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Online social networks offer convenient ways to reach out to large audiences. In particular, Facebook pages

are increasingly used by businesses, brands, and organizations to connect with multitudes of users world-

wide. As the number of likes of a page has become a de-facto measure of its popularity and profitability,

an underground market of services artificially inflating page likes (“like farms”) has emerged alongside Face-

book’s official targeted advertising platform. Nonetheless, besides a few media reports, there is little work that

systematically analyzes Facebook pages’ promotion methods. Aiming to fill this gap, we present a honeypot-

based comparative measurement study of page likes garnered via Facebook advertising and from popular like

farms. First, we analyze likes based on demographic, temporal, and social characteristics and find that some

farms seem to be operated by bots and do not really try to hide the nature of their operations, while others

follow a stealthier approach, mimicking regular users’ behavior. Next, we look at fraud detection algorithms

currently deployed by Facebook and show that they do not work well to detect stealthy farms that spread

likes over longer timespans and like popular pages to mimic regular users. To overcome their limitations, we

investigate the feasibility of timeline-based detection of like farm accounts, focusing on characterizing con-

tent generated by Facebook accounts on their timelines as an indicator of genuine versus fake social activity.

We analyze a wide range of features extracted from timeline posts, which we group into two main categories:

lexical and non-lexical. We find that like farm accounts tend to re-share content more often, use fewer words

and poorer vocabulary, and more often generate duplicate comments and likes compared to normal users.

Using relevant lexical and non-lexical features, we build a classifier to detect like farms accounts that achieves

a precision higher than 99% and a 93% recall.
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1 INTRODUCTION

Online social networks provide organizations and public figures with a range of tools to reach
out to, as well as broaden, their audience. Among these, Facebook pages make it easy to broadcast
updates, publicize products and events, and get in touch with customers and fans. Facebook allows
page owners to promote their pages via targeted advertisement, that is, pages can be “suggested”
to users from specific age or location groups or with certain interests. Page ads constitute one of
the primary sources of revenue for Facebook, as its advertising platform overall is reportedly used
by 2 million small businesses of the 40 million that have active pages (Snyder 2015).

At the same time, as the number of likes on a Facebook page is considered a measure of its
popularity (Carter 2013), an ecosystem of “like farms” has emerged that offers paid services to ar-
tificially inflate the number of likes on Facebook pages. These farms rely on fake and compromised
accounts as well as incentivized collusion networks where users are paid for actions from their ac-
count (Viswanath et al. 2014). Popular media reports (Arthur 2013; Cellan-Jones 2012; Metzger
2012; Muller. 2014; Schneider 2014) have speculated that Facebook ad campaigns may also garner
significant amounts of fake likes, due to farm accounts’ attempt to diversify liking activities and
avoid Facebook’s fraud detection algorithms. With the price charged for 1,000 likes varying from
$14.99–$70 for worldwide users to $59.95–$190 for USA users, it is not far fetched to assume that
selling likes may yield significant profits for fraudsters. This also creates potential problems for
providers like Facebook, as they lose potential ad revenues while possibly disenfranchising page
owners who receive likes from users who do not engage with their page. However, even though
the understanding of fake likes is crucial to improve fraud mitigation in social networks, there
has been little work to systematically analyze and compare Facebook page promotion methods.
With this motivation in mind, we set to shed light on the like farming ecosystem with the aim of
characterizing features and behaviors that can be useful to effectively detect them. In the process,
we review the fraud detection tools currently deployed by Facebook and assess their efficacy for
more sophisticated like farms.

Specifically, our article makes three main contributions: (1) We present a first-of-its-kind
honeypot-based comparative measurement study of page likes garnered via Facebook ads and like
farms and analyze likes based on demographic, temporal, and social characteristics; (2) we perform
an empirical analysis of graph-based fraud detection tools used by Facebook and highlight their
shortcomings against more sophisticated farms; and (3) we propose and evaluate timeline-based
detection of like farm accounts, focusing on characterizing content as an indicator of genuine ver-
sus fake social activity, and build a classifier, based on lexical and non-lexical features, that detects
like farm accounts with at least 99% precision and 93% recall.

