

Global Plastic Leakage Baseline Data Summary Report, Viet Nam

Report for fieldwork conducted May 2018

CSIRO Marine Debris Team* in collaboration with GreenHub+

February 2021

Citation

CSIRO Marine Debris Team and GreenHub (2021) Global Plastics Leakage Baseline Data Summary Report, Viet Nam. CSIRO, Australia. EP197486.

- * CSIRO Marine Debris Team contributors included (in alphabetical order) Britta Denise Hardesty, Leigh Keen, TJ Lawson, Tim Reid, Qamar Schuyler, and Chris Wilcox.
- ⁺ GreenHub contributors included (in alphabetical order) Ha Nguyen, Han Nguyen, Trang Nguyen, Ha Ngan Ha and Hoa Tran.

Copyright

© Commonwealth Scientific and Industrial Research Organisation 2021. To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO.

Important disclaimer

CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.

CSIRO is committed to providing web accessible content wherever possible. If you are having difficulties with accessing this document please contact csiroenquiries@csiro.au.

Foreword

Plastic volume in the ocean is increasing rapidly, affecting wildlife, economies and potentially human health. Recent model projections suggest that somewhere between four and twelve million tons of plastic flow into the world's oceans each year, with much of this waste coming from urban centres (Jambeck et al. 2015). However, to date there has been very little data collected to empirically document the existence and extent of these plumes and to validate the model estimates.

Through this collaborative field-based project, CSIRO is developing the first global, empirical baseline estimate of mismanaged waste entering the coastal and marine environments near major urban centres in countries around the world. The project aims to identify links between landbased waste management and pollution entering the marine environment. The data collected is helping to clarify the magnitude of this pollution to the public, to industry and to policy makers. Learnings from the project can serve as a basis for decision making, and to support social pressure for investment in infrastructure and regulation for improved waste management. We hope the results can also be applied to engage with industry, the retail sector, government and consumers alike regarding best-practices. We also aim to improve waste management and increase the value of plastic to reduce poverty and create alternative livelihoods that are socially, culturally, economically, and environmentally appropriate and sustainable.

We are carrying out this research in countries all over the world, and thus far have surveyed major metropolitan centres in numerous countries in the Asia Pacific region, as well as South America and Africa. In Viet Nam, CSIRO and GreenHub have joined together to help achieve this goal, with the support of numerous volunteers.

Contents

ord		III		
wledgm	ents	vi		
Introduction				
1.1	A Partnership in Action	9		
1.2	Site Selection and Study Area	10		
Methods				
2.1	Analysis	14		
Results and Discussion				
3.1	Coastal Surveys	18		
3.2	Inland Surveys	21		
3.3	River Surveys	24		
3.4	Trawl Surveys	26		
Summa	ary	27		
dix A		28		
nces		29		
	wledgmed Introduction 1.1 1.2 Method 2.1 Results 3.1 3.2 3.3 3.4 Summardix A	Introduction 1.1 A Partnership in Action 1.2 Site Selection and Study Area Methods 2.1 Analysis Results and Discussion 3.1 Coastal Surveys 3.2 Inland Surveys 3.3 River Surveys 3.4 Trawl Surveys Summary dix A		

Figures

Figure 1. Location of study region10
Figure 2. Location of completed surveys along the selected region of coastal Hai Phong, Viet Nam. The yellow points are coastal sites, the black points are inland sites, the blue points are river sites, and the red points show where trawl surveys were conducted
Figure 3. The ten most abundant debris items (fragments) found across the coastal, inland, and river surveys combined
Figure 4. The ten most abundant debris items (whole) found across the coastal, inland, and river surveys combined
Figure 5. The mean transect density of debris found in the coastal, inland river surveys 17
Figure 6. (L) An example of a coastal debris survey site in Viet Nam. (R) One of the more challenging coastal survey sites in Viet Nam
Figure 7. The log number of items per lineal metre for coastal sites in Viet Nam19
Figure 8. Model average effect size plot for coastal surveys. Colour represents the p-value significance level, and the lines are the standard error for each term. Triangles denote a positive coefficient for a given factor, whereas circles denote a negative coefficient. The effect size is calculated as the median value of the factor times its coefficient. The reference levels are None for windshore (direction of wind relative to the shore), east for wind compass (the direction of the wind), concave for trl_shape (the shape of the shore in the survey area) and croplands for Landuse.
Figure 9. (L) An example of an industrial inland site in Viet Nam. (R) An example of an inland site in Viet Nam that is heavily vegetated
Figure 10. The log number of items per square metre for inland sites in Viet Nam22
Figure 11. Model average effect size plot for inland surveys. Colour represents the p-value significance level, and the lines are the standard error for each term. Triangles denote a positive coefficient for a given factor, whereas circles denote a negative coefficient. The effect size is calculated as the median value of the factor times its coefficient. Reference levels are Agriculture for site type, and Urban for land use.
Figure 12. (L) An example of a river transect site in Viet Nam. (R) An example of a river site with visible debris scattered
Figure 13. The log number of items per lineal metre for river sites in Viet Nam25
Figure 14. The total number of items per square kilometre for trawl sites in Viet Nam 26

Acknowledgments

This work has been supported by the GreenHub and CSIRO Oceans and Atmosphere, with funding support from the Oak Family Foundation, Schmidt Marine Technologies and the PM Angell Family Foundation. We thank the numerous participants for their efforts in the training sessions, field work and positivity in the field: Trang Nguyen, Hoa Chan, Ha Nguyen, Ha Ngan Ha and Han Nguyen. We also thank the citizens, government employees and interested members of the public who are committed to reduce litter, marine debris, and illegal dumping in the environment.

