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1  |  INTRODUC TION

Globally, coral reefs are indicator systems for the environmental im-
pact of marine-linked human activities and global climate change—
for instance, coral cover is a key performance metric under the Aichi 
biodiversity targets (Tittensor et al., 2014). The Great Barrier Reef 
(GBR) is recognised as a ‘global commons’ possessing outstanding 
universal value (Day et al.,  2012) and acts as a key case study of 
climate impacts on a linked social–ecological system (Bohensky 
et al., 2011; Cumming et al., 2017; Marshall et al., 2019). The strong 

governance and management arrangements surrounding the GBR 
are increasingly reliant on strategic planning with multi-decadal hori-
zons (Costa et al., 2020). Therefore, achieving accurate projections 
of reef trajectories is of substantive importance to human steward-
ship of the GBR.

Several important studies of the consequences of climate change 
on coral reefs have focused on the increased frequency of coral bleach-
ing events (Frieler et al.,  2013; McWhorter et al., 2022; Schleussner 
et al., 2016; UNEP, 2020; van Hooidonk et al., 2013, 2016) and estab-
lished a threshold beyond which net reef recovery is unlikely, of 1.5–2°C 
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Abstract
Projections of coral reefs under climate change have important policy implications, 
but most analyses have focused on the intensification of climate-related physical 
stress rather than explicitly modelling how coral populations respond to stressors. 
Here, we analyse the future of the Great Barrier Reef (GBR) under multiple, spa-
tially realistic drivers which allows less impacted sites to facilitate recovery. Under 
a Representative Concentration Pathway (RCP) 2.6 CMIP5 climate ensemble, where 
warming is capped at ~2°C, GBR mean coral cover declined mid-century but ap-
proached present-day levels towards 2100. This is considerably more optimistic than 
most analyses. However, under RCP4.5, mean coral cover declined by >80% by late-
century, and reached near zero under RCP ≥6.0. While these models do not allow for 
adaptation, they significantly extend past studies by revealing demographic resilience 
of coral populations to low levels of additional warming, though more pessimistic out-
comes might be expected under CMIP6. Substantive coral populations under RCP2.6 
would facilitate long-term genetic adaptation, adding value to ambitious greenhouse 
emissions mitigation.
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of warming. However, it is now possible to model the dynamics of cor-
als explicitly and at spatially realistic scales (Bozec et al., 2022). This is 
important because not all reefs experience climate change in the same 
way; for example, only a subset of reefs bleach during any given event 
(Hughes, Kerry, & Simpson, 2018). Moreover, individual reefs exist within 
networks of connected coral populations and are subjected to a vari-
ety of disturbances that are spatially uneven in their intensity (Graham 
et al., 2006; McManus et al., 2021). The overall response of reef corals 
will be impacted by this spatial heterogeneity with temporary refugia 
helping more heavily impacted reefs to recover. Here, we explore GBR 
reef futures using a field-tested coral reef model that encompasses spa-
tially realistic water quality, larval dispersal, cyclones, thermal stress and 
crown-of-thorns starfish outbreaks (Bozec et al., 2022). We examine the 
temporal and spatial trends across 3806 connected reefs between 2021 
and 2099, under an ensemble of climate models.

2  |  METHODS

2.1  |  Climate data

We used climate projections from the Coupled Model Intercomparison 
Project phase 5 (CMIP5) as the ability of these models to adequately 
simulate El Niño conditions has been assessed (Cai et al., 2018), and 
the El Niño-Southern Oscillation is an important driver of bleaching 
conditions on the GBR. Five climate models that demonstrate excellent 
performance in resolving the oceanic heating patterns associated with 
eastern Pacific versus central Pacific El Niño events were chosen: GISS-
E2-R, GFDL-ESM2M, CCSM4, CESM1-WACCM and MIROC5. A sixth 
model, HadGEM2-ES, was selected for comparative purposes as the 
HadGEM family of models has been used frequently in future projec-
tions of bleaching under climate change (Donner et al., 2007; Edwards 
et al., 2011; Wolff et al., 2018). We obtained daily historical sea-surface 
temperature (SST) projections of these models over 1985–2005 and 
Representative Concentration Pathways (RCPs) 2.6, 4.5, 6.0 and 8.5 
(as available). Daily observed SST data were obtained for the 1 January 
1985–28 February 2021 period from the CoralTemp v3.1 product of 
Coral Reef Watch (Skirving et al., 2020). Data from the first 2 months 
of 2021 covered the expected period of annual maximum observed 
Degree Heating Weeks (DHW), as cooling was observed over the GBR 
from 1 March 2021 onwards. Reefs were matched to a climate model 
grid cell and an observational data grid cell by the position of the cen-
troid of the reef. To compensate for the difference between observed 
and projected SST that could be due to model structure and param-
eterisation, we subtracted from each month of the projected data the 
difference between climatological monthly means (over 1985–2005) 
of the observational data versus the historical projection, at each reef.