1.1 Roadmap

Honeypot-based measurement of like farms. Aiming to study fake likes garnered from like
farms and, potentially, from Facebook advertising, we have create 13 Facebook honeypot pages with
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the description: “This is not a real page, so please do not like it” and intentionally kept them empty
(i.e., no posts or pictures). We have promoted 8 of them using four like farms (i.e., targeting users in
the USA and worldwide for each, as farms mostly offer user targeting for only this two locations)
and 5 using Facebook ad campaigns (with two targeting users in the USA and worldwide as the like
farms). The other three target one developed and two developing countries, as Facebook reports
that “false” accounts are less prevalent in developed markets and more in developing markets.1

After monitoring likes garnered by the pages, and collecting information about the likers (e.g.,
gender, age, location, friend list, etc.), we perform a comparative analysis based on demographic,
temporal, and social characteristics.

We identify two main modi operandi for the like farms: (1) Some seem to be operated by bots and
do not really try to hide their activities, delivering likes in bursts and forming disconnected social
sub-graphs, while (2) others follow a stealthier approach, mimicking regular users’ behavior, and
rely on a large and well-connected network structure to gradually deliver likes while keeping a
small count of likes per user. The first strategy reflects a “quick and dirty” approach where likes
from fake users are delivered rapidly, as opposed to the second one, which exhibits a stealthier
approach that leverages the underlying social graph, where accounts (possibly operated by real
users) slowly deliver likes. We also highlight a few more interesting findings. When targeting
Facebook users worldwide, we obtain likes from only a few countries and that likers’ profiles seem
skewed toward males. Moreover, we find evidence that different like farms (with different pricing
schemes) garner likes from overlapping sets of users and, thus, may be managed by the same
operator.

Characterizing fake likes. We present the concept of liking a page on Facebook as a binary
action where likes received on a page by users who have interest for the content of the page
are considered “good” and likes received to manipulate a page’s popularity ranking as “fake.”
We have only considered to mark likes that are meant to manipulate a page’s popularity as fake
(i.e., by increasing the page’s number of fans), as this is the main purpose of like farms. On this
note, we start our study with the assumption that likers from farms that like our empty hon-
eypot pages are either fake or compromised real users (i.e., fake likes) as shown in Viswanath
et al. (2014). Although, Facebook discourages page owners from buying fake likes, warning that
they “can be harmful to your page,”2 they also routinely launch clean-up campaigns to remove
fake accounts, including those engaged in like farms. Hence, we also hypothesize that very few
or no users from the Facebook ad campaigns will like our honeypot pages, as the pages were
empty.

Aiming to counter like farms, researchers as well as Facebook have recently been working on
tools to detect fake likes. One currently deployed tool is CopyCatch, which detects lockstep page
like patterns by analyzing the social graph among users and pages and the times at which the
edges in the graph are created (Beutel et al. 2013). Another one, SynchroTrap, relies on the fact
that malicious accounts usually perform loosely synchronized actions in a variety of social net-
work context and can cluster malicious accounts that act similarly at around the same time for a
sustained period of time (Cao et al. 2014). The issue with these methods, however, is that stealthier
(and more expensive) like farms can successfully circumvent them by spreading likes over longer
timespans and liking popular pages to mimic normal users.

We systematically evaluate the effectiveness of these graph-based co-clustering fraud detection
algorithms (Beutel et al. 2013; Cao et al. 2014) in identifying like farm accounts. We show that

1https://goo.gl/OAxgTh (accessed on January 31, 2017).
2See https://www.facebook.com/help/241847306001585 (accessed on July 18, 2016).
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these tools incur high false-positives rates for stealthy farms, as their accounts mimic normal
users.