Introduction 1

Increasingly considered a tragedy of the commons of the 21st century (Vince and Hardesty 2016), plastic pollution is a wicked problem (Landon-Lane 2018; McIntyre 2020). Trash knows no geopolitical borders, moving with people, rivers, through the landscape and ultimately, if not managed properly, it can be lost into the global ocean. We know that mismanaged waste results in negative social, economic and ecological outcomes. There is substantial value in collecting data to help improve our understanding of the sources and drivers of why, when, where, and how waste is lost to the environment. Furthermore, knowing how waste moves through the environment, the impact our waste has on people, communities, wildlife and economies, and how we can implement policies to result in better outcomes can arm us with the knowledge to make better decisions. Collected properly and consistently, data affords us a metric, a tangible means of measuring change through time and space. This is fundamentally important to understand how effective new actions, activities and legislative measures are in terms of reducing waste entering the environment.

In late 2016, CSIRO was successful in securing funds to embark on a world first project which aims to quantify how much waste is leaking to the environment, where it is entering the environment, and to identify interventions that may be successful in stemming the flow of plastic pollution from land to the sea. The primary objective of the project is to use field sampling and mathematical modelling to document the distribution of plastic in the ocean, on the coast and in the nearshore environment generated by major urban centres and surrounding areas that have been identified as having significant waste mis-management losses into the coastal/marine environment. We initially targeted 6-8 major metropolitan areas in different countries around the world, with a focus in South East Asia. We were focusing on this part of the world because it has been identified as a region of high waste losses to the environment (Jambeck et al. 2015). Furthermore, recent work has suggested that many of the world's major polluting rivers are located in Asia (Lebreton et al. 2017). Rivers are increasingly recognized as critical conduits to plastic waste entering the oceans (Wagner et al. 2019), further highlighting the need for research such as this where empirical data is used to ground-truth predictions and inform model-based estimates of waste in the environment. However, this does not mean that we want to overlook other critical countries and regions of the world where mismanaged waste is also a significant issue.

Understanding the transport of plastics from land into coastal and marine systems is critical for modelling the distribution and trends of plastic in the ocean, estimating its impact on regional economies near sources, and clarifying the magnitude of this pollution to the public, to industry, and to policy-makers. With a robust, comparable baseline of information, we not only are poised to evaluate policy effectiveness and change through on-ground activities at local, national and international scales, but we are starting to see these changes happen.

A further objective of the global plastics leakage project is to increase the capacity and skillset for on-ground partners in multiple countries, helping to build the breadth and depth of skills to monitor coastal and ocean health beyond the life of this project. The more people are armed with knowledge and skills across jurisdictions, the better equipped individuals, communities and governments will be to make the decisions needed to ensure the best outcomes possible to ensure growth, health, wealth and well-being and ensure sustainability and a reduction in waste leaking to the environment.

We hope that the results from this work will serve as an international baseline against which progress can be gauged through time and space. Ideally, governments from all levels, from local or municipal to state and national will be able to use the information from this work to inform or underpin policies and decisions that will ultimately lead to a reduction in waste entering the environment. We also hope that the results can provide opportunities to engage with industry regarding best-practices and product identification for major brands which are frequently lost into the environment.

1.1 A Partnership in Action

In May 2018, CSIRO staff, with support from GreenHub, worked together with volunteers to quantify the amount of debris coming from land in the metropolitan and surrounding regional areas of Hai Phong, Viet Nam, and arriving at the coast. The Hai Phong region was selected based on discussion with local partners. The area represented an urban region of significance within the country and was identified as an area that could be sampled within a reasonable time frame (~ 2 weeks) with the team of volunteers. Furthermore, the region or watershed also has a river system which could transport debris to the sea, and hence was deemed appropriate in the context of the overall global project. Our ultimate goal was to develop a baseline measurement of debris along an approximately 200 km stretch of coastline and the surrounding riverine and inland areas of Hai Phong, Viet Nam. To this aim, we conducted field surveys that included coastal, inland, river-side, and trawl debris surveys following a statistically robust and user-friendly sampling methodology. With a few days of training, the crew was ready to tackle the challenge. In 2019, GreenHub staff re-surveyed the original sites as well as an additional 10 additional sites.

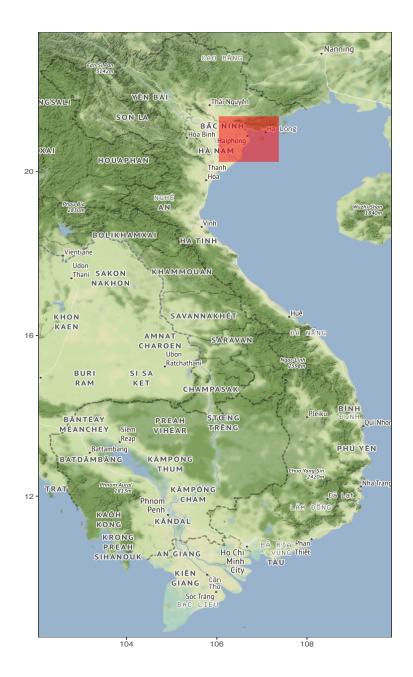


Figure 1. Location of study region.

1.2 Site Selection and Study Area

Our target area included the metropolitan and regional areas surrounding Hai Phong. We selected a region roughly 200 km long from the town of Cám Phá in the north towards Bai bin Con Vánh in the south. The inland and river sites surveyed extended inland to the Phuong Khe region, with some riverine sites etending as far west as the Duong River in the Bac Ninh Province.

Survey locations were provided by CSIRO to partners in Viet Nam, so they could be assessed for suitability and any alterations needed could be made prior to arrival to conduct fieldwork. Sites were selected based on a suite of criteria and were intended to sample across the range of a variety of covariates, including population density, land use type, road and transportation networks. We aimed to strike a balance between sites that were representative across the watershed region we were surveying and ensuring travel times between sites were not so long as

to make field work impractical. While all the sites were selected in advance, occasionally chosen site locations could not be accessed in the field. This could be due to a range of reasons, including that the points fell on private land or were unsafe to access. In these instances, surveyors chose the nearest location that was accessible to and in a similar environment as the originally designated site.

