean-ups. This model 

was able to capture 46.5% of the variation in the data based on a deviance comparison (Table 

6.4.3.c). It improved significantly on the simpler model (Table 6.4.3.b), with an AIC of 125305 versus 

132291 for the simpler model. However, despite its improvement over the simpler model in terms of 

fit, there are still issues with poor fit to the overall data. These may be addressed as before with 

extensions of the model to allow for more complex effects from covariates or shifts in the 

distribution used to model the error. Thus, as before the covariates need to be interpreted with 

some caution, as there is a possibility some will shift as the model is improved. 

The states with significant differences from the overall mean in terms of debris loads shifted slightly 

with the inclusion of additional terms in the model. The time interval between clean-ups (in days) 

had a significant and negative effect on the amount of debris sampled in a survey. This could be 

driven by sites with larger amounts of debris being cleaned more often, although other explanations 

are also possible. The negative trend with year remained at nearly the same value as in the simpler 

model.  

Examining the spatial component from the expanded model, we can see that the model finds a 

residual pattern of relatively higher debris at clean-up sites in the central and south-eastern portions 

of the continental United States (Figure 6.4.3.b).  

  

Table 6.4.3.c Statistical model of debris per mile surveyed from the ICC data from the United States.  
The full model included all of the states in the ICC data. The reference level for the State term, which 
is included in the intercept, is Alabama. See Table 6.1.2a for list of all states included in the model. 
 

A. Parametric Covariates1 Coefficient 
Std. 
Error p Value 

Median Median 
Effect 

Intercept 76 23 0.0011 NA 76 
State: Connecticut 3 1.3 0.017 NA 3 
State: District of Columbia 3.3 1.6 0.032 NA 3.3 
State: Maryland 2.2 1.1 0.043 NA 2.2 
State: Massachusetts 3.9 1.3 0.0027 NA 3.9 
State: Pennsylvania 2.6 1.2 0.024 NA 2.6 
StateRhode Island 3.2 1.3 0.012 NA 3.2 
StateVirginia 2.8 1.1 0.0072 NA 2.8 
TimeInterval -0.00025 5.7E-05 9.1E-06 364 -0.091 
Year -0.054 0.01 1.7E-07 2010 -108.54 

      
B. Smooth Components edf Ref.df F p-value1  

s(County) 320 540 1600 0  
te(Longitude,Latitude) 200 240 920 0  
s(Month) 3.2 8 9.2 0.059  

 
1 probabilities far below 0.05, e.g. 1E-20 were rounded to 0 for brevity. 
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We also explored the inclusion of an underlying spatial surface for the data. 

 

Figure 6.4.3.b Coefficient values for the spatial surface included in the model of ICC data.  
The response variable is debris collected per mile of survey.  
The full model is given in Table 6.4.3.c. The plot shows the values of the coefficient from the spatial 
surface. These are constrained to have a mean contribution to the model of 0, thus they can be 
interpreted as spatial deviations from the expected values given the other model components. They 
can be compared directly with the effect sizes in Table 6.4.3.c. Locations with higher coefficient 
values (i.e. more debris) are yellow, those with lower values (i.e. less debris) are red. Green lines are 
isotherms of the coefficient value, with the actual value embedded in the isotherm. The plot is 
constrained to display the surface only in areas within a certain proximity of a data point. 
 
 
After incorporating all of the available covariates, more of the states are significantly different in the 

model. Year still has a negative coefficient, and is one of the strongest terms in the model. Both the 

fraction of poverty and the population residuals also explain a significant amount of the variability in 

the model (Table 6.4.3.d and Figure 6.4.3.c), 
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Table 6.4.3.d Statistical model of debris per mile surveyed from the ICC data from the United States, 
incorporating all possible covariates.  
Included in the intercept are State: AL, SiteType: Fresh Water, and LandUse: Barren. For brevity we 
have only included states with a significant effect, and have removed the following states: AZ, AK, 
CO, ID, IN, IA, KS, KY, LA, ME, MN, MS, MO, MT, NV, NM, NY, OK, OR, TN, TX, UT, WA, WV. 

A. Parametric Covariates Coefficient Std.Error p Value   Median 
Median 
Effect 

 
(Intercept) 110 21 7.70E-08 

  
110 

 
State 

      