Characterizing lexical and non-lexical timeline information. Next, we investigate the use
of timeline information, including lexical and non-lexical characteristics of user posts, to improve
the detection of like farm accounts. To this end, we crawl and analyze timelines of user accounts
associated with like farms as well as a baseline of normal user accounts. Our analysis of timeline
information highlights several differences in both lexical and non-lexical features of baseline and
like farm users. In particular, we find that timeline posts by like farm accounts have 43% fewer
words, a more limited vocabulary, and lower readability than normal users’ posts. Moreover, like
farm accounts’ posts generate significantly more comments and likes, and a much larger fraction of
their posts consists of “shared activity” (i.e., sharing posts from other users, news articles, videos,
and external URLs).

Detection. Based on our characterization, we extract a set of timeline-based features and use them
to train three classifiers using supervised two-class support vector machines (SVM) (Müller et al.
2001). Our first and second classifiers use, respectively, lexical and non-lexical features extracted
from timeline posts, while the third one uses both. We evaluate the classifiers using the ground-
truth dataset of like farm accounts and show that they achieve 99–100% precision and 93–97%
recall in detecting like farm accounts. Finally, we generalize our approach using other classification
algorithms, namely, decision tree (Breiman et al. 1984), AdaBoost (Freund and Schapire 1997),
kNN (Andoni and Indyk 2008), random forest (Breiman 2001), and naïve Bayes (Zhang 2004), and
empirically confirm that the SVM classifier achieves higher accuracy across the board.

1.2 Paper Organization

The rest of the article is organized as follows. Section 2 presents our honeypot-based comparative
measurement of likes garnered using farms and legitimate Facebook ad campaigns. Then, Section 3
evaluates the accuracy of state-of-the-art co-clustering techniques to detect like farm accounts in
our datasets. Next, we study timeline-based features (both non-lexical and lexical) in Section 4
and evaluate the classifiers built using these features in Section 5. After reviewing related work in
Section 6, the article concludes in Section 7.

2 HONEYPOT-BASED MEASUREMENT OF FACEBOOK LIKE FARMS

This section details our honeypot-based comparative measurement study of page likes garnered
via Facebook ads and by like farms.

2.1 Datasets

In the following, we present the methodology used to deploy, monitor, and promote our Facebook
honeypot pages.

Honeypot pages. In March 2014, we created 13 Facebook pages called “Virtual Electricity” and
intentionally kept them empty (i.e., no posts or pictures). Their description included the following
text: “This is not a real page, so please do not like it.” Five pages were promoted using legitimate
Facebook (FB) ad campaigns targeting users, respectively, in USA, France, India, Egypt, and world-
wide. The remaining 8 pages were promoted using four popular like farms: BoostLikes.com (BL),
SocialFormula.com (SF), AuthenticLikes.com (AL), and MammothSocials.com (MS), targeting
worldwide or USA users.

In Table 1, we provide details of the honeypot pages, along with the corresponding ad campaigns.
All campaigns were launched on March 12, 2014, using a different administrator account (owner)
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Table 1. Facebook and Like Farm Campaigns Used to Promote the Facebook Honeypot Pages. Like

Farms Promised to Deliver 1000 Likes in 15 Days at Differing Prices Depending on the Geographical

Target (i.e., USA and Worldwide), Whereas on Facebook, We Budgeted $6 Per Day for the Promotion

of Each Page for a Period of 15 Days

Campaign Moni- #Termi-
ID Provider Location Budget Duration toring #Likes nated
FB-USA Facebook.com USA $6/day 15 days 22 days 32 0
FB-FRA Facebook.com France $6/day 15 days 22 days 44 0
FB-IND Facebook.com India $6/day 15 days 22 days 518 2
FB-EGY Facebook.com Egypt $6/day 15 days 22 days 691 6
FB-ALL Facebook.com Worldwide $6/day 15 days 22 days 484 3
BL-ALL BoostLikes.com Worldwide $70.00 15 days — — —
BL-USA BoostLikes.com USA only $190.00 15 days 22 days 621 1
SF-ALL SocialFormula.com Worldwide $14.99 3 days 10 days 984 11
SF-USA SocialFormula.com USA $69.99 3 days 10 days 738 9
AL-ALL AuthenticLikes.com Worldwide $49.95 3–5 days 12 days 755 8
AL-USA AuthenticLikes.com USA $59.95 3–5 days 22 days 1038 36
MS-ALL MammothSocials.com Worldwide $20.00 — — — —
MS-USA MammothSocials.com USA only $95.00 — 12 days 317 9