During the first four days, participants and trainers worked together to ensure all participants received consistent, intensive training on how to collect, record, report, and make decisions regarding debris items, site selection characteristics, and other key factors required for consistency in data collection for four different survey methods (coastal, inland, river, and trawl). Following the training period, we divided into a number of teams to carry out fieldwork safely and securely across the chosen study region. The group successfully completed surveys at a total of 79 sites (Figure 2). In 2019, GreenHub surveyed a total of 89 sites.

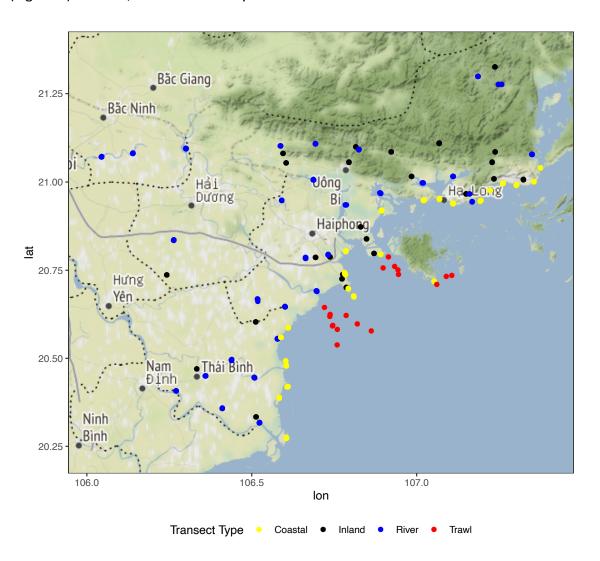


Figure 2. Location of completed surveys along the selected region of coastal Hai Phong, Viet Nam. The yellow points are coastal sites, the black points are inland sites, the blue points are river sites, and the red points show where trawl surveys were conducted.

1.2.1 Coastal sites

Coastal sites are defined as those sites that occur directly up to the ocean's edge. They could encompass any of a number of substrates and were not limited to sandy beaches. Coastal sites were selected between Cám Phá to the north of Hai Phong, extending southward to Bai bin Con Vánh, at approximately 5km intervals along the coastline. We selected this interval because this provided us with an adequate or appropriate number of sites to be representative of the coastline as a whole and was enough samples to provide the statistical robustness required for analyses.

1.2.2 Inland sites

To select inland survey sites, we placed a 5 km grid over the study region and selected the centre of each 5 km x 5 km cell. We then used globally available Geographic Information System (GIS) spatial layers to quantify several factors that have been shown in our previous work to be associated with the amount of debris or litter observed (covariates). Covariates included the local population density, land use type, distance to the nearest road, distance to the coast, distance to the nearest river and distance to the nearest railway station. We also used two different proxies for socio-economic status, night lights within 1 km radius of the site, and a measurement of the total monetary value of the built environment (both rural and urban), calculated by the United Nations as part of a global exposure dataset aimed at disaster risk management (UNDDR, 2015).

We carried out a stratified random sampling design to select sites that covered, as much as possible, the full spectrum of these important covariates.

1.2.3 River sites

We used a global GIS data layer of rivers (https://hydrosheds.org/), and subset the layer to select sites every 10 km along the river features, starting at the coast. From this set of points, for ease of access, we selected sites that were less than 2 km from the road and no more than 12 km from another inland site.

1.2.4 Trawl Surveys

We are also interested to understand the 'urban plume' of floating plastic around major urban centres. To measure the amount of floating or positively buoyant debris in the nearshore environment, we conducted surface trawl sampling at nine stations along three line transects around the islands in Ha Long bay, to the north east of Hai Phong city. We conducted three tows (each was 10-15 minutes long) at each station and recorded all the anthropogenic debris collected in the net.

Methods 2

The initial few days the team was together explaining the goals of the project and training participants in the survey methods. All participants learned to search for and identify debris based on known categories, to record data, and to lay out transects for river, inland coastal, and trawl surveys. Furthermore, participants were provided an electronic copy of CSIRO's survey methods handbook for reference, and a hard copy of the handbook was available for each vehicle transporting participants.

Debris was measured at each land-based site type (river, coastal and inland) using a consistent survey method. Once a site was chosen, a Site Information Sheet was completed before any surveys took place. This information sheet collected information about the site's aspect, accessibility, apparent cleanliness, number of people present, etc as well as weather conditions, time of day, and details of the survey recorder.

At each site, a minimum of three and a maximum of six transects were carried out. For river and coastal surveys, transect lengths varied depending on site characteristics such as the width of the beach (distance from the waterline to the backshore vegetation) and riverbank height. There is no fixed length for these two survey types, the length of the transect is dependent upon the local environment, and each transect is 2 m wide. For inland surveys, survey length is fixed. Each inland transect was either 12.5 m long x 2 m wide, or 25 m x 1 m wide.

Transects were laid out with a metre tape. For coastal and river transects, the transect always began at the water's edge and ran perpendicular until reaching two metres into the backshore vegetation. For inland transects, the starting point was that which was closest to the GPS location identifying the site. The transect was also divided into ten equal distance intervals that encompassed the full length of the transect. For example, an 18 m long transect would have ten 1.8 m intervals or segments. Typically, two people walked the transect (each surveying a 1m wide swath) while a third person recorded the debris category for every item found, and whether it was a whole item or a fragment. This information allows us to understand whether the items are likely to have been recently littered or are slightly older and more degraded. Observers were each provided with a string that was one metre wide to ensure only items within the survey width were recorded. This prevents errors that can occur if observers include items that may fall just outside the one metre wide transect zone.

Each item observed was recorded in a debris category (See Appendix A). The size class was also recorded for the first item found in each distance interval (and if no item occurs in that distance interval a 0 or dash (-) was recorded). The purpose of recording this size information is to gain an indication of the sizes of items across the each transect. We are striking the balance between time required and important information to collect. We acknowledge it would be too time consuming and labour intensive to record the size of every single item (particularly since we can sometimes report hundreds or even thousands of items on an individual transect).