2.2  |  Heat stress calculation

We calculated DHW for each day of our model hindcast/burn-in  
period (2008–2020) and model forecast period (2021–2099), using the 

DHW equation of Coral Reef Watch (Liu et al., 2014). For application 
of this algorithm, the maximum monthly mean was calculated from 
the observational data over the period of 1985–2012 (Liu et al., 2014). 
DHW calculations for each day summed SST anomalies over the ret-
rospective 84 day period, for example, the DHW on 1 January 2021 
summed over the final 84 days of 2020. As DHW is a method for as-
sessing the dose–response of corals to heat stress and therefore in-
tegrates heat stress through a season, for application in ecosystem 
modelling we simply took the maximum DHW value per year.

2.3  |  Ecosystem modelling

Modelling of coral cover in response to climate change was performed 
using ReefMod-GBR (Bozec et al., 2022; Ortiz et al., 2014). This is a 
coral reef ecosystem model that uses an individual-based modelling 
approach. A patch of reef 20 × 20 m in size is represented as a grid, 
with each grid cell containing colonies of six coral types: branching 
Acropora, tabular Acropora, corymbose Acropora, pocilloporids, a mix 
of encrusting plus small massive corals and large massives; and sev-
eral algal types. The size and identity of each individual colony of each 
coral type is tracked through time. The size structure and density of 
coral colonies and algal patches are initialised according to coral cover 
surveys from the GBR performed under the Australian Institute of 
Marine Science (AIMS) Long-Term Monitoring Program (Sweatman 
et al., 2008). Coral colonies and algal patches are updated at 6 month 
intervals to account for recruitment, growth, reproduction, partial 
and whole-colony (background) mortality, and mortality due to heat 
stress or tropical storms, the rates of which are parameterised from 
experimentally measured values. The modelled reef experiences 
bleaching driven by SST anomalies, and cyclone damage, which cause 
full or partial colony mortality. Impacts of water quality (suspended 
sediment level) upon coral reproductive success, recruit survival and 
juvenile growth are modelled, though not reduction in bleaching due 
to suspended sediments lowering irradiance (Fisher et al.,  2019). 
Sufficient grazing by reef herbivores is assumed to eliminate ecologi-
cally detrimental levels of macroalgae. Rubble is generated from the 
skeletons of corals killed through bleaching and cyclones, and impacts 
upon juvenile coral survival. The model has been verified over time 
against 60 AIMS Long-Term Monitoring Program sites. A detailed de-
scription of, and access to, the canonical version of the ReefMod-GBR 
model is provided in Bozec et al. (2022).

For the forecast projections, initial (2020) cover for the six 
coral types was estimated using the model hindcast/burn-in 
(2008–2020) that used realistic forcing of water quality, heat 
stress and cyclones in space and time (Bozec et al.,  2022). 
Cyclone damage between 2021 and 2099 was driven using 
timeseries of synthetic cyclone tracks (Wolff et al., 2016), where 
a different timeseries was used for each of 10 future projec-
tions of ReefMod-GBR that were then averaged. Spatial layers 
of suspended sediments from the eReefs biogeochemical model 
(2011–2018: Baird et al.,  2020) were applied in recursive se-
quences until the end of the century.
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4154  |    MASON et al.

Bleaching-induced mortality was estimated on a per reef basis 
from the maximum DHW value per year per reef (when max DHW 
exceeded 3) following the model developed in Bozec et al.  (2022). 
First, a probability of initial coral mortality was estimated by apply-
ing DHW/mortality relationships fitted to observations performed 
on shallow (2 m depth) reefs of the GBR at the peak of the 2016 
mass-bleaching event (Hughes, Kerry, Baird, et al., 2018):

The resulting estimate of initial mortality was bound between 0 
and 1 and extended to include subsequent mortality likely to occur 
in the weeks or months following a heatwave:

where sensitivity_bleaching are sensitivity coefficients that adjust 
mortality to each modelled coral group based on reported species-
specific mortalities (Hughes, Kerry, Baird, et al., 2018) and x is a co-
efficient determined by model calibration with longer-term (8 months) 
observations of coral cover losses at 2 m depth following the 2016 
mass bleaching (Hughes, Kerry, Baird, et al., 2018). A value of x = 6 was 
found to reproduce the observed cover losses (see detailed analysis 
and parameters in Bozec et al., 2022).