for each page. Each Facebook campaign was budgeted at a maximum of $6/day to a total of $90
for 15 days. The price for buying likes varied across like farms: BoostLikes charged the highest
price for “100% real likes” ($70 and $190 for 1000 likes in 15 days from, respectively, worldwide
and USA). Other like farms also claimed to deliver likes from “genuine,” “real,” and “active” profiles
but promised to deliver them in fewer days. Overall, the price of 1,000 likes varied between $14.99
and $70 for worldwide users and $59.95 and $190 for USA users.

Data collection. We monitored the “liking” activity on the honeypot pages by crawling them
every 2 hours using Selenium web driver. At the end of the campaigns, we reduced the frequency
of monitoring to once a day and stopped monitoring when a page did not receive a like for more
than a week. We used Facebook’s reports tool for page administrators, which provides a variety
of aggregated statistics about attributes and profiles of page likers. Facebook also provides these
statistics for the global Facebook population. Since a majority of Facebook users do not set the
visibility of their age and location to public (Chaabane et al. 2012), we used these reports to collect
statistics about likers’ gender, age, country, home, and current town. Later in this section, we will
use these statistics to compare distributions of our honeypot pages’ likers to that of the overall
Facebook population. We also crawled public information from the likers’ profiles, obtaining the
lists of liked pages as well as friend lists, which are not provided in the reports. Overall, we identify
more than 6.3 million total likes by users who liked our honeypot pages and more than 1 million
friendship relations.

Campaign summary. In Table 1, we report the total number of likes garnered by each campaign,
along with the number of days we monitored the honeypot pages. Note that the BL-ALL and MS-
ALL campaigns remained inactive, that is, they did not result in any likes even though we were
charged in advance. We tried to reach the like farm admins several times but received no response.
Overall, we collected a total of 6,222 likes (4,453 from like farms and 1,769 from Facebook ads). The
largest number of likes were garnered by AL-USA and the lowest (excluding inactive campaigns)
by FB-USA.
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Fig. 1. Geolocation of the likers (per campaign).

Ethics considerations. Although we only collected openly available data, we did collect (public)
profile information from our honeypot pages’ likers, for example, friend lists and page likes. We
could not request consent but enforced a few mechanisms to protect user privacy: All data were
encrypted at rest and not re-distributed, and no personal information was extracted, that is, we
only analyzed aggregated statistics. We are also aware that paying farms to generate fake likes
might raise ethical concerns; however, this was crucial to create the honeypots and observe the
like farms’ behavior. We believe that the study will help, in turn, to understand and counter these
activities. Also note that the amount of money each farm received was small ($190 at most) and
that this research was reviewed and approved by Data61’s legal team. We also received ethical
approval from the ethics committee of UCL where, in conjunction with Data61, data were collected
and analyzed.

2.2 Location and Demographics Analysis

We now set to compare the characteristics of the likes garnered by the honeypot pages promoted
via legitimate Facebook campaigns and those obtained via like farms.

Location. For each campaign, we looked at the distribution of likers’ countries: As shown in Fig-
ure 1, for the first four Facebook campaigns (FB-USA, FB-FRA, FB-IND, and FB-EGY), we mainly
received likes from the targeted country (87–99.8%), even though FB-USA and FB-FRA generated
far fewer likes than any other campaign. When we targeted Facebook users worldwide (FB-ALL),
we almost exclusively received likes from India (96%). Looking at the like farms, most likers from
SocialFormula were based in Turkey, regardless of whether we requested a US-only campaign. The
other three farms delivered likes complying to our requests, for example, for US-only campaigns,
the pages received a majority of likes from US profiles. The location result supports Facebook’s
claim that “the percentage of accounts that are duplicate or false is meaningfully lower in devel-
oped markets such as the United States or United Kingdom and higher in developing markets such
as India and Turkey.”3 It also potentially supports the claim that like farm accounts diversify their

3https://goo.gl/OAxgTh (accessed on January 31„ 2017).