Trawl surveys were conducted along three line around the islands in Ha Long bay. Three tows were conducted at each station, using a neuston net with mesh size of 330 μ m and a mouth opening size of 0.6 m x 0.3 m. Each tow lasted 10-15 minutes. The vessel moved at slow speed (no more than 2-3 knots) to ensure the trawl net does not skip or jump. Sea state and wind conditions must be mild for proper sampling. After returning to the lab, a visual search was conducted to count and categorise all plastics found in the sample net. For each sample, an observer removed all organic material and then searched for 15-20 minutes to locate any non-organic material. This process was repeated 3 times (with at least 2 different observers) to ensure observer fatigue does not reduce detection of small sized plastic items. The minimum size of plastic able to be caught by the net was 330 μ m, and the maximum size was anything that could fit within the sixty centimetre mouth of the net.

For an in-depth description of the methodology used for each of the survey types please refer to the CSIRO handbook (Schuyler et al. 2018).

2.1 Analysis

To design effective interventions and prevent mismanaged waste from entering the sea, it is important to understand what is driving the distribution of debris. Based on previous work, we investigated several different factors that could influence debris distribution. At each survey site, we collected information on the local conditions, including the number of visible humans, the slope of the land, the height of the vegetation, the percent of the transect that was bare ground, and the substrate colour (see Schuyler et al. 2018 for example data sheets).

We also integrated information from globally available GIS layers, including the local population density, land use type, distance to the nearest road, distance to the coast, distance to the nearest river and distance to the nearest railway station. We also used proxies for socio-economic status, including night lights within 1 km radius of the site. Additionally, we included a measurement of the total monetary value of the built environment (both rural and urban), calculated by the United Nations as part of a global exposure dataset aimed at disaster risk management (UNDDR, 2015). We put these covariates into a statistical model, designed to determine which factors are most strongly correlated with debris amounts in the survey sites. We used the R program mgcv and MuMin packages (Wood, 2011; R Core Team, 2013; Bartoń, 2018) to find the model with the lowest AIC value, which explains the most amount of the variability in the data. More than one model was within two AIC points of the best model, which means they are essentially equivalent models. In order to incorporate information from all relevant models, we used model averaging to get the best-fit model.

For coastal analyses, we used an offset of lineal metres for the model, to reflect that the measure of interest was the amount of debris along the lineal coast, while for inland analyses, we used the offset of the area of each transect. We examined residuals of the models to look for indications of non-linear patterns in explanatory variables. We ran comparative models using some variables as categorical, or continuous smoothed variables to identify better fit.

To be able to directly compare the covariates and determine which best predicts the observed debris amounts, we calculated the effect size. Terms with a positive effect size have a positive correlation with the amount of debris, while terms with a negative effect size are negatively correlated with the amount of debris. In other words, the higher the value of the covariate, the lower the amount of debris. The higher the absolute value of the effect size, whether positive or negative, the more that particular covariate explains the variability in the debris found (see Figure 8 and Figure 11).

Results and Discussion 3

A total of 96,890 debris items were detected and recorded across the 89 sites surveyed.

The ten most abundant fragment debris items found in the surveys included polystyrene, brick, think film bags, food wrappers and string/robe (Figure 3). Polystyrene comprised 74.5% of all fragment items found, followed by brick/cement at 5.9%.

The most abundant whole item was food wrapper/label, with 14.8% of all whole items found, followed by thin film carry bag at 12.9% (Figure 4).

In terms of debris density, coastal surveys had the highest debris density with 19.5 items found per m² (Figure 5). Overall, coastal debris density was 16.3 times that observed at inland sites, and 7.4 times that observed at river sites.

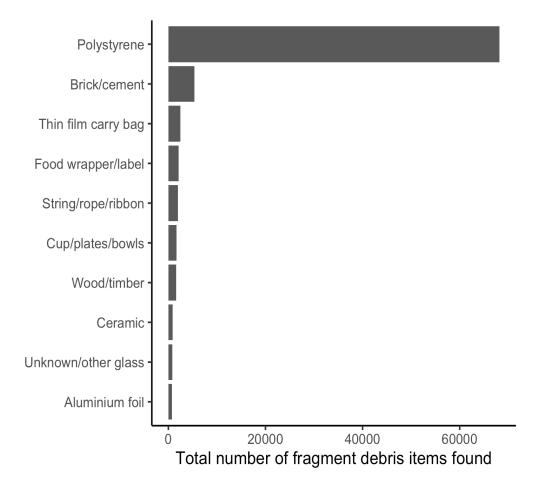


Figure 3. The ten most abundant debris items (fragments) found across the coastal, inland, and river surveys combined.

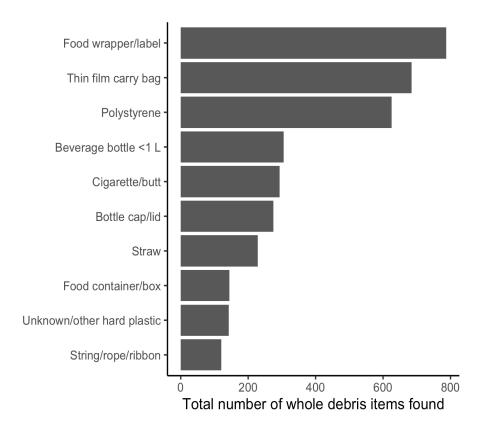


Figure 4. The ten most abundant debris items (whole) found across the coastal, inland, and river surveys combined.