  
CA 2.9 1.2 0.014 * 

 
2.9 

  
CT 1.8 0.92 0.057 + 

 
1.8 

  
DE 2.5 0.85 0.0038 * 

 
2.5 

  
DC 4 0.91 1.20E-05 * 

 
4 

  
FL 2.5 0.47 7.70E-08 * 

 
2.5 

  
GA 3.1 0.66 2.40E-06 * 

 
3.1 

  
IL 2.4 1.2 0.048 * 

 
2.4 

  
MD 3.9 0.81 1.10E-06 * 

 
3.9 

  
MA 3.4 0.98 0.00051 * 

 
3.4 

  
NE 6.7 3.2 0.035 * 

 
6.7 

  
NH 3 1 0.0027 * 

 
3 

  
NJ 1.9 0.88 0.028 * 

 
1.9 

  
NC 2.7 0.78 0.00062 * 

 
2.7 

  
OH 2.9 1.1 0.0092 * 

 
2.9 

  
PA 3.3 0.89 0.00018 * 

 
3.3 

  
RI 2.9 0.95 0.0027 * 

 
2.9 

  
SC 3.8 0.77 8.80E-07 * 

 
3.8 

  
VT 3.1 1.4 0.022 * 

 
3.1 

  
VA 4 0.79 3.70E-07 * 

 
4 

  
WI 3 1.2 0.011 * 

 
3 

  
WY 4.2 7.8 0.59 

  
4.2 

 
Total People 0.0014 5.80E-05 5.9E-122 * 25 0.034 

 
Pop 50 km 1.20E-07 4.30E-08 0.0044 * 950000 0.12 

 
Poverty fraction 50km -5.8 2.1 0.0054 * 0.98 -5.6 

 
Unemployed fraction 50km -5.1 1.9 0.0068 * 0.28 -1.4 

 
Working fraction 50km -8.8 2.3 0.00014 * 0.52 -4.6 

 
Site Type 

      

  
Inland -0.41 0.12 0.0011 * 

 
-0.41 

  
Saltwater -0.13 0.049 0.0073 * 

 
-0.13 

 
Year -0.049 0.01 3.20E-06 * 2000 -98 

 
Rail Distance -0.0051 0.0013 9.50E-05 * 19 -0.099 

 
Length Roads in 50km -4.30E-05 3.70E-05 0.24 

 
3400 -0.14 

 
Land Use 

      

  
Cultivated Crops 0.47 0.18 0.0081 * 

 
0.47 

  
Deciduous Forest 0.2 0.095 0.031 * 

 
0.2 

  
Dev., High Intensity 0.13 0.064 0.05 * 

 
0.13 

  
Dev., Low Intensity 0.18 0.055 0.0012 * 

 
0.18 

  
Dev., Med. Intensity 0.38 0.052 4.90E-13 * 

 
0.38 
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Dev., Open Space 0.59 0.062 1.40E-21 * 

 
0.59 

  
Emer. Herb. Wetlands 0.68 0.075 2.00E-19 * 

 
0.68 

  
Evergreen Forest 0.4 0.11 0.00039 * 

 
0.4 

  
Grass/Herbaceous 0.46 0.11 2.50E-05 * 

 
0.46 

  
Mixed Forest -0.23 0.2 0.25 

  
-0.23 

  
Open Water 0.26 0.063 3.50E-05 * 

 
0.26 

  
Pasture/Hay 0.52 0.14 0.00024 * 

 
0.52 

  
Shrub/Scrub 0.48 0.12 0.00011 * 

 
0.48 

  
Woody Wetlands 0.66 0.082 6.30E-16 * 

 
0.66 

 
Population Residuals 5 to 50km -7.30E-07 2.70E-07 0.0074 * 

 
-7.30E-07 

 
Road Residuals 5 to 50km 0.0039 0.00031 1.40E-35 * 

 
0.0039 

         

         B. Smooth Covariates edf Ref.df F   p-value   

 
te(Longitude,Latitude) 254 302 7.9 

 
0 * 

 
s(Month) 1.4 8 0.48 

 
0.05 * 
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Figure 6.4.3.c Effect sizes for GAM modelling ICC data, with full covariate sets included 
Effect sizes give an indication of the relative importance of each model coefficient to the overall 

results of the model.  
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6.4.4 Modelling total load in the CSIRO data (2016) 
 

For the second half of this report, we fit a full GAM model to the CSIRO data (as described in section 

6.4). Various site level factors, including aspect, backshore, and substrate type were significant 

explanatory variables. Notably, the urban backshore, found only at sites 26 and 27 (Figure 2.2.b) had 

a very strong effect. Once again, poverty fraction was significant, as well as work fraction (Table 

6.4.4.a and Figure 6.4.4.a).   
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Table 6.4.4.a Statistical model of debris per mile surveyed from the CSIRO data from the west coast 
of the United States 
This incorporates all possible covariates. Included in the intercept term are Substrate: Clay, State: 
California, Backshore:Cliff, Aspect: N. 
 