ACM Transactions on Privacy and Security, Vol. 20, No. 4, Article 13. Publication date: September 2017.

https://goo.gl/OAxgTh


Measuring, Characterizing, and Detecting Facebook Like Farms 13:7

Table 2. Gender and Age Statistics of Likers

Campaign Gender Age Distribution (%)
ID % F/M 13–17 18–24 25–34 35–44 45–54 55+ KL
FB-USA 54/46 54.0 27.0 6.8 6.8 1.4 4.1 0.45
FB-FR 46/54 60.8 20.8 8.7 2.6 5.2 1.7 0.54
FB-IND 7/93 52.7 43.5 2.3 0.7 0.5 0.3 1.12
FB-EGY 18/82 54.6 34.4 6.4 2.9 0.8 0.8 0.64
FB-ALL 6/94 51.3 44.4 2.1 1.1 0.5 0.6 1.04
BL-USA 53/47 34.2 54.5 8.8 1.5 0.7 0.5 0.60
SF-ALL 37/63 19.8 33.3 21.0 15.2 7.2 2.8 0.04
SF-USA 37/63 22.3 34.6 22.9 11.6 5.4 2.9 0.04
AL-ALL 42/58 15.8 52.8 13.4 9.7 5.2 3.0 0.12
AL-USA 31/68 7.2 41.0 35.0 10.0 3.5 2.8 0.09
MS-USA 26/74 8.6 46.9 34.5 6.4 1.9 1.4 0.17
Facebook 46/54 14.9 32.3 26.6 13.2 7.2 5.9 —

Fig. 2. Time series of cumulative number of likes for Facebook and like farms campaigns.

liking activities by liking pages promoted via Facebook ads to avoid Facebook’s fraud detection
algorithms (we further explore this in Section 2.5).

Other demographics. In Table 2, we show the distribution of likers’ gender and age and also com-
pare them to the global Facebook network (last row). The last column reports the KL -divergence
between the age distribution of the campaign users and that of the entire Facebook population,
highlighting large divergence for FB-IND, FB-EGY, and FB-ALL, which are biased toward younger
users. These three campaigns also appear to be skewed toward male profiles. In contrast, the de-
mographics of likers from SocialFormula and, to a lesser extent, AuhtenticLikes and Mammoth-
Socials, are much more similar to those of the entire network, even though male users are still
over-represented.

2.3 Temporal Analysis

We also analyzed temporal patterns observed for each of the campaigns. In Figure 2, we plot the
cumulative number of likes observed on each honeypot page over our observation period (15 days).

ACM Transactions on Privacy and Security, Vol. 20, No. 4, Article 13. Publication date: September 2017.
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Table 3. Likers and Friendships Between Likers

#Likers with #Friendships #Two-Hop Friend-
Public Friend Avg (± Std) Median Between ship Relations

Provider #Likers Lists #Friends #Friends Likers Between Likers
FB 1448 261 (18.0%) 315 ± 454 198 6 169
BL 621 161 (25.9%) 1171 ± 1096 850 540 2987
SF 1644 954 (58.0%) 246 ± 330 155 50 1132
AL 1597 680 (42.6%) 719 ± 973 343 64 1174
MS 121 62 (51.2%) 250 ± 585 68 4 129
ALMS 213 101 (47.4%) 426 ± 961 46 27 229

We observe from Figure 2(a) that all the like farm campaigns, except BoostLikes, exhibit a very
similar trend with a few bursts of a large number of likes. Specifically, for the SocialFormula,
AuthenticLikes, and MammothSocials campaigns, likes were garnered within a short period of
time of 2 hours. With AuthenticLikes, we observed likes from more than 700 profiles within the
first 4 hours of the second day of data collection. Interestingly, no more likes were observed later.
On the contrary, the BoostLikes campaign targeting US users shows a different temporal behavior:
The trend is actually comparable to that observed in the Facebook ads campaigns (see Figure 2(b)).
The number of likes steadily increases during the observation period, and no abrupt changes are
observed.