The output of the equations relating DHW to bleaching mortality 
was halved to transfer the bleaching mortality from 2 to 7 m depth 
according to Baird et al. (2018), as ReefMod-GBR is parameterised 
to represent reef slope (~5–10 m depth) coral communities. To sim-
ulate cyclone-induced cooling of water, bleaching was not applied 
to a reef if it had been impacted by a cyclone during the same year.

Analysis of coral bleaching surveys through time has revealed 
that locations that have previously bleached suffer from less 
bleaching during subsequent warming events (Guest et al.,  2012, 
but see Hughes, Kerry, & Simpson, 2018). In some locations, this is 
because thermally susceptible taxa have been replaced by thermally 
tolerant taxa (Lafratta et al., 2017; McClanahan & Muthiga, 2014). 
Thermal physiological plasticity has been observed in wild corals 
(Brown, Downs, et al., 2002; Brown, Dunne, et al., 2002; Kenkel & 
Matz,  2017), but its ability to increase long-term thermal thresh-
olds in response to repeated bleaching events remains uncertain. 
Microevolutionary thermal adaptation is theoretically possible 
(Matz et al.,  2018), though it is yet to be explicitly demonstrated 
in the field. Our model allowed for ‘adaptation’ of reefs to occur 
through species assemblage shifts involving replacement of ther-
mally susceptible with thermally tolerant taxa, but not adaptation 
through microevolution or physiological acclimation.

2.4  |  Output variables

In each climate model, we assessed the trajectory of the GBR over 
time using a mean timeseries of total coral cover, over 3806 reefs 
and 10 simulations (where the cyclone trajectory was varied per 

simulation). A multi-model ensemble trajectory was determined by 
taking the average of total coral cover under each climate model, at 
each reef, and then averaging over all reefs, at each timepoint.

Change in benthic community composition was compared 
among decades and among climate models within each RCP. Cover 
of each of the coral types and algal types was standardised to the 
amount of pavement available per reef, and one average was taken 
for each cover type over the entire reef and over the 10 simulations 
per decade. A metric multi-dimensional scaling analysis was then 
performed across all models, decades and RCPs.

2.5  |  Robustness of climate models under revised 
equilibrium climate sensitivity

Equilibrium climate sensitivity (ECS), the globally averaged warming 
under 2 × preindustrial atmospheric CO2, has been revised to a likely 
range of 2.3–4.5°C (up from 1.5–4.5°C) as a result of verification of 
climate models using palaeo- and historical climatic constraints (Inglis 
et al., 2020; Nijsse et al., 2020; Sherwood et al., 2020). The members 
of our multi-model ensemble at RCP2.6 were distributed through-
out this updated ECS range or its boundary: 4.6°C (HadGEM2-ES; 
Andrews et al., 2012), 2.73°C (CESM1-WACCM; Marsh et al., 2016), 
2.9–3.2°C (CCSM4; Bitz et al.,  2012; Meehl et al.,  2020), 2.6°C 
(MIROC5; Watanabe et al., 2010) and 2.44–3.3°C (GFDL-ESM2M; 
Andrews et al., 2012; Paynter et al., 2018). GISS-E2-R, with an ECS 
of 2.1–2.3°C (Marvel et al., 2016; Meehl et al., 2020), was only a part 
of the multi-model ensemble for RCP4.5 and RCP8.5. The relatively 
wide spread of these ECSs suggests that our warming-driven reef 
trajectories at RCP2.6 are not overly ‘warm’ nor ‘cold’ biased.

3  |  RESULTS

Six climate models were selected on the grounds of their maturity, 
and their prowess at capturing El Niño events (Cai et al., 2018), which 
are an important driver of coral bleaching events (Eakin, 2022; Eakin 
et al.,  2014). Ensemble coral trajectories declined under all RCPs 
(Figure  S1). Under focused global action to reduce emissions and 
keep within a 2°C warming envelope, RCP2.6, the GBR declined from 
an average coral cover of 25% in 2021 to 12% by mid-century, a 52% 
decline in relative terms (Figure  S1a). However, this was followed 
by an increase in coral cover to ca. 19%–22% by the century's end. 
Under moderate abatement in which global emissions peak in 2040 
then decline, RCP4.5 (Meinshausen et al., 2011), average coral cover 
declined from 25% in 2021 to ca. 5% by the 2060s, an 80% decline 
in relative terms (Figure S1b). Average coral cover was maintained at 
2%–6% through to the century's end. Under unambitious mitigation 
that achieves peak emissions by 2080, RCP6.0, average coral cover 
declined from 25% in 2021 to ca. 3% by the 2060s (Figure S1c). This 
trajectory was qualitatively different from RCP4.5 in two respects: 
firstly, coral cover was maintained at slightly higher levels in the 
lead up to the 2060s, and secondly, coral cover continued to decline 

Initial _mortality = exp(0.167 + 0.347 × DHW) − 1.