A. Parametric Covariates Coefficient Std.Error p Value   
Media
n 

Median 
Effect 

 

 
Intercept -12 13 0.36 

  
-12 

 

 
Substrate 

       

  
Gravel/Pebble 1.4 1.3 0.31 

  
1.4 

 

  
Rock Slab -0.65 1.8 0.72 

  
-0.65 

 

  
Sand 2.8 1.2 0.029 * 

 
2.8 

 

 
State 

       

  
Oregon -23 6 0.00035 * 

 
-23 

 

  
Washington -16 5.9 0.011 * 

 
-16 

 

 
Distance to nearest road km -1.3 0.2 2.1E-08 * 0.47 -0.62 

 

 
Backshore 

       

  
Dune -0.085 0.86 0.92 

  
-0.085 

 

  
Forest/Tree>3m -0.58 2.5 0.81 

  
-0.58 

 

  
Grass/pasture 1.5 0.5 0.005 * 

 
1.5 

 

  
Grass tussock -1.6 1 0.12 

  
-1.6 

 

  
Seawall 4.7 1.1 

7.50E-
05 * 

 
4.7 

 

  
Shrub 0.26 0.61 0.67 

  
0.26 

 

  
Urban -47 10 4.1E-05 * 

 
-47 

 

 
Aspect 

       

  
NW 10 4.3 0.019 * 

 
10 

 

  
S 15 5 0.0047 * 

 
15 

 

  
SE 15 4.9 0.0031 * 

 
15 

 

  
SW 12 4.6 0.01 * 

 
12 

 

  
W 11 4.2 0.0089 * 

 
11 

 

 
Distance to River km 0.048 0.015 0.0025 * 7.4 0.36 

 

 
Length Roads in 50km -0.0037 0.0016 0.027 * 930 -3.5 

 

 
Watershed Population (10) 1.30E-05 4.30E-06 0.0041 * 8200 0.1 

 

 
Watershed Area (10) -0.0014 0.00061 0.027 * 920 -1.3 

 

 
Housing density 50km 0.00041 0.00013 0.0025 * 2900 1.2 

 

 
Working fraction 50km 89 21 9.9E-05 * 0.47 42 

 

 
Poverty fraction 50km -55 8 7.7E-09 * 0.99 -54 

 

 
Unemployment Fraction 50km 41 16 0.014 * 0.36 15 

 

 
Median Age 50km 0.077 0.09 0.4 

 
36 2.8 

 

          B. Smooth Components   edf Ref.df   F p-value 
 

  
s(Location) 

 
8.42 8.86 

 
7.3 1.54E-07 * 
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Figure 6.4.4.a. Effect sizes for GAM modelling CSIRO data, with full covariate sets included 
 

Effect sizes give an indication of the relative importance of each model coefficient to the overall 

results of the model.  
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6.4.5 Interpretation of analyses 
 

We were able to fit informative models to the three data sets, NOAA’s accumulation data, NOAA’s 

standing stock data, and the ICC clean-up data. Each of these datasets presents some challenges in 

model fitting and interpretation. All three data sets have strongly skewed data that requires non-

standard methods for estimation. Moreover, caution is required with model fits, and checking 

goodness of fit is essential. While we have found models that provide adequate fits to the two NOAA 

data sets, the model of the ICC data needs improvement as it in its current form it fails a goodness of 

fit test. 

We were able to establish models that provide baseline estimates and change detection for each of 

the datasets. In all three cases time appears to be a significant component of the models, indicating 

that debris identified or collected is changing over the analysis period. However, all three data sets 

appear to be complicated by sampling issues having to do with observer effort or quality. There 

appears to be a consistent pattern that more debris is identified at a site as more observers are 

added. In some cases there is a suggestion that observer quality varies among sites in a consistent 

way, potentially introducing a bias in the data. Ultimately, given that we can estimate the effects of 

these variables we can standardize the data for them, removing the bias from the estimates. 

However, this effort will be improved by the inclusion of some additional information, such as the 

identity of the organization and individuals collecting the data at each site. 

We extended the models to incorporate environmental effects, both from metadata collected as 

part of the surveys and using additional information we obtained from outside sources. Some of 

these variables appear to be important, in particular we found that road density, which is a proxy for 

population density and access, has a significant effect on the estimates.  

 

6.5 Categorical Debris Analysis 
 

There is a trade-off among the analytical approaches that can be taken to marine debris data arising 

from the NOAA surveys and ICC clean-ups. At one extreme, the data can be aggregated up into a 

total count of items across all categories or a total weight. The advantage of this approach is that by 

using a single category of data modelling efforts can focus on the full complexity of space and time 

patterns, incorporating both driving variables, such as local population size, and nuisance variables, 

such as sampling effort. This is the approach we have taken in Section 6.4 of this report.  

At the other extreme one can model the abundance of items in each of the categories, across the 

tens of categories that are recorded in the NOAA or ICC data. The challenge in this approach is that 

models describing the abundances in each category may differ, leading to a very complex 

interpretation of the data. Furthermore, categories may be positively or negatively correlated. For 

instance, the count of bottles and caps could plausibly be strongly correlated. Thus, while one might 

initially attempt to extend the approach used for modelling debris loads in the previous section to 

numerous categories, it is likely prudent to attempt to either simplify the analysis approach or 

aggregate the categorical data to some extent. After all, if a model is as complex as the data it is 

trying to describe, it is difficult to extract any additional understanding from the modelling effort. 