This suggests that two different strategies may be adopted by like farms. On the one hand, the
abrupt increase in the cumulative number of likes happening during a short period of time might
likely be due to automated scripts operating a set of fake profiles. These profiles are instrumented to
satisfy the number of likes as per the customer’s request. On the other hand, BoostLikes’s strategy,
which resembles the temporal evolution in Facebook campaigns, seems to rely on the underlying
social graph, possibly constituted by fake profiles operated by humans. Results presented in the
next section corroborate the existence of these two strategies.

2.4 Social Graph Analysis

Next, we evaluated the social graph induced by the likers’ profiles. To this end, we associated each
user with one of the like farm services based on the page they liked. Note that a few users liked
pages in multiple campaigns, as we will discuss in Section 2.5. A significant fraction of users ac-
tually liked pages corresponding to both the AuthenticLikes and the MammothSocials campaigns
(see Figure 5): We put these users into a separate group, labelled as ALMS. Table 3 summarizes the
number of likers associated with each service, as well as additional details about their friendship
networks. Note that the number of likers reported for each campaign in Table 3 is different from
the number of campaign likes (Table 1), since some users liked more than one page.

Many likers kept their friend lists private: This occurred for almost 80% of likers in the Facebook
campaigns, about 75% in the BoostLikes campaign, and much less frequently for the other like farm
campaigns (∼40–60%). The number and percentage of users with public friend lists are reported
in Table 3. The fourth column reports the average number of friends (± the standard deviation)
for profiles with visible friend lists, and the fifth column reports the median. Some friendship
relations may be hidden, for example, if a friend chose to be invisible in friend lists, thus, these
numbers only represent a lower bound. The average number of friends of users associated with
the BoostLikes campaign (and to a smaller extent, the AuthenticLikes campaign) was much higher
than the average number of friends observed elsewhere.

ACM Transactions on Privacy and Security, Vol. 20, No. 4, Article 13. Publication date: September 2017.
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Fig. 3. Friendship relations between likers of different campaigns.

To evaluate the social ties between likers, we looked at friendship relations between likers (either
originating from the same campaign provider or not), ignoring friendship relations with Facebook
users who did not like any of our pages. Table 3 (sixth column) reports, for each provider, the
overall number of friendship relationships between likers that involved users associated with the
provider.

In Figure 3(a), we plot the social graph induced by such friendship relations (likers who did
not have friendship relations with any other likers were excluded from the graph). Based on the
resulting social structure, we suggest that:

(1) Dense relations between likers from BoostLikes point to an interconnected network of
real users, or fake users who mimic complex ties to pose as real users;

(2) The pairs (and occasionally triplets) that characterize SocialFormula likers might indicate
a different strategy of constructing fake networks, mitigating the risk that identification
of a user as fake would consequently bring down the whole connected network of fake
users; and

(3) The friendship relations between AuthenticLikes and MammothSocials likers might indi-
cate that the same operator manages both services.

We also considered indirect links between likers, through mutual friends. Table 3 reports the
overall number of two-hop relationships between likers from the associated provider. Figure 3(b)
plots the relations between likers who either have a direct relation or a mutual friend, clearly point-
ing to the presence of relations between likers from the same provider. These tight connections,
along with the number of their friends, suggest that we only see a small part of these networks.
For SocialFormula, AuthenticLikes, and MammothSocials, we also observe many isolated pairs and
triplets of likers who are not connected. One possible explanation is that farm users create fake
Facebook accounts and keep them separate from their personal accounts and friends. In contrast,
the BoostLikes network is well connected.