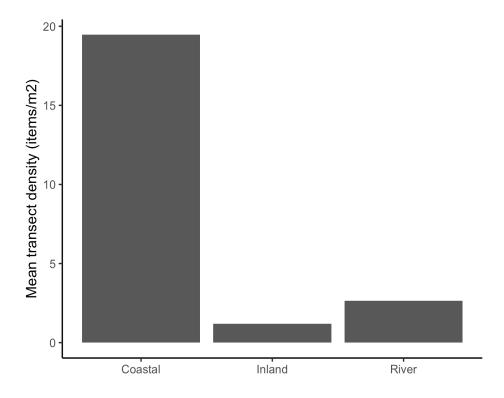


Figure 5. The mean transect density of debris found in the coastal, inland river surveys.

3.1 Coastal Surveys

A total of 144 transects were completed at 24 coastal sites (See Figure 6) for examples of two different coastal transect sites that were carried out). Overall, 80,822 items were recorded within coastal surveys. On average, across all transects, 280.63 items of debris per lineal metre of coastline were recorded.

Polystyrene was the most common fragment type found with 65,798 pieces or 84.52% of the total fragment items recorded. Brick/cement was the second most recorded item with 1772 items recorded and cup/plates/bowls was the third most common, with 1667 pieces recorded.

Polystyrene was the most common whole item found with 596 pieces or 20.06% of the total whole items recorded. Food wrapper/label was the second most recorded item with 334 items recorded and thin film carry bag was the third most common, with 314 pieces recorded.

A size class was estimated for 1023 debris items. Size class 7 was the most common found (size class 7 objects are larger than 21 cm x 29.7 cm (an A4 page)). For further information refer to the size class chart in the Marine Debris Survey Handbook. Of all items recorded, 13% were 16 cm2 or smaller.

There was substantial variation in the number of debris items observed across the coastal surveys (in the unit of log number of items per lineal metre) (Figure 7). The highest number of items found on a coastal survey was at site VHC05 located at 20.946 °N, 107.193 °E near a river outlet. Of the 17,456 items recorded at this site, 16,371 of them were classified as D4 F: polystyrene fragments.

If the total coastal debris load we recorded is representative of the debris density across the entire 3260 km of Viet Nam's coastline (as reported from Wikipedia, accessed 21 October 2020), this would equate to an estimated total debris load of over 914 million items along the country's entire coastline. We acknowledge that this is rough estimate, given the variability in annual weather patterns, coastal topography, population density, and other factors, but it provides a baseline to understand the relative magnitude of the problem.

Figure 6. (L) An example of a coastal debris survey site in Viet Nam. (R) One of the more challenging coastal survey sites in Viet Nam.

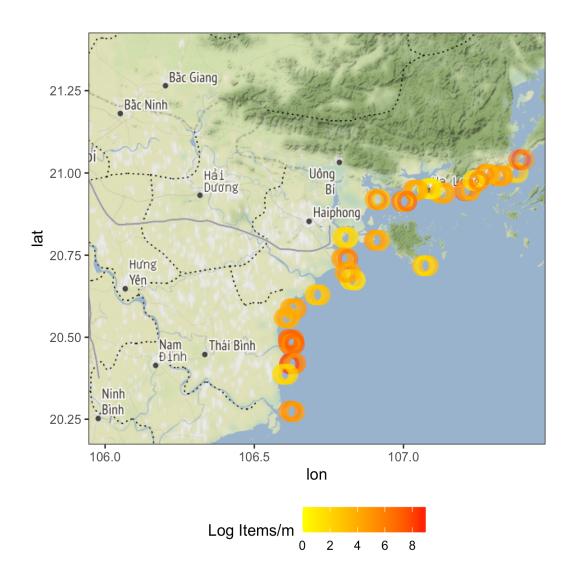


Figure 7. The log number of items per lineal metre for coastal sites in Viet Nam.

In Viet Nam, after running the GAM modelling, nine coastal models were functionally equivalent, based on AIC values. These models were averaged to get the best final model. In the best final model, three terms were statistically significant. While the remaining terms were not statistically significant (at P = 0.05 level), they did explain some of the variability in the model, and thus were left in the model. Wind direction and land use were the terms with the highest effect size (Figure 8). Debris density was higher on coastal sites if the wind was from the southwest rather than the east, with increasing urban infrastructure value and if the area was around villages rather than croplands.

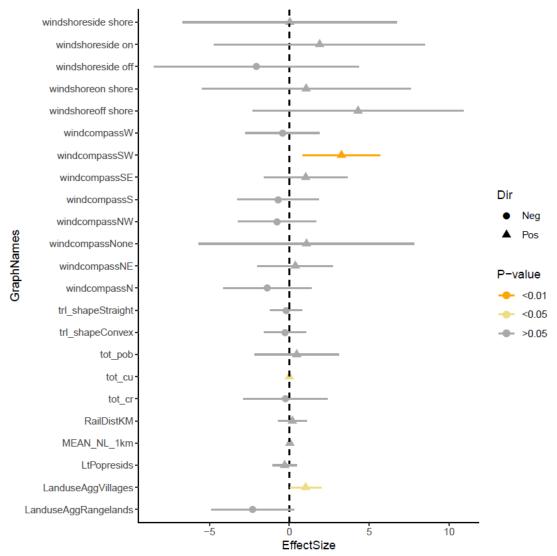


Figure 8. Model average effect size plot for coastal surveys. Colour represents the p-value significance level, and the lines are the standard error for each term. Triangles denote a positive coefficient for a given factor, whereas circles denote a negative coefficient. The effect size is calculated as the median value of the factor times its coefficient. The reference levels are None for windshore (direction of wind relative to the shore), east for wind compass (the direction of the wind), concave for trl_shape (the shape of the shore in the survey area) and croplands for Landuse.

3.2 Inland Surveys

The team completed 188 transects at 36 inland sites across a range of site types including industrial sites and some that were heavily vegetated (Figure 9). A total of 5,600 items were recorded; equivalent to an average of 1.19 pieces of debris for every square metre of land surveyed.

Brick/cement was the most abundant fragment type found with 1496 pieces or 31.6% of the total fragment items recorded. Thin film carry bag was the second most recorded item with 609 items recorded and food wrapper/label was the third most common, with 509 pieces recorded.