A range of levels of abstraction are possible in considering models for the categorical data in the 

NOAA and ICC datasets. Most simply, categories could be aggregated, for instance by material type, 
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likely source, function, or other criteria. This data could then be modelled using equations for each 

category. A further reduction would be to use the category frequencies to describe the sites, then 

identify types of sites where the frequencies across the categories differ. One could then attempt to 

model these site types. This could be done using either an equation per type, or potentially one 

equation that describes the relative likelihood of the different types across the sites. Finally, the 

simplest approach would be to consider the frequency distribution across categories, but ignore the 

identities of the categories themselves. An example of this approach would be to rank order the 

categories based on their counts in a sample, and then model the rate of decline in frequency from 

the most to the least common item. This approach could describe changes in sites, such as new 

sources of debris, or differentiate sites with single versus multiple sources. Although it ignores the 

identity of the category for the counts, it does have the benefit that it can be described by a single 

equation, thus greatly reducing the complexity of interpretation.  

Here we have implemented analyses for the two of the three approaches. We have used cluster 

analysis based on polya distributions to examine whether there are identifiable site types, which 

sites belong to which types, and how those types differ. We extended this analysis using regression 

trees to investigate explanatory models for the site types. In this case we did not use the site types 

inferred from the polya distribution approach as our response variable, instead allowing the 

regression tree to distinguish among sites based on the counts in the categories. Regression trees 

are useful for complex data where there are no a priori hypotheses about the variables driving the 

response, as they are data mining tools designed to find (potentially complex) relationships among 

large numbers of explanatory variables and responses. Finally, we aggregated the categories into a 

subset of material types and fitted models for the count in each category as a joint random variable 

using a multivariate normal distribution. This approach allows us to fit a model for the mean value of 

each category simultaneously, but incorporate covariance among the categories.  

Due to the complexity of the analytical task, we focused these analyses on the NOAA accumulation 

data. This data has the best spatial and temporal coverage of the NOAA data sets, without the 

sampling uncertainty occurring in the ICC dataset. We present the cluster analysis, followed by the 

regression tree analysis, and finally the multivariate generalized additive model analysis. We also 

present an analysis of variance within and among sites, which provides some insight into the 

magnitude of noise in the accumulation data and its capacity to distinguish differences among sites.  

 

6.5.1 Cluster Analysis 
 

Cluster analysis creates groupings of data points based on raw data counts. It does not incorporate 

covariates to define the clustering, but is an exploratory technique which identifies structures within 

the data by combining data points into the most homogeneous groups possible.  

We analysed the raw NOAA Accumulation data using the MixPolya package in R. MixPolya fits a 

multinomial Dirichlet distribution with an expectation-maximisation (EM) algorithm. We removed 

material category subtotals, and used the raw Accumulation data counts for each category for each 

transect.  
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First we determined the appropriate number of clusters using an AIC approach. In this approach the 

AIC is determined for models fitting an increasing number of clusters to the data. The ideal number 

of clusters corresponds to the first local minimum AIC value.  

 

Figure 6.5.1.a AIC values for NOAA Accumulation data fit with MixPolya models.  
Index values are equivalent to (number of clusters in model – 1). The minimum index value is 18, 
which indicates that 19 clusters best describe the data. 
 

The above graph (Figure 6.5.1.a) demonstrates that the ideal number of clusters for the 

Accumulation data is 19. We can use the cluster analysis to display the membership of each of the 

groupings (Figure 6.5.1.b, Appendix 1). Accumulation surveys are reasonably well distributed among 

each of the groups (Table 6.5.1.a) with a few clusterings of rare or uncommon data types. 
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Figure 6.5.1.b Frequency distribution of debris categories across clusters for NOAA Accumulation 
data.  
Category types are across the x axis, and on the y axes are the relative frequency of each one within 
the cluster. See Supplemental Information (Chapter 7) for expanded figures for each of the 19 
groupings presented above.  
 

 

Table 6.5.1.a Number of surveys in each of the clusters predicted for NOAA Accumulation data 
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6.5.2 Tree based analysis 
 

The ctree analysis in the R package partykit is used to implement conditional inference trees. 

Essentially the analysis uses covariates to determine the best binary split for the data to increase the 

homogeneity of the response variable(s) within the two subsets of data, then continues to split the 

data further down the “branches” until it cannot find a significant difference between the data 

grouping, at which point it stops until subsequent splits along a branch do not produce a significant 

decrease in heterogeneity among the response variables among the groupings.  

Tree based analysis is similar to cluster analysis, in that it partitions the data into groupings, but here 

the covariates are incorporated into the splitting process, whereas in cluster analysis the groupings 

are done on the response variables (i.e. category frequencies) alone.  