To further compare connectivity of BoostLikes versus SocialFormula, AuthenticLikes, and Mam-
mothSocials, we analyze the structural properties of the social graph visualized in Figure 3(b).
Figure 4 plots distributions of degree, number of triangles, clustering coefficient, and cliques for
these like farms. The distributions demonstrate that BoostLikes accounts have dense connectivity

ACM Transactions on Privacy and Security, Vol. 20, No. 4, Article 13. Publication date: September 2017.
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Fig. 4. Structural properties of the graph of two-hop relationships among likers of like farm campaigns.

as compared to accounts belonging to SocialFormula, AuthenticLikes, and MammothSocials. More
specifically, BoostLikes accounts have higher degree, are part of more triangles, have higher clus-
tering coefficient, and have larger maximal cliques than other like farms. For example, the average
degree of BoostLikes accounts is 18 while other like farms have average degrees of less than 5.
Moreover, more than 25% of BoostLikes accounts make maximal cliques of size greater than 10
while less than 1% accounts of the other like farms make maximal cliques of size greater than 10.

2.5 Page Like Analysis

We then looked at the other pages liked by profiles attracted to our honeypot pages. In Figure 5(a)
and 5(b), respectively, we plot the distribution of the number of page likes for Facebook ads’ and
like farm campaigns’ users. To draw a baseline comparison, we also collected page like counts
from a random set of 2,000 Facebook users, extracted from an unbiased sample of Facebook user
population. The original sample was crawled for another project (Chen et al. 2013), obtained by
randomly sampling Facebook public directory that lists all the IDs of searchable profiles.

We observed a large variance in the number of pages liked, ranging from 1 to 10,000. The me-
dian page like count ranged between 600 and 1,000 for users from the Facebook campaigns and
between 1,200 and 1,800 for those from like farm campaigns, with the exception of the BL-USA
campaign (median was 63). In contrast, the median page like count for our baseline Facebook user
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Fig. 5. Distribution of the number of likes by users in Facebook and like farm campaigns.

Fig. 6. Jaccard index similarity (×100) matrices of page likes and likers across different campaigns.

sample was 34. The page like counts of our baseline sample mirrored numbers reported in prior
work, for example, according to Lafferty (2013), the average number of pages liked by Facebook
users amounts to roughly 40. In other words, our honeypot pages attracted users that tend to like
significantly more pages than regular Facebook users. Since our honeypot pages both for Facebook
and like farm campaigns explicitly indicated they were not “real,” we argue that a vast majority of
the garnered likes are fake. We argue that these users like a large number of pages because they
are probably reused for multiple “jobs” and also like “normal” pages to mimic real users.4

To confirm our hypothesis, for each pair of campaigns, we plot their Jaccard similarity. Specif-
ically, let Sk denote the set of pages liked by a user k : The Jaccard similarity between the set of
likes by likers of two campaigns A and B, which we plot in Figure 6(a), is defined as |A ∩ B |/|A ∪
B |, where A =

⋃
∀i ∈A Si and B =

⋃
∀j ∈B S j . We also plot, in Figure 6(b), the similarity between

A′ =
⋃
∀i ∈A i and B′ =

⋃
∀j ∈B j, that is, the similarity between the set of likers of the different

campaigns.

4Facebook does not impose any limit on the maximum number of page likes per user.
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Note from Figure 6 that FB-IND, FB-EGY, and FB-ALL have relatively large (Jaccard) similarity
with each other. In addition, the SF-USA and SF-ALL pair and the AL-USA and MS-USA pair also
have relatively large Jaccard similarity. These findings suggest that the same fake profiles are used
in multiple campaigns by a like farm (e.g., SF-ALL and SF-USA). Moreover, some fake profiles seem
to be shared by different like farms (e.g., AL-USA and MS-USA), suggesting that they are run by
the same operator.

