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ABSTRACT
In this paper, we study two different approaches to enable data shar-

ing for learning tasks while preserving data privacy. The first ap-

proach is to share representation learning models with multiple par-

ties, for whichwe choose to use adifferentiallyprivate autoencoder-
based generative model (DP-AuGM). The second approach is to

share generated data with multiple parties through generative mod-

els, for which we choose to use a differentially private variational
autoencoder-based generative model (DP-VaeGM). To achieve dif-

ferential privacy, we train both models by adding differential pri-

vacy noise to the gradient. We evaluate the performance of our two

proposed approaches across various differential privacy budgets.

We also present the robustness of our two proposed approaches

against model inversion attacks [15], membership inference at-

tacks [32], and generative adversarial network (GAN) based attacks

against collaborative deep learning [20] only in the extended ver-

sion of this paper available at https://arxiv.org/pdf/1812.02274.pdf.

1 INTRODUCTION
In this paper, we study two different approaches to enable data

sharing for learning tasks while preserving data privacy. We aim to

protect the data privacy against the state-of-the-art attacks, namely

model inversion attacks [15], membership inference attacks [32],

and generative adversarial network (GAN) based attacks against

collaborative deep learning [20].

The first approach, termed DP-AuGM, is to share models, where we
encode the information of the data into a machine learning model

for learning data representations and then share the machine learn-

ing model instead. This approach is motivated by representation

learning [6], which generally aims to use machine learning models

to learn a good representation of the data. Then, the models are

used to convert data from its raw format into a better representa-

tion, thus helping boost the learning efficiency. An example of this

representation learning is word2vec [26]. Analogous to natural lan-

guage processing, in our paper, we choose to use autoencoders [34]

for our representation learning model, as these models are com-

monly used for extracting key features of data. In order to prevent

the attackers from inferring sensitive information from the repre-

sentation learning model, we add differential privacy noise to the

training of the representation learning model [4].

As motivation, consider a hospital not allowed to release its

medical data to the public for use, but wants to share the data

with universities, for example, data-driven disease diagnosis stud-

ies [19, 30]. The universities may only possess a small amount of

data, such as public medical datasets [1, 3] which are not adequate

for training an effective machine learning model. Under this sce-

nario, instead of publishing the medical data directly, the hospital

could locally use the medical data to train a representation learning

model and then publish it. Any university interested in researching

disease diagnosis independently can use the representation learning

model to convert their small amounts of medical data into a better

representation, boosting learning efficiency. Another motivating

example is two companies that want to collaborate on a data intelli-

gence task. A data-rich company A may wish to aid a companyB in

developing a model that helps maximize revenue, but is unwilling

or legally unable to share its data withB directly due to its sensitive

nature. Again, the company A can train a representation learning

model on its large dataset and share it with the company B.

The second approach, termed DP-VaeGM, is to share data, where
we use the shared data for training a generative model which learns

the distribution of the data, and then the generative model is used

to generate a new dataset for usage and the new dataset can be

shared further. More specifically, we choose to use the variational

autoencoder (VAE) [21] as the generative model. Similar to DP-

AuGM, we train the VAE by adding differential privacy noise to

the gradient [4]. The approach of using differentially private data

generative models has several advantages. First, privacy can be

preserved even if the entire trained model or the generated data is

exposed to an adversary. Second, it can be easily integrated with

other learning tasks without adding much overhead, since only

the training data is a variable. Third, the data generation can be

processed locally on the user side, which eliminates the need for a

trusted server that can be attacked and compromised.

We evaluate the performance of our two proposed approaches

across the differential privacy budget (cf. Section 4). Due to space

limitations, we present the robustness of our two proposed ap-

proaches against model inversion attacks [15], membership in-

ference attacks [32], and generative adversarial network (GAN)

based attacks against collaborative deep learning [20] only in the

extended version of this paper available at https://arxiv.org/pdf/

1812.02274.pdf.

Relatedwork.Most privacy-preserving or secure data-sharing sys-

tems use cryptographic or statistical techniques to enable sensitive

data protection and sharing [9, 16, 17]. These systems are generally

designed as either centralized (e.g., CryptDB [28] and Mona [24])

or decentralized [27]. Unlike previously proposed techniques, the

proposed approaches achieve the following three goals: protect

the privacy of training data; enable users to locally customize the

privacy preference by configuring the generative models; retain the

high utility for generated data. The proposed approaches achieve

these goals at a lower computational cost than the aforementioned
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differentially private paradigms [5, 12, 14, 31] and cryptographic

techniques such as homomorphic encryption [17].