Ctree is a useful tool for data exploration, and can produce a graphical representation of the factors 

relevant to explaining the variability in the data. However, while trees can identify complex 

predictive relationships, they can be difficult to interpret due to this complexity. Here we present 3 

different tree models (Figure 6.5.2.a to Figure 6.5.2.c). The main point of the figures is to 

demonstrate the difficulty in delineating clear patterns due to the timing of data collection, the 

expanse or geographic extent, the method, and, importantly, the variability of the debris items 

observed and recorded. 

For tree analyses, we removed material category subtotals, and used the raw Accumulation data 

counts for each category for each transect. Similarly to the total flux analysis, we wanted to evaluate 

the contribution of a spatial component to the model, so we limited the analysis to the west coast of 

the continental United States. We modelled the spatial component in two different ways; first using 

the distance southward along the coast from the northernmost site (Interpoint Distance), and also 

using an index corresponding to the sites in order (PointIndex). The two different analyses yielded 

substantially similar results, so here we present the PointIndex models.  

Our first tree Model (Tree 1) incorporates the covariates month, state, year, pointindex, slope, 

number of persons assisting, total debris, and road distance. It splits primarily on county, and 

secondarily on total debris. The county level differences may be geographic, or may relate to policy 

differences among counties. In order to determine additional driving factors, we created a second 

tree model, where we removed County. We also left season out, as it should be accounted for within 

the Month factor. 
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Figure 6.5.2.a Ctree analysis of NOAA Accumulation data.  
The model includes all data categories as well as ~ County + Month + State + Year+ PointIndex + Slope + Season + NumberofPersonsAssisting + TotalDebris + 
Rdist. 
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Tree 2 splits almost exclusively on Total Debris load, indicating that the categorical composition of the debris will change as the total amount of debris 

collected changes (Figure 6.5.2.b). We additionally investigated a third model, which does not incorporate total debris load. 

 

 

Figure 6.5.2.b Ctree analysis of NOAA Accumulation data.  
The model includes all the categories of data reported as well as ~ Month + State + Year+ PointIndex + Slope + NumberofPersonsAssisting + TotalDebris + 
Rdist. Note that this tree splits almost exclusively on Total Debris load. 
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In contrast, Tree 3 (Figure 6.5.2.c) splits along a combination of geographic parameters and the distance to the nearest road.  

 

 

 

Figure 6.5.2.c Ctree analysis of NOAA Accumulation data.  
Model: All categories ~ Month + State + Year+ PointIndex + Slope + NumberofPersonsAssisting + Rdist. Tree 3 splits on a combination of geographical 
parameters (State, PointIndex), and distance to nearest road. 
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6.5.3 Generalized Additive Models  
 

Because the GAM analysis has a term for each covariate for each category, using the entire suite of 

categories was both computationally expensive as well as cumbersome and difficult to interpret. 

Therefore we analysed only the subtotals of the NOAA Accumulation data for each material category 

(Plastic, Metal, Glass, Rubber, Processed Lumber, and Cloth). We log transformed the data so that it 

would meet the requirement for normality. Generalised Additive Models (GAM) are an alternative to 

generalised linear models (GLM) that allows for non-parametric relationships, called smooths. A 

GAM can be formed as a combination of parametric terms and smooth terms. The parametric terms 

are the same as those in a linear regression, which assess whether the data can be fit to a linear 

function, while the smooth terms allow the model to select any non-linear function that best fits the 

data. It presumes that data points close to one another (e.g. in time, space, population size or other 

covariates) will be more similar to each other than those farther apart. Smooths are particularly 

useful for spatial data and for circular data (such as time of day or time of year) where the beginning 

value is expected to be the same as the end value (e.g. December 31 and January 1). 

Because this model was not hypothesis driven, we used it as an exploratory tool to assess significant 

factors within the data. We proposed several covariates in our global model, including Number of 

persons assisting in clean-up, County, Total Debris, Month, Distance to nearest road, and Point 

Index. 

We attempted two different methods of model selection: 

First we began with a global model that included all terms as smooths. We then removed all non-

significant smoothing terms from the model. Subsequently, we tested whether terms could be 

moved to a parametric form and still retain significance. The resulting model suggests a linear 

relationship between the following terms: 

Plastic (PointIndex and Rdist) – there is a very small negative relationship between plastic and both 

point index and Rdist, indicating decreasing amounts of plastic as these values increase (i.e. slightly 

more plastic in northern surveys, and as you get closer to roads).  

Glass (PointIndex and Rdist) – there is a very small positive relationship between glass and both 

values, indicating increasing amounts of glass in more southern surveys, and further from roads.  

Rubber varies negatively with PointIndex and total debris (lower amounts of rubber in northern 

surveys, and when there is a high amount of debris), and directly with # people assisting and road 

distance (higher amounts of rubber when more people are conducting the beach clean-up, and 

higher amounts further from roads).  

Processed lumber varies positively with PointIndex (higher values further north) and negatively with 

road distance (higher amounts closer to roads). 

Cloth varies positively with Point Index (higher amounts further south) and negatively with number 

of people (fewer items of cloth with increasing numbers of surveyors). 