Food wrapper/label was the most abundant whole item found with 207 pieces or 24.0% of the total whole items recorded. Cigarette/butt was the second most recorded item with 167 items recorded and thin film carry bag was the third most common, with 128 pieces recorded. These items are typically single use consumer items, which are often used once and then discarded.

A size class was estimated for 777 debris items. Size class 5 was the most common found (size class 5 objects are larger than 8 cm x 8 cm, but smaller than 16 cm x 16 cm). For further information refer to the size class chart in the Marine Debris Survey Handbook. Of all items recorded, 19% were 16 cm² or smaller.

Figure 9. (L) An example of an industrial inland site in Viet Nam. (R) An example of an inland site in Viet Nam that is heavily vegetated.

There was substantial heterogeneity in the number of debris items observed across the inland surveys (in the unit of log number of items per m²) (Figure 10). The highest number of items found on an inland survey was at site VHI18 located at 21.053 °N, 106.603 °E, on a vegetated area in the Dong Trieu District to the northwest of Hai Phong. Of the 1258 items recorded at this site, 866 of them were classified as Z2_F: brick/cement fragments.

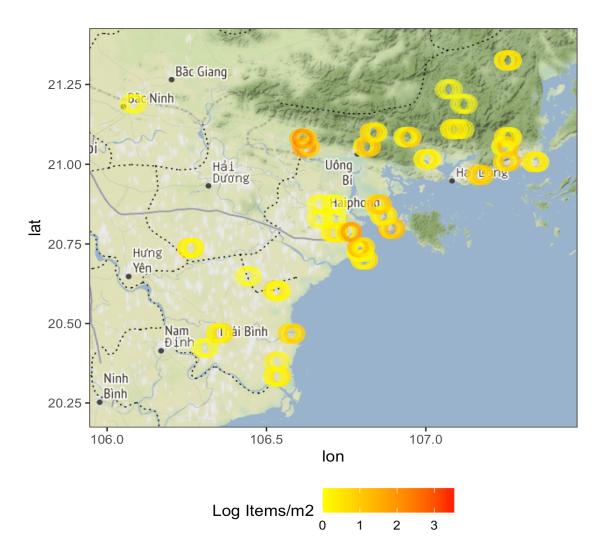


Figure 10. The log number of items per square metre for inland sites in Viet Nam.

After running the GAM, 23 inland models were functionally equivalent, based on AIC values. These models were averaged to get the best final model. In the best final model, six terms were statistically significant: Percent bare ground, site type, built value (urban), population density, distance to rail, and distance to coast. While the remaining terms were not statistically significant at a P = 0.05 level, they did explain some of the variability in the model, and thus were included in the model. The terms with the highest effect size were site type (Municipal/industrial and disused site types higher than the reference level, agriculture), population density, distance to rail, and percent bare ground. Higher population density, longer distance to rail stations, and more bare ground correlated with lower debris levels (Figure 11).

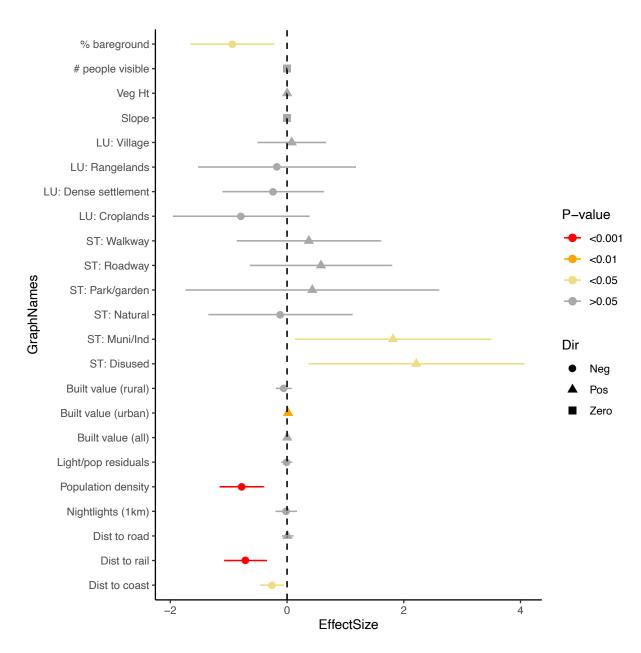


Figure 11. Model average effect size plot for inland surveys. Colour represents the p-value significance level, and the lines are the standard error for each term. Triangles denote a positive coefficient for a given factor, whereas circles denote a negative coefficient. The effect size is calculated as the median value of the factor times its coefficient. Reference levels are Agriculture for site type, and Urban for land use.

3.3 River Surveys

A total of 174 river transects were conducted at 29 river sites. Figure 12 shows two example river site transects that were surveyed during the study period. A total of 10,468 items were recorded from all river sites; an equivalent of 14.89 pieces of debris for every lineal metre of riverbank surveyed (on average).

Polystyrene was the most abundant *fragment* type found with 2214 pieces or 24.6% of the total fragment items recorded. Brick/cement was the second most recorded item with 2118 items recorded and thin film carry bag was the third most common, with 925 pieces recorded.

Food wrapper/label was the most abundant *whole* item found with 246 pieces or 16.7% of the total whole items recorded. Thin film carry bag was the second most recorded item with 243 items recorded and bottle cap/lid was the third most common, with 96 pieces recorded. These are typically consumer items, which are generally used once and discarded.

A size class was estimated for 1014 debris items with size class 5 being the most common found (size class 5 objects are larger than 8 cm \times 8 cm, but smaller than 16 cm \times 16 cm). For further information refer to the size class chart in the Marine Debris Survey Handbook.

Figure 12. (L) An example of a river transect site in Viet Nam. (R) An example of a river site with visible debris scattered.