2 BACKGROUND
2.1 Differential Privacy

Definition 1 ((ϵ,δ )-differential privacy [13]). A randomized
algorithm A : D → R with domain D and range R, is (ϵ,δ )-
differentially private if for any two adjacent training datasets d,d ′ ⊆
D, which differ by at most one training point, and any subset of
outputs S ⊆ R, it satisfies that:

Pr[A(d) ∈ S] ≤ e
ϵ
Pr[A(d ′) ∈ S] + δ .

The parameter ϵ is often called a privacy budget: a smaller budget

yields stronger privacy guarantees. The second parameter δ is a

failure rate that is not tolerated by the privacy bound defined by ϵ .

2.2 Representation Learning
Representation learning aims to automatically extract the key fea-

tures from the input data and a good representation of the data

usually leads to the success of further classification tasks [6].

Autoencoder.An autoencoder is a widely used unsupervised learn-
ing model for representation learning in many scenarios, such as

natural language processing [11] and image recognition [25]. Its

goal is to learn a representation of data, typically for the purpose

of dimensionality reduction [18, 33, 34]. It simultaneously trains

an encoder, which transforms a high-dimenstional data point to a

low-dimensional representation, and a decoder, which reconstructs

a high-dimensional data point from the representation, while try-

ing to minimize the 2-norm distance l2 between the original and

reconstructed data. Through this process, the autoencoder is able to

discard irrelevant features and enhance the performance of machine

learning models when facing high-dimensional input data.

2.3 Variational Autoencoder
Resembling the autoencoder, a variational autoencoder (VAE) also

comprises two parts: the encoder and the decoder [21, 29] with a

latent variable z sampled from a prior distribution p(z) = pnoise .
Different from the autoencoder of which the encoder only tries to

reduce the data into lower dimensions, the encoder inside VAE tries

to encode the input data into a Gaussian probability density do-

main [21]. Mathematically, the encoder approximates q(z |x), which
is also a neural network (encoder), with input z conditioned on the

data x . Then, a representation of the data will be sampled based

on the output from the encoder. Finally, the decoder tries to recon-

struct a data point based on sampled noise, which approximates the

posterior p(x |z). The two neural networks, encoder and decoder,

are trained to maximize a lower bound of the log-likelihood of the

data logp(x):

Eq(z |x )[logp(x |z)] − KL(q(z |x)| |p(z)),

where KL is the Kullback-Leibler divergence [10].

Sampling from the VAE is achieved by sampling from the (typ-

ically Gaussian) prior p(z) and passing the samples through the

decoder network.

3 DIFFERENTIALLY PRIVATE DATA
SHARING

3.1 Data Sharing through Sharing Models (The
Case of DP-AuGM)

We propose the first approach that shares data through sharing of

the representation learning model, autoencoder, to protect privacy

of the shared data while retaining high utility for machine learning

usage (see overview in Figure 1).

For DP-AuGM, we first train an autoencoder with the shared

data using a differentially private training algorithm. We then pub-

lish the encoder and drop the decoder. Next, users feed their raw

data into this encoder to obtain better data representations which

help boost their learning efficiency. Later, these data with new rep-

resentations could be used to train the targeted learning systems in

the future with privacy guarantees for the shared data. We adopt

the deep learning with differential privacy (DP-DL) algorithm [4]

to train the representation learning model autoencoder. DP-DL [4]

achieves differential privacy by injecting random noise in a stochas-

tic gradient descent (SGD) algorithm. At each step of SGD, DP-DL

computes the gradient for a random subset of training points, fol-

lowed by clipping, averaging out each gradient, and adding noise

in order to protect privacy. The algorithm of DP-AuGM is outlined

in Algorithm 1.