The significant smooth terms include County (for all categories) and Month (for Plastic and Metal), 

as well as total debris and # of people for the plastic category. 
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Table 6.5.3.a Parameter estimates for a statistical model of debris material types in samples from the 
west coast of the continental US.  
Count values are log(x+1) transformed. The median is the median value of the relevant covariate, 
multiplying it times the coefficient gives a measure of the effect size of each term. Factors can be 
taken to have a value of 1 using treatment contrasts, as in this case. Smooth terms in the model are 
constrained to have mean values of zero, and thus are best interpreted as deviations around the 
parametric components. 
 
PARAMETRIC TERMS     

  Estimate Std. Error z value Pr(>|z|) 

PLASTIC     

 (Intercept) 7.61E+00 1.51E-04 5.04E+04 0.00E+00 

 PointIndex -9.37E-06 3.74E-06 -2.51E+00 1.22E-02 

 Rdist -1.37E-05 5.15E-06 -2.66E+00 7.86E-03 

METAL     

 (Intercept).1 1.86E+00 1.19E-02 1.56E+02 0.00E+00 

GLASS     

 (Intercept).2 2.17E+00 2.11E-01 1.03E+01 6.85E-25 

 PointIndex.2 1.19E-02 5.51E-03 2.16E+00 3.09E-02 

 Rdist.2 1.61E-02 8.60E-03 1.87E+00 6.11E-02 

RUBBER     

 (Intercept).3 7.49E-01 8.98E-02 8.34E+00 7.20E-17 

 PointIndex.3 -1.22E-02 1.94E-03 -6.26E+00 3.78E-10 

 # People 7.68E-03 2.16E-03 3.55E+00 3.87E-04 

 TotalDebris.3 -7.15E-05 3.09E-05 -2.31E+00 2.07E-02 

 Rdist.3 2.04E-01 2.49E-03 8.20E+01 0.00E+00 

PROCESSED LUMBER     

 (Intercept).4 -4.16E-01 9.67E-02 -4.30E+00 1.68E-05 

 PointIndex.4 1.58E-02 2.10E-03 7.51E+00 5.98E-14 

 Rdist.4 -1.07E-02 2.62E-03 -4.11E+00 4.02E-05 

CLOTH     

 (Intercept).5 2.37E-01 1.86E-01 1.28E+00 2.02E-01 

 PointIndex.5 9.40E-02 1.72E-03 5.47E+01 0.00E+00 

 # People -7.15E-03 1.99E-03 -3.60E+00 3.20E-04 

      

      

 Smooth terms edf Ref.df Chi.sq p-value 

PLASTIC     

 s(# People) 1.005 1.010 2.598 0.108 

 s(County) 16.785 19.000 209.950 0.000 

 s(TotalDebris) 2.538 3.136 7.686 0.061 

 s(Month) 4.034 8.000 61.950 0.000 

METAL     

 s.1(Month) 7.610 8.000 1187.945 0.000 

GLASS     

 s.2(County) 15.223 19.000 557.250 0.000 

RUBBER     
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 s.3(County) 17.999 19.000 13648.506 0.000 

PROCESSED LUMBER     

 s.4(County) 18.031 19.000 7857.030 0.000 

CLOTH     

 s.5(County) 18.908 19.000 13337.279 0.000 

 

 

6.5.4 Variability within and between groups 
 

To provide some insight into the variability within and between sites, we used NOAA Standing Stock 

data, because multiple transects were collected at each site at each point in time, allowing us to 

calculate the variability at each individual site and compare that to the variability between all of the 

sites. We looked at two ways of partitioning the data. First by letting cluster analysis partition the 

data into similar clusters and second by calculating the within groups variability and the between 

groups variability.  

 

Cluster analysis came up with an optimal 7 clusters: 

 

Figure 6.5.4.a AIC values for NOAA Standing Stock data fit with MixPolya models.  
Index values are equivalent to the number of clusters in model – 1. The first minimum index value is 
6, which indicates that 7 clusters best describe the data. 
 

 

Table 6.5.4.a Number of individual transects in each of the clusters predicted for NOAA Standing Stock data 

 

CLUSTER 1 2 3 4 5 6 7 

# 
TRANSECTS 

1596 158 27 90 39 16 32 
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Figure 6.5.4.b Frequency distribution for cluster analysis for NOAA Standing Stock data.  
Category types are across the x axis, and on the y axes are the relative frequency of each one within 
the cluster. 
 

To compare the variability within and between sites, we investigated whether different transects 

from the same survey site/date primarily clustered with each other or were split between clusters. 

Out of the 550 unique site/date combinations (for the survey sites with at least 3 transects in each), 

409 were assigned to a single cluster, 126 to two different clusters, and 15 to three different 

clusters. This means the majority of site/date combinations are similar enough that the transects for 

each are all lumped into a single category, whereas a much smaller subset of site/date combinations 

divide into two or three clusters. Essentially, the results from this analysis finds that for most surveys 

(unique site/date combinations), there is not a large degree of difference between the individual 

transects at that site. This analysis gives an indication of whether transects are more similar to one 

another within a site than between sites. However, because the distribution of the clusters is very 

uneven, with about 80% of transects falling within a single cluster, we also calculated a 

mathematical measurement of variability.  