Total _mortality =
(

1 − (1−sensitivity_bleaching× Initial_Mortality)
x
)

,
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from that decade onwards, reaching virtually zero by the century's 
end. Under intensification of emissions, RCP8.5, average coral cover 
declined from 25% in 2021 to 1% by 2060, and then continued to 
decline to the end of the century (Figure  S1d). Importantly, there 
was considerable variability among our climate models, particularly 
for the lower emission trajectories RCP2.6 and 4.5 with the rank-
ing (from most pessimistic to most optimistic) being HadGEM2-ES, 
CCSM4, MIROC5, CESM1-WACCM, GFDL-ESM2M and GISS-E2-R 
(Figure 1a,b).

Benthic community composition analysis indicated that severe 
climate trajectories (manifested as either higher RCPs or more 

pessimism in climate models) generate significant, near-term im-
pacts to benthic cover. Our modelled benthic community consisted 
of six coral types representing common categories of coral on the 
GBR that have distinct life-history characteristics. Under each cli-
mate model, the community compositions in each succeeding de-
cade of this century were explored using metric multi-dimensional 
scaling. Changes in benthic composition under warming occur, and 
are largely completed, within the first decades of the 2020–2099 
period in some models of moderate or high pessimism under RCP2.6 
(Figure 2a) and in all models under RCP6.0 and RCP8.5 (Figure 2c,d). 
The more optimistic models display some resilience in their benthic 

F I G U R E  1  Mean coral cover on the Great Barrier Reef (GBR) under (a) RCP2.6, (b) RCP4.5, (c) RCP6.0 and (d) RCP8.5, in each of 10 
ReefMod-GBR model runs (individual lines) per climate model. RCP, Representative Concentration Pathway.
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cover under RCP2.6, with the 2020s timepoint situated relatively 
close to the 2090s timepoint in these models, despite change in the 
intervening decades. However, under RCP4.5, benthic community 
composition in optimistic models demonstrates decay towards a 
highly disturbed benthic state (Figure  2b), and this decay is com-
pleted fully in RCP6.0 (Figure 2c).

4  |  DISCUSSION

Our projections of GBR outcomes under climate change differ from 
past assessments at RCP2.6, which stabilises global temperatures 
at 2°C of warming. A recent assessment of coral reef responses to 

climate change, in the Intergovernmental Panel on Climate Change 
1.5°C report, has concluded that 70%–90% of reefs globally will 
be lost at 1.5°C, and 99% at 2°C (Hoegh-Guldberg et al.,  2018; 
Schleussner et al.,  2016). We found a 52% decline in coral cover 
across the GBR at RCP2.6. Our focus on the GBR is unlikely to be the 
cause of the apparent difference between these assessments, as the 
intensification of warming on Australian reefs is not substantively 
different from that at other major reef systems in an ensemble of 
CMIP5 climate models (van Hooidonk et al., 2016). Realised warming 
on the GBR may even exceed that at most other reef regions due to 
its particular oceanographic setting (Wolanski et al., 2017).

Differences between our analysis and other recent assessments 
likely stem from differences in methodology, particularly the choice 

F I G U R E  2  Benthic community composition (represented in metric multidimensional scaling plots) under GFDL-ESM2M, CESM1-
WACCM, CCSM4 and GISS-E2-R becomes increasingly similar to that under MIROC5 and HadGEM2-ES under progressively more severe 
climate trajectories, whilst composition under MIROC5 and HadGEM2-ES remains mostly constant across the four climate trajectories. 
In RCP6.0 and RCP8.5, benthic community composition of all models and all decades was clustered together in a small region of ‘highly 
disturbed’ benthos in the plots (c, d). In RCP4.5, benthic composition of CCSM4, MIROC5, CESM1-WACCM and HadGEM2-ES clustered 
within the ‘highly disturbed’ region (b). GFDL-ESM2M and GISS-E2-R benthic compositions were mildly distant from this region. Under 
RCP2.6, MIROC5 and HadGEM2-ES clustered in the ‘highly disturbed’ region, whereas CCSM4, CESM1-WACCM and GFDL-ESM2M were 
increasingly separated from this region in the same order as their increasing levels of optimism (a). Average community composition is 
calculated from decadal averages of percent cover of six coral types and several algal types.
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of heat stress metric and the way that heat stress is propagated into 
ecological impacts. Past assessments have used Degree Heating 
Months (DHM; now known to overestimate heat stress), have ap-
plied a simple mass-mortality threshold of >2 DHM and have applied 
thresholds-based heuristic methods to convert mortality frequency 
into projections of reef outcomes. We replaced DHM with the well-
validated DHW algorithm. Empirical relationships of coral mortality 
versus heating dose are now available for the GBR and other reefs, 
so we replaced the binary mortality threshold with a continuous, 
empirically derived equation (Bozec et al.,  2022; Hughes, Kerry, 
Baird, et al., 2018). Heuristic thresholds for reef decline (e.g. 10 back-
to-back bleaching events: UNEP, 2020, van Hooidonk et al., 2013, 
2016) were superseded in our study through individual-based eco-
logical modelling.