DP Analysis for DP-AuGM. In this paper, we adopt the training

algorithm by Abadi et al. [4] to achieve differential privacy. Based

on the moments accountant technique applied in [4], we obtain that

the training algorithm is (O(qϵ
√
T ),δ )-differentially private, where

T is the number of training steps, q is the sampling probability, and

(ϵ , δ ) denotes the privacy budget [4]. In addition, we will prove

that any machine learning model which is trained on the data fed

into DP-AuGM, is also differentially private w.r.t. the shared data

and shares the same privacy bound. This also shows the benefit of

sharing a representation learning model: we only need to train one

representation learning model and all the machine learning models

trained over the data from the representation learning model are

differentially private w.r.t. the shared data.

3.2 Data Sharing through Sharing Generated
Data (The Case of DP-VaeGM)

We propose the second approach that shares data via building a

generative model and sharing a new dataset from the generative

model (see overview in Figure 1).

As the main challenge for leveraging the generative model is to

generate a new dataset, with both new training vectors and their

labels. Otherwise, without their class labels, the new dataset may

only be applied in unsupervised learning tasks. To address this chal-

lenge, we propose to build a multi-modal variational autoencoder

motivated by Guassian Mixture Models [7]. Conceptually, each

mode of VAE is used to capture the distribution of the data for each

class. Thus, the entire dataset is modeled by the mixture of these

modes. Traditionally, Linear Discriminant Analysis (LDA), Bayes

Net, and mixture of Gaussians also utilize this type of generative

models; henceforth this multi-modal model is shown to be effective

for classification.
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Figure 1: Overview of proposed differentially private data sharing approaches. Differentially private data sharing of private
dataX is achieved by 1) sharing a representation learningmodel (DP-AuGM) trained on the private dataX, and 2) by generating
new surrogate data X′ via a generative model (DP-VaeGM). After publishing X′, different learning models can be trained on
X′ to protect privacy of X while achieving high learning accuracy (data utility).

Input :Private data X = {x1, x2, . . . }, batch size B , learning rate λt ,
privacy budget (ϵ, δ ), noise scale σ , gradient bound C , number of

iterations T , encoder structure Fe , decoder structure Fd
Output :Differentially private sharing encoder Fe (x ; θe ) with parameter θe

1 Randomly initializes θe and θd for encoder Fe (x ; θe ) and decoder Fd (x ′; θd ),
respectively. Let Θ = {θe , θd };

2 for t ← 1 to T do
3 Randomly Samples a batch of data Xt ;

4 foreach xi ∈ Xt do
5 Computes Loss L(xi ) = ∥xi − Fd (Fe (xi )) ∥22 ;
6 Computes gradient: д(xi ) ← ∇ΘL(xi );

7 д(xi ) ← max(1,
∥д(xi )∥2

C );

8 end
9 Θ← Θ − λt 1

B (
∑
i д(xi ) + N(0, σ 2C2I));

10 end
11 return (Fe (x ; θe ))

Algorithm 1: DP-AuGM

More specifically, DP-VaeGM proceeds as below and the algo-

rithm is outlined in Algorithm 2:

• Firstly, it initializeswithn variational autoencoders (VAEs), where
n is the number of the classes for the specific data. Each model

Mi is responsible for generating the data of a specific class

1 ≤ i ≤ n. We empirically observe that training n generative

models results in higher utility than training a single model;

this is because a single model would need to capture the class

label latent variables following a Gaussian distribution. Using n
separate models can also generate a balanced dataset even if the

original data are imbalanced.

• Secondly, it uses a differentially private training algorithm (such

as DP-DL) to train each generative modelMi .

• Finally, it samples data from Gaussian distribution N(0, 1) for

the sampling layer of each variational autoencoder. It returns

the entire generated data X′ by taking the union of generated

data from each generative modelMi .

DP Analysis for DP-VaeGM. We have adopted the algorithm

developed by Abadi et al. [4] to train each VAE. Thus each train-

ing algorithm is (O(qϵ
√
T ),δ )-differentially private. Next we prove

that each variational autoencoder (VAE) is a differentially private

generate model (see Theorem 1) and the entire DP-VaeGM is also

(O(qϵ
√
T ),δ )-differentially private (see Theorem 2). Formally, to

show proofs, we let X be the shared data, Θ be model parameters,

and X′ be the generated data (the output of a single VAE).