For each category of debris we calculated the variability within a site location, and compared it to 

the variability between sites. We also calculated a measurement of separation (Between group 
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variability divided by within group variability), which indicates how distinct the individual sites are 

from one another, for each different category. This can be useful in thinking about survey design, in 

that if sites are strongly separated then their patterns are likely to be informative about large scale 

differences in sites, for instance urban/rural or near a river outflow versus far. However, if variation 

at the within site level is as large as between site variation, it suggests that local factors, within the 

survey site might dominate patterns. For instance, locations nearer a public access point might have 

more litter items than those further.  

The four most highly separated items are glass, glass fragments, buoys, and plastic and hard plastic 

fragments. There is no clear way to identify factors driving these high separations, but some 

speculation does seem possible. Glass is typically in high abundance on hard substrates, such as rock 

outcrops or boulder sites, as breakage appears to be common and people may be less likely to 

remove fragments. Similarly, buoys and related materials are typically concentrated on coastal sites 

near fishing or aquaculture industries. Finally, spatial variation in hard plastic may be a result of 

differential levels of ocean transport in different locations. We previously found that the glass to 

plastic ratio was a good proxy for land-based versus ocean-based sources of debris at coastal survey 

sites.  

 

Table 6.5.4.b Measurements of within group variability (VarWithin), between group variability 
(VarBtwn) and separation (Separation).  
Separation is calculated as VarBtwn/VarWithin, and provides a measure of how distinct individual 
sites are from one another. 
 

Category Var Within Var Btwn  Separation 

Plastic 249.35 10967.56 43.99 

Hard.Plastic 68.25 2613.35 38.29 

Foamed.Plastic 61.71 503.92 8.17 

Filmed.Plastic 4.48 31.48 7.02 

Food.Wrappers 4.39 61.21 13.96 

Beverage.Bottles 1.08 11.41 10.51 

Other.Jugs.Containers 0.16 3.02 18.64 

Bottle.Container.Caps 3.15 67.09 21.27 

Cigar.Tips 0.17 3.49 19.97 

Cigarettes 1.24 20.71 16.67 

Disposable.Cigarette.Lighters 0.03 0.15 4.54 

X6.Pack.Rings 0.00 0.00 0.70 

Bags 0.08 0.69 8.22 

Plastic.Rope.Net 1.44 13.28 9.20 

Buoys...Floats 0.68 41.91 61.60 

Fishing.Lures...Line 1.98 29.36 14.80 

Cups 0.71 1.38 1.94 

Plastic.Utensils 0.11 0.38 3.51 

Straws 0.37 5.14 13.78 

Balloons 0.08 0.35 4.38 

Personal.Care.Products 0.12 0.63 5.33 

Other 4.15 86.90 20.96 
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Metal 0.28 0.90 3.22 

Aluminum.Tin.Cans 0.04 0.11 2.67 

Aerosol.Cans 0.00 0.01 3.97 

Metal.Fragments 0.19 0.38 2.02 

Other.1 0.04 0.09 2.23 

Glass 0.76 39.55 52.38 

Beverage.Bottles.1 0.03 0.73 22.61 

Jars 0.00 0.04 7.33 

Glass.Fragments 0.67 35.68 53.25 

Other.2 0.00 0.01 1.52 

Rubber 0.18 2.17 12.02 

Flip.Flops 0.01 0.10 7.10 

Rubber.Gloves 0.00 0.00 0.56 

Tires 0.00 0.01 2.68 

Rubber.Fragments 0.13 1.64 12.26 

Other.3 0.02 0.05 2.43 

Processed.Lumber 2.49 32.96 13.22 

Cardboard.Cartons 0.00 0.01 1.25 

Paper.and.Cardboard 0.80 1.57 1.96 

Paper.Bags 0.00 0.00 0.67 

Lumber.Building.Material 1.58 29.73 18.79 

Other.4 0.04 0.09 2.26 

Cloth.Fabric 0.25 4.30 17.48 

Clothing...Shoes 0.02 0.10 5.13 

Gloves.non.rubber. 0.00 0.00 0.27 

Towels.Rags 0.00 0.00 0.74 

Rope.Net.Pieces.non.nylon. 0.12 2.68 22.86 

Fabric.Pieces 0.04 0.19 4.69 

Other.5 0.04 0.03 0.72 

Unclassified 0.06 0.31 4.83 

 

 

6.6 Interpretation of analyses 
 

6.6.1 Cluster Analysis 
 

Cluster analysis is one way to determine whether there are distinct “types” of debris surveys; for 

example, sites that are dominated by a particular type or types of debris. Here we used a model 

based on a multinomial distribution to look for patterns in the NOAA Accumulation data, by 

clustering sites with similar frequency distributions of items. However, likely because of the large 

number of categories and surveys, the cluster analysis yielded an optimal number of 19 clusters, 

which is too many to have much functional utility for analysis. With a smaller number of clusters, it 

would be easier to draw conclusions about site types, and focus specific remediation actions based 
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on the clustering. For example, sites dominated by lumber or large metal objects might be illegal 

dump areas, and one could target education or signage in the area to combat illegal dumping.  