We observed substantial heterogeneity in the number of debris items recorded across the river surveys (in the unit of log number of items per lineal metre) (Figure 13). The highest number of items found on a river survey was at site VHR26 located at 21.078 °N, 107.349 °E in industrial area at the mouth of a river in Cám Phá. Of the 1826 items recorded at this site, 1610 of them were classified as Z2_F: brick/cement fragments.

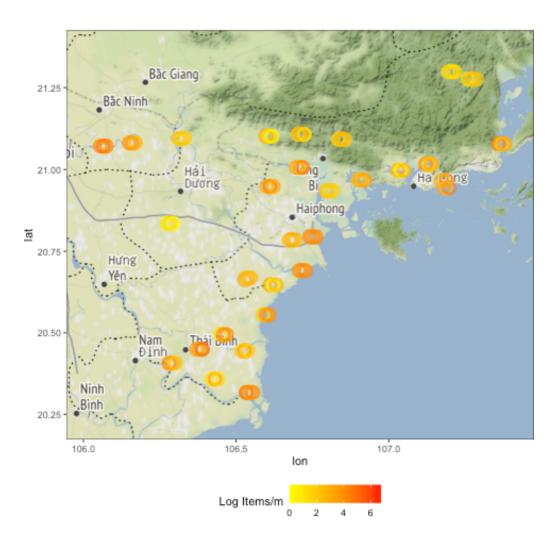


Figure 13. The log number of items per lineal metre for river sites in Viet Nam.

3.4 Trawl Surveys

A total of 54 tows were conducted at 18 sites, in Ha Long Bay (Figure 14). The mean density of the debris found across all tows was 153,223.6 items per square kilometre and ranged from 15 to 1074 items observed on any single tow. Overall, the most common type of debris found was soft plastic, with a total of 3,177 items, or 54.7% of all items found.

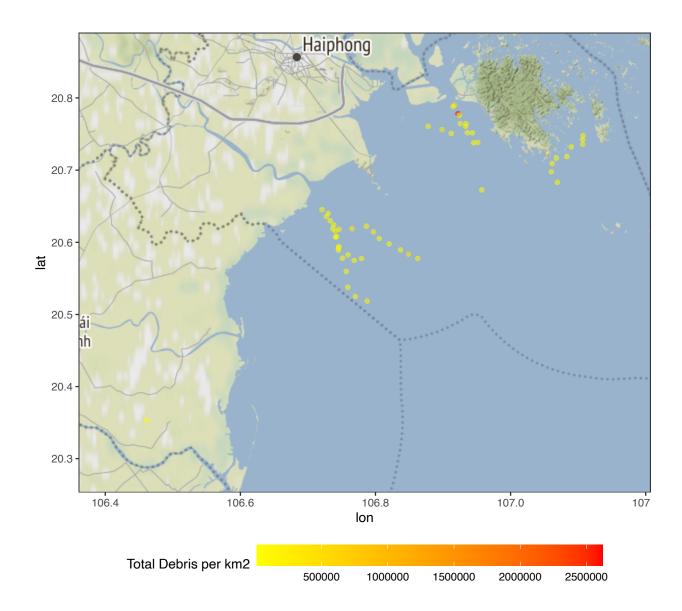


Figure 14. The total number of items per square kilometre for trawl sites in Viet Nam.

4 Summary

The surveying of the Hai Phong region of Viet Nam was a tremendous undertaking, which required substantial coordination, field effort by a large number of participants and patience and good humour by all. To our knowledge, the data collected provides the first comprehensive baseline look at plastics and other anthropogenic debris on land, along rivers and at the coastal interface for such a large portion of Viet Nam. While we acknowledge these data provide a 'snapshot' in time, this information can be used as a baseline against which change and seasonal differences in debris deposition and movement can be compared. Such information provides an important first step that can be used to inform policy and decision making. Furthermore, as new policies or practices are implemented, the data can be used to quantify the changes that may come with such policies, practices or awareness-raising campaigns. We also hope to use these data in conjunction with statistical models to produce figures that highlight the litter plume of this urban and nearby area.

Furthermore, the data collected here contributes to a world first, statistically robust, global baseline study of how much waste is lost to the coastal and marine environment. By using the same methodology and building capacity for individuals in multiple countries around the world, we are better able to make large scale predictions about not only local, but also national, regional and global debris losses into the environment. Additionally, we can look at differences we identify in types and amounts of debris across coastal, inland and riverine areas between countries to identify the drivers that may be similar or different amongst surveyed regions.

Based on surveys conducted across the Hai Phong region, it appears that the amount of debris on the Vietnamese coastline around 20 times higher than the loads estimated along the Australian coastline, based on surveys conducted around the entire continent (10.2 items/m; Hardesty et al. 2016) and the United States (based on data collected along the west coast of the US (16.5 items/m). Using this dataset and others collected from around the world, ultimately we will be able to estimate the amount of waste, most of which is plastic, from these plumes that is lost to the open ocean or redeposited back to land. We are also able to discern regional differences that may occur. For instance, the most common debris item found in Kenya was hard plastics compared to Seychelles which was glass. With a robust, comparable baseline of information gathered in multiple major metropolitan centres around the world, we will have the data in hand to evaluate policy effectiveness and change through on-ground activities at local, national and international scales.

Understanding the transport of plastics from land into marine systems is critical for modelling the distribution and trends of plastic in the ocean and estimating its impact on regional economies. This project will clarify the magnitude of this pollution to the public, to industry, and to policy-makers.