Input :Number of label classes n, private data Xm with labelm
(m ∈ {1, 2, . . . , n }), batch size B , learning rate λt , privacy budget

(ϵ, δ ), noise scale σ , gradient bound C , number of iterations T , size of

each generated dataset K
Output :Differentially private sharing data

ˆXm with labelm,

m ∈ {1, 2, . . . , n }
1 form ← 1 to n do
2 Randomly initializes the weights θm for variational autoencoder

Fm (x ; θm );
3 for t ← 1 to T do
4 Randomly samples a batch of data Xtm from Xm ;

5 foreach xi ∈ Xtm do
6 Computes Loss L(xi ) =;
7 Computes gradient: д(xi ) ← ∇ΘL(xi );

8 д(xi ) ← max(1,
∥д(xi )∥2

C );

9 end
10 θm ← θm − λt 1

B (
∑
i д(xi ) + N(0, σ 2C2I));

11 end
12 ˆXm = {};

13 for k ← 1 to K do
14 samples z from N(0, 1);

15 x̂i ← Fm (z ; θm );
16 ˆXm ← ˆXm ∪ {x̂i }
17 end
18 end
19 return ˆXm,m ∈ {1, 2, . . . , n }

Algorithm 2: DP-VaeGM

Theorem 1. Let T : X → Θ be a VAE training algorithm that
is (ϵ,δ )-differentially private based on [4]. Let f : Θ → X′ be a
mapping that maps model parameters to output, with Gaussian noise
generated from a sampling layer of VAE as input. Then f ◦ T : X →

X′ is (ϵ,δ )-differentially private.

Proof. The proof is immediate by applying the post processing

property of differential privacy [13]. □

Theorem 2. Let a generativemodel (VAE) of class iMi : Xi → X
′
i

be (ϵ,δ )-differentially private. Then Gn : X → Πn
i=1X

′
i is defined

to be Gn =
⋃n
i=1Mi , Gn is (ϵ,δ )-differentially private, for any

integer n.

Proof. Given two adjacent datasetsX1 andX2 = X1
⋃
{b}, with-

out loss of generalization, we assume b belongs to class k (1 ≤
k ≤ n). Fix any subset of events S ⊆ Πn

i=1X
′
i . Since the n gen-

erative models are pairwise independent, we obtain Pr[Gn (X1) ∈

S] = Πn
i=1 Pr[Mi (x

1

i ) ∈ S], where x1i ⊆ X1 =
⋃n
i=1 x

1

i denotes
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the training data of Xi for the ith generative model. Similarly,

Pr[Gn (X2) ∈ S] = Πn
i=1 Pr[Mi (x

2

i ) ∈ S]. Since X1 and X2 only

differ in b, we have x1i = x2i and Pr[Mi (x
1

i ) ∈ S] = Pr[Mi (x
2

i ) ∈ S],
for any i , k . SinceMk is (ϵ,δ )-differentially private, then we have

Pr[Mk (x
1

k ) ∈ S] ≤ eϵ Pr[Mk (x
2

k ) ∈ S] + δ . Therefore, we obtain

Pr[Gn (X1) ∈ S] = Πn
i=1 Pr[Mi (x

1

i ) ∈ S] = Pr[M1(x
2

1
) ∈ S] × · · · ×

Pr[Mk (x
1

k ) ∈ S] × · · · × Pr[Mn (x
2

n ) ∈ S] ≤ eϵΠn
i=1 Pr[Mi (x

2

i ) ∈

S] + δ = eϵ Pr[Gn (X2) ∈ S] + δ . The inequality derives from the

fact that any probability is no greater than 1. Hence, Gn is (ϵ,δ )-
differentially private, for any n. □

4 EVALUATION
4.1 Datasets
MNIST.MNIST [22] is the benchmark dataset containing handwrit-

ten digits from 0 to 9, comprised of 60,000 training and 10,000 test

examples. Each handwritten grayscale image of digits is centered

in a 28×28 or 32×32 image. To be consistent with [20], we choose

to use the 32×32 version of MNIST dataset when evaluating our

generative models against the GAN-based attack.

Adult CensusData.TheAdult CensusDataset [23] includes 48,843
records with 14 sensitive attributes, including gender, education

level, marital status, and occupation. This dataset is commonly used

to predict whether an individual makes over 50K dollars in a year.

32,561 records serve as a training set and 16,282 records are used

for testing.

Hospital Data. This dataset is based on the Public Use Data File re-

leased by the Texas Department of StateHealth Services in 2010Q1 [2].