However, in this case, it is difficult to determine strong patterns in the clustering data. There were 

some clusters comprised almost exclusively of single objects, such as metal fragments, lumber, 

cigarettes, (e.g. clusters 2, 9, 16). Other surveys had one dominant object and an assortment of 

other items (e.g. clusters 4, 6, and 8). It is possible that because accumulation surveys are all 

conducted at very similar sites (e.g. flat sandy shorelines), there is actually relatively little variation 

between site types, which is why the clusters aren’t separating in a more defined way.  

In this case, cluster analysis might prove more useful if the items were grouped prior to analysis for 

simplicity. For instance, items could be grouped by source type, such as consumer items, fishing 

items, and illegal dumping items. A key consideration in this approach would be to use the subset of 

items for which categories can be assigned unambiguously.  

 

6.6.2 Tree Models 
 

The tree model shows that both County and Total Debris are significant predictors of the categorical 

composition of the debris found, however, there are some challenges in interpreting these two 

variables. While County may represent real differences, however, it is difficult to draw general 

understanding from this variable. County could be important due to differences in policies, 

populations, or other factors at the county level. However, it could also be important as it is 

correlated with spatial proximity among samples, and samples that are close together are likely to 

be similar. Total Debris is likely appearing due to a mixture of sampling error and true rarity of some 

categories. As the amount of debris collected at a site decreases, the chance of encountering rare 

categories decreases rapidly. Thus sites with less debris will likely only have a subset of categories 

with nonzero counts. Due to this sampling issue, Total Debris is appearing as a highly informative 

covariate in the first and second tree models, but is likely mostly representing sampling error. 

Excluding County and Total Debris from the analysis, we found that the spatial factors of Point Index 

and State, as well distance to the nearest road, were also significant covariates. These variables 

appeared as important in the earlier analysis of total load, and likely represent real patterns in 

driving variables among the sites.  

Tree models will indicate which covariates are significant predictors of category composition, but it 

is more challenging to interpret the effects of these covariates on individual categories. The tree 

model does estimate the frequency distribution across the categories for each of its terminal nodes, 

which are the final sets of homogenous sites.  

The GAM model provides a more nuanced understanding of the significance of these variables to 

different category types. Certain types of debris (plastic and processed lumber) are more prevalent 

when the nearest road is closer to the survey site, while others (glass and rubber) are more 

prevalent with increasing distance to road site (i.e. the further a site is from the road). There are also 

differences in the prevalence of categories along a spatial gradient. One factor that came out as 

significant at one node of the tree, as well as in one factor in the model (cloth), was Number of 

People Assisting. As previously discussed, this may be a result of observer saturation.  
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6.6.3 Variation among sites 
 

The analysis of cluster membership within and between sites and the separation analysis based on 

within and among site variance both demonstrate that there is higher variability between sites than 

within. The cluster analysis suggests that metrics describing the rank order distribution of category 

frequencies might be useful in describing the sites. Most sites cluster as having relatively even 

distributions of items across the categories, associated with group 1 in the analysis (Figure 6.5.1.b, c 

supplement). Other site types are have one or a few particularly common categories, with most 

other categories at relatively low counts, such as group 7 (Figure 6.5.1.b, c supplement). 

The separation analysis indicates that some categories have quite high separation, including: plastic, 

hard plastic, other jugs, bottle container caps, cigar tips, cigarettes, buoys and floats, other plastic, 

glass, beverage bottles, glass fragments, building material, and cloth fabric, rope net pieces. Six 

categories (six pack rings, rubber gloves, paper bags, non-rubber gloves, towels, other fabric) had a 

separation of less than zero, meaning that the within site variability was higher than the between 

site variability. It may be useful to use the category separations to tune data collection and/or 

analysis, as categories with higher separation have more utility for explaining between site 

variability. These separation values might also be driven by specific characteristics of the items. For 

instance, glass has a very high separation. This could be a function of some sites being easy to 

transport glass to, e.g. near picnic areas, and having a high chance of breakage and thus 

abandonment, e.g. being particularly rocky. Thus, the characteristics of the sites lead to a process 

with high variability among sites, but low variability within.  
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7 Supplemental Information 
 

Below and in the pages that follow are each of the 19 groupings from cluster analysis based on the 

NOAA accumulation data (as per Figure 6.5.1.b). On the x axis are the category types and on the y 

axes are the relative frequency of each category within the cluster.  
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