Appendix A

An example of the debris survey items list showing all debris categories

Site I	Site ID Code:			ITE	MS	LIST		Pag	ge o	of
Date		No de	ebris found Transect No of				Sub	sampled?	Y N	
	ITEMS	ID	Fragment	Whole	П	ITEMS Cont.	ID	Fra	igment	Whole
	Pipe/PVC	H1			П	Food container	D1			
	Beverage bottle <1 L	H2			٤	Cup/plates/bowls	D2			
	Other bottle	нз			Foam	Polystyrene	D4			
.0	Bottle cap/lid	H4			1	Unknown/other	D5			
Hard Plastic	Food container	Н5			\vdash	Cigarette/butt	P1			
	Utensil/plate/bowl	Н6			1	Paper/cardboard	P2			
	Bucket/Crate	Н7			1	Magazine/newspaper	Р3			
	Lighter	нв			Paper	Bag	P4			
	Lollipop stick/earbud	Н9				Box	P5			
	Unknown/other hard	H10				Food container/box	P6			
	Thin film carry bag	51			- 20	Food wrapper/bag	P7	\vdash		
	Food wrapper/label	52			┨	Beverage container	P8			
ţ	Sheeting	S3			1	Cups	P9			
Plas	Cup/lid	54			1	Plates/bowls	P10			
soft Plastic	Straw	S5			1	Unknown/other	P11			
Š	Unknown/other soft	S6			\vdash	Net	F1			
	Other plastic bag	57			1	Fishing line	F2			
	String/rope/ribbon	BP1			1	Fishing Lures	F3			
S 55	Packing strap	BP2			Fishing	Buoys/floats	F4			
Plastic Straps	Cable ties	BP3			퍒	Glow stick	F5			
_ 0,	Unknown/other strap	BP4			1	Fishhook/sinker	F6			
	Pipe	M1			1	Unknown/other	F7			
	Wire	M2				Battery	Z1			
	Aerosol	M3				Brick/cement	Z2			
	Beverage can	M4				Carpet	Z3			
	Food can/tin	M5			۱.,	Ceramic	Z4			
Metal	Lid/cap	М6			T in a	E Waste	25			
Σ	Food wrapper	M7			<u>a</u>	Furniture	Z6			
	Aluminium foil	M8			Miscellaneous	Appliances	Z7			
	Bucket/drum	М9			Σ	Large car parts	Z9			
	Unknown/other hard	M10			1	Large boat parts	Z10			
	Unknown/other soft	M11			1	Bag/box dom. waste	Z11			
	Beverage bottle	G1			1	Nurdles	Z12			
SS	Jar	G2			П		01			
Glass	Light globe/tube	G3			1		02			
	Unknown/other glass	G4			ē		03			
	Thong/shoe	R1			Other		04			
5	Tyre	R2			1		05			
Rubber	Balloon	R3			1		06			
S	Rubber band	R4				Size class (and sub-sar	mpling intervals)		ls)	
	Unknown/other	R5				Interval start (m)	Dist o	n tran	ID (F/W)	Size class
	String/rope/strap	C1			1	1 0-				
_	Clothing/towel	C2			1	2				
Cloth	Wipes/cloths	C3			1	3				
0	Insulation/stuffing	C4]	4				
	Unknown/other	C5]	5				
	Wood/timber	T1]	6				
-	Utensil/food stick	T2				7				
Timber	Bottle cork	ТЗ]	8				
	Pallet	T4]	9				
	Unknown/other	T5			1	10 - (end)				

References

- Bartoń, K. (2018). MuMIn: multi-model inference. R package version 1.40.4.
- Hardesty, BD, TJ Lawson, T van der Velde, M Lansdell and C Wilcox. (2016) Estimating quantities and sources of marine debris at a continental scale. Frontiers in Ecology and Evolution, 15, 18-25. https://doi.org/10.1002/fee.1447.
- Hardesty, BD, C Wilcox, Q Schuyler, TJ Lawson and K Opie (2017). Developing a baseline estimate of amounts, types, sources and distribution of coastal litter – an analysis of US marine debris data. A final report for Ocean Conservancy and NOAA, 23 October 2017.
- Jambeck, JR, R Geyer, C Wilcox, TR Siegler, M Perryman, A Andrady, R Narayan, K Lavender Law (2015). Millions of tons of plastic waste end up in our oceans every year. Science 768-771. DOI: 10.1126/science.1260352.
- Landon-Lane, M, (2018). Corporate social responsibility in marine plastic debris governance. Marine pollution bulletin, 127, pp.310-319.
- Lebreton, LC, J Van Der Zwet, JW Damsteeg, B Slat, A Andrady, and J Reisser (2017). River plastic emissions to the world's oceans. Nature communications, 8, 15611.
- McIntyre, O (2020). Addressing Marine Plastic Pollution as a 'Wicked' Problem of Transnational Environmental Governance. 25/6 Environmental Liability: Law, Policy and Practice 282-295., Available at SSRN: https://ssrn.com/abstract=3637482.
- R Core Team (2013). R: A language and environment for statistical computing.
- Schuyler QA, K Willis, TJ Lawson, V Mann, C Wilcox and BD Hardesty (2018). Handbook of Survey Methodology - Plastics Leakage, V1.2. CSIRO Australia. ePublish 182021.
- United Nations Office for Disaster Risk Reduction UNDDR (2015). Global Assessment Report on Disaster Risk Reduction 2015.
 - https://www.preventionweb.net/english/hyogo/gar/2015/en/home/.
- Vince, J and BD Hardesty (2016). Plastic pollution challenges in the marine and coastal environments: from local to global governance. Restoration Ecology. http://doi/10.1111/rec.12388/.
- Wagner, S, P Klöckner, B Stier, M Römer, B Seiwert, T Reemtsma, and C Schmidt (2019). Relationship between discharge and river plastic concentrations in a rural and an urban catchment. Environmental science & technology, 53(17), 10082-10091.
- Wood, SN (2006). Generalized Additive Models: An Introduction with R. Chapman Hall/CRC: Boca Raton, FL, USA.

As Australia's national science agency and innovation catalyst, CSIRO is solving the greatest challenges through innovative science and technology.

CSIRO. Unlocking a better future for everyone.

Contact us

1300 363 400 +61 3 9545 2176 csiroenquiries@csiro.au csiro.au

For further information

Oceans & Atmosphere
Britta Denise Hardesty
+61 3 6232 5276
denise.hardesty@csiro.au
https://research.csiro.au/marinedebris/