Within the data, there are personal sensitive information, such as

gender, age, race, length of stay, and surgery procedure. We focus

on the 10 most frequent main surgery procedures, and exploit part

of categorical features to make inference for each patient. The re-

sulting dataset has 186,976 records with 776 binary features. We

randomly choose 36,000 instances as testing data and the rest serves

as the training data.

Malware Data. To demonstrate the generality of the proposed

models, we also include the Android mobile malware dataset [8]

for diversity purposes. This dataset is previously used to determine

whether an Android application is benign or malicious based on

142 binary features, such as user permission request. We randomly

choose 3,240 instances as training data and 2,000 as testing data.

4.2 Evaluation of DP-AuGM
In this subsection, we show how DP-AuGM performs in terms of

utility under the various differential privacy budget on four datasets.

To evaluate performance, for all the four datasets, we assume 90%

of the training data is used as shared data while the remaining 10%

still serves as the training data. To demonstrate how DP-AuGM

helps boost the learning efficiency, we compare the learning efficacy

between: when only using 10% training data and when combining

it with DP-AuGM for better data representations.

Effect of the Privacy Budget. To evaluate the effects of the pri-

vacy budget (i.e., ϵ and δ ) on prediction accuracy for machine learn-

ing models, we vary (ϵ , δ ) to test learning efficiency (i.e., the utility

metric) on different datasets. The results are shown in Figures 2(a)-

(d). In these figures, each curve corresponds to the best accuracy

achieved given a fixed δ , as ϵ varies between 0.2 and 8. In addi-

tion, we also show the baseline accuracy (i.e., without DP-AuGM)

on each dataset for the comparison. From Figure 2, we can see

that the prediction accuracy decreases as the noise level increases

(ϵ decreases), while we see DP-AuGM can still achieve comparable

utility with the baseline even when ϵ is tight (i.e., around 1). When

ϵ = 8, for all the datasets, the accuracy lags behind the baseline

within 3%. This demonstrates that data generated by DP-AuGM can

preserve high data utility for subsequent learning tasks.

Efficacy of DP-AuGM.We further examine how DP-AuGM helps

boost the learning efficacy. We compare the learning accuracy be-

tween using 10% training data and combining it with DP-AuGM

for getting better data representations. For DP-AuGM, we set the

private budget ϵ and δ to be 1 and 10
−5
, respectively. We do the

comparisons on all the datasets and the result is presented in Table 1.

As we can see from Table 1, after using DP-AuGM, the learning

accuracy increases by at least 6% on all the datasets and by 34%

on Malware Data dataset. This demonstrates the significance of

using DP-AuGM prior to releasing information about the shared

data. DP-AuGM trained over the shared data can better capture the

inner representations of the dataset, which boosts the following

learning accuracy of machine learning models.

In Comparison with Scalable Private Learning with PATE.
Scalable Private Learning with PATE (sPATE) [27], recently pro-

posed by Papernot et al., can also realize a differentially private

training algorithm w.r.t. the private data and provide privacy pro-

tections for partial data. We try to compare sPATE with DP-AuGM

on MNIST in terms of the utility metric. Here, the baseline denotes

the scenario where no privacy protection approach is used. We

follow [27] to split the test data into two parts. One part serves as

public data while the second serves as test data. We also use the

same CNN machine-learning model as specified in [27]. As we can

see from Table 2, DP-AuGM outperforms sPATE by 0.2% in terms of

prediction accuracy and only sits below the baseline by 0.5%. Note

that the reason of making a comparison at a specific pair of the pri-

vacy budget is that sPATE [27] only presents the result on MNIST

for a specific pair of differential privacy parameters. Furthermore,

DP-AuGM surpasses sPATE in terms of computational efficiency

since 250 teacher models are used in sPATE while DP-AuGM only

needs to be trained once.

4.3 Evaluation of DP-VaeGM
In this subsection, we empirically evaluate utility performance of

our proposed data generative model DP-VaeGM. As VAE is typically

used to generate high quality images, now we only evaluate DP-

VaeGM on the MNIST image dataset.