The explicit articulation of the impact of coral vital rates and 
spatial connectivity on coral cover change in our modelling revealed 
resilience to mild additional warming missed by previous works. 
Robustly parameterised rates of coral recruitment (explicitly tied to 
existing adult stock and population connectivity), survival, growth 
and mortality at different coral life stages—with calibration against 
long-term field datasets—produces realistic coral demography and 
responses to stressors in our model (Bozec et al., 2022). Moderate 
coral cover persistence under RCP2.6 warming therefore indicates 
that realistic coral demographic processes provide some inbuilt resil-
ience of coral cover to the anticipated regimes of bleaching-induced 
coral loss.

Our outcome under RCP2.6 of a decline in mid-century coral 
cover followed by end-of-century recovery could reflect natural 
variability or may be a signature of the temperature overshoot that 
is anticipated by the RCP2.6 scenario. The modelled socio-economic 
pathway within RCP2.6 involves a mid-century peak in atmospheric 
greenhouse gases, during which radiative forcing reaches ca. 3 
watts m−2, followed by a rapid decline to 2.6 watts m−2 by the end of 
this century (van Vuuren et al., 2011). The individual trajectories for 
four out of five climate models display mid-century dips (Figure 1a), 
though the timings of these dips are not identical among models. 
Natural variability unrelated to the global radiative forcing and tem-
perature trends, or internal model variability superimposed on these 
trends, are possible explanations for the mid-century nadir in coral 
cover. Were the radiative forcing peak to be the cause, the sensitiv-
ity of the reef trajectory to an additional 0.4 watts m−2 would indi-
cate the existence of a non-linear ecosystem threshold just above 
2.6 watts m−2.

Our results demonstrate the high sensitivity of ecosystem pro-
jections to the choice of climate model, especially under the lower 
emissions scenario RCP2.6. Two models projected coral cover below 
10% by century's end, whereas three models projected cover be-
tween 20 and 40% (Figure 1a). Indeed, both the current generation 
of climate models, CMIP6, and the previous generation, CMIP5, dis-
play a wide range of sensitivities to greenhouse forcing (Meehl et al., 
2020). CMIP6 models are (on average) more sensitive to emissions 
than CMIP5 models, but whether this higher sensitivity is accurate or 
not is still a matter of debate (Nijsse et al., 2020; Tebaldi et al., 2021; 

Tokarska et al., 2020). Whilst our subset of CMIP5 models fall within 
or bound the equilibrium climate sensitivity range updated following 
CMIP6 (see Section 2), as more CMIP6 models display higher ECS 
values, we anticipate that many CMIP6 multi-model ensembles may 
paint a more pessimistic future of the GBR than presented here.

The identification of resilience to mild warming provided by 
coral demography and population interconnections highlights 
the importance of including individual-based modelling in climate 
model-derived reef projections. Substantive coral populations under 
RCP2.6 would facilitate long-term genetic adaptation; hence, the ex-
pected demographic resilience may facilitate improvements in reef 
resilience through microevolution. The exclusion of adaptation from 
our model was in fact useful in revealing that resilience through de-
mographic processes alone is important under RCP2.6. At RCP4.5 
and above, this source of resilience no longer supported substantive 
coral cover long term. Despite a more hopeful outlook under mild 
additional warming, our analysis supports that avoiding overshoot 
of 2°C warming remains necessary to avoid the wholesale degra-
dation of the GBR. Application of coral demographic modelling to 
CMIP6's Shared Socioeconomic Pathway 1–1.9 model outputs will 
reveal whether the lower heat stress expected under a 1.5°C cap 
on warming (McWhorter, Halloran, Roff, Skirving, & Mumby, 2022; 
McWhorter, Halloran, Roff, Skirving, Perry, et al., 2022) avoids the 
mid-century dip in GBR coral cover that we have projected at 2°C 
of warming.
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