Table 1: Comparisons of training accuracy between using
only public data for training and using both DP-AuGM and
public data

Datasets With DP-AuGM Without DP-AuGM

MNIST 0.95 0.89

Adult Census Data 0.78 0.64

Hospital Data 0.56 0.42

Malware Data 0.96 0.62
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Figure 2: Evaluation of DP-AuGM

Table 2: Comparisons between DP-AuGM and sPATE on
MNIST

Models Privacy budget ϵ Privacy budget δ Accuracy Baseline

sPATE [27] 1.97 10
−5

0.985 0.992

DP-AuGM 1.97 10
−5

0.987 0.992

Effect of the Privacy Budget.We vary the privacy budget to test

DP-VaeGM on MNIST dataset. The result is shown in Figure 3,

where each curve corresponds to the best accuracy given δ , and ϵ
varies between 0.2 and 8.We plot the baseline accuracy (i.e., without

DP-VaeGM) using the red line. From this figure, we can see that

DP-VaeGM can achieve comparable utility w.r.t. the baseline. For

instance, when ϵ is greater than 1, the accuracy is always higher

than 92%. When ϵ is 8 and δ is 10
−2
, the accuracy is over 97% which

is lower than the baseline by 2%. Thus, we can see that DP-VaeGM

has the potential to generate data with high training utility while

providing privacy guarantees for private data.
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Figure 3: Accuracy of DP-VaeGM across the privacy budget
on MNIST dataset

In Comparison with Scalable Private Learning with PATE.
We also compare Scalable Private Learning with PATE (sPATE) [27]

with DP-VaeGM on MNIST in terms of the utility metric (i.e., pre-

diction accuracy). The learning model applies the CNN structure

Table 3: Comparisons between DP-VaeGM and sPATE on
MNIST

Models Privacy budget ϵ Privacy budget δ Accuracy

sPATE [27] 1.97 10
−5

0.985

DP-VaeGM 1.97 10
−5

0.968

as specified in [27]. As sPATE requires the presence of public data,

we split the test data into two parts in the same way as specified

by [27]. Considering DP-VaeGM does not need public data, the

private data is discarded for DP-VaeGM. In addition, the privacy

budget ϵ and δ is set to be 1.97 and 10−5, respectively. From Table 3,

we can see that DP-VaeGM falls behind sPATE by approximately

2%. This is because that sPATE trains the model using both public

and private data while DP-VaeGM is only trained with private data.

5 CONCLUSION
We have designed, implemented, and evaluated two approaches

of differentially private data sharing via a differentially private

autoencoder-based generative model (DP-AuGM) and a differen-

tially private variational autoencoder-based generative model (DP-

VaeGM), respectively. We show that both approaches can provide

provable privacy guarantees and retain high data utility for ma-

chine learning tasks. We hope that our work will help pave the way

toward designing more effective differentially private data sharing

approaches in the dynamic digital world.
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APPENDIX
A MODEL ARCHITECTURES

Table 4: Model structures of DP-AuGM over different
datasets

MNIST Adult Census Data Texas Hospital Stays Data Malware Data

FC(400)+Sigmoid FC(6)+Sigmoid FC(400)+Sigmoid FC(50)+Sigmoid

FC(256)+Sigmoid FC(100)+Sigmoid FC(776)+Sigmoid FC(142)+Sigmoid

FC(400)+Sigmoid

FC(784)+Sigmoid

Table 5: Model structures of DP-VaeGM over MNIST

MNIST

FC(500)+Sigmoid

FC(500)+Sigmoid

FC(20)+Sigmoid ; FC(20)+Sigmoid

Sampling Vector(20)

FC(500)+Sigmoid

FC(500)+Sigmoid

FC(784)+Sigmoid

Table 6: Structures of machine learning models over differ-
ent datasets with DP-AuGM

MNIST Adult Census Data Texas Hospital Stays Data Malware Data

Conv(5x5,1,32)+Relu FC(16)+Relu FC(200)+Relu FC(4)+Relu

MaxPooling(2x2,2,2) FC(16)+Relu FC(100)+Relu FC(3)+Relu

Conv(5x5,32,64)+Relu FC(2) FC(10) FC(2)

MaxPooling(2x2,2,2)

Reshape(4x4x64)

FC(10)

Table 7: Structures of machine learning models over differ-
ent datasets with DP-VaeGM

MNIST

Conv(5x5,1,32)+Relu

MaxPooling(2x2,2,2)

Conv(5x5,32,64)+Relu

MaxPooling(2x2,2,2)

Reshape(7x7x64)

FC(1024)

FC(10)
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