2.6 Discussion

Overall, we identified two main modi operandi: (1) some farms, like SocialFormula and Authenti-
cLikes, seem to be operated by bots and do not really try to hide the nature of their operations,
as demonstrated by large bursts of likes and the limited number of friends per profile; (2) other
farms, like BoostLikes, follow a much stealthier approach, aiming to mimic regular users’ behavior,
and rely on their large and well-connected network structure to disseminate the target likes while
keeping a small count of likes per user. For the latter, we also observed a high number of friends
per profile and a “reasonable” number of likes.

A month after the campaigns, we checked whether or not likers’ accounts were still active:
As shown in Table 1, only one account associated with BoostLikes was terminated, as opposed
to 9, 20, and 44 for the other like farms. Eleven accounts from the regular Facebook campaigns
were also terminated. Although occurring not so frequently, the accounts’ termination might be
indicative of the disposable nature of fake accounts on most like farms, where “bot-like” patterns
are actually easy to detect. It also mirrors the challenge Facebook is confronted by, with like farms
such as BoostLikes that exhibit patterns closely resembling real users’ behavior, thus making fake
like detection quite difficult.

We stress that our findings do not necessarily imply that advertising on Facebook is ineffec-
tive, since our campaigns were specifically designed to avert real users. However, we do provide
strong evidence that likers attracted to our honeypot pages, even when using legitimate Facebook
campaigns, are significantly different from typical Facebook users, which confirms the concerns
about the genuineness of these likes. We also show that most fake likes exhibit some peculiar
characteristics—including demographics, likes, and temporal and social graph patterns—that can
and should be exploited by like fraud detection algorithms.

3 LIMITATIONS OF GRAPH CO-CLUSTERING TECHNIQUES

Aiming to counter fraudulent activities, including like farms, Facebook has recently deployed de-
tection tools such as CopyCatch (Beutel et al. 2013) and SynchroTrap (Cao et al. 2014). These tools
use graph co-clustering algorithms to detect large groups of malicious accounts that like simi-
lar pages around the same time frame. However, as shown in Section 2, some stealthy like farms
seem to deliberately modify their behavior to avoid synchronized patterns, which might reduce
the effectiveness of these detection tools. Specifically, while several farms use a large number of
accounts (possibly fake or compromised) liking target pages within a short timespan, some spread
likes over longer timespans and onto popular pages aiming to circumvent fraud detection algo-
rithms. In this section, we analyze the efficacy of state-of-the-art co-clustering algorithms on our
dataset of like farm users.

3.1 Re-Crawling

Our experiments use, as ground truth, the Facebook accounts gathered as part of the honeypot-
based measurement of like farms. Recall (from Section 2) that we garnered 5,918 likes from 5,616
unique users—specifically, 1,437 unique accounts from Facebook ad campaigns and 4,179 unique
accounts from the like farm campaigns (note that some users liked more than one honeypot pages).
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Table 4. Overview of the Datasets Used in Our Study

#Pages #Pages Liked
Campaign #Users Liked (Unique) #Posts
BL-USA 583 79,025 37,283 44,566
SF-ALL 870 879,369 108,020 46,394
SF-USA 653 340,964 75,404 38,999
AL-ALL 707 162,686 46,230 61,575
AL-USA 827 441,187 141,214 30,715
MS-USA 259 412,258 141,262 12,280
Tot. Farms 3,899 2,315,489 549,413 234,529
Baseline 1,408 79,247 57,384 34,903

In summer 2015, we checked how many accounts had been closed or terminated and found that
624 of 5,616 accounts (11%) were no longer active. We then began to crawl the pages liked by each
of the 4,179 like farm users (again, using Selenium web driver). We collected basic information
associated with each page, such as the total number of likes, category, and location, using the
page identifier. Unlike our previous crawl, we now also collected the timelines of the like farm
accounts—specifically, timeline posts (up to a maximum of 500 recent posts), the comments on
each post, as well as the associated number of likes and comments on each post.

Besides some accounts having become inactive (376), we also could not crawl the timeline of 24
users who had restricted the visibility of their timeline. Moreover, in fall 2015, Facebook blocked
all the accounts we were using for crawling, and so we stopped our data collection before we
could completely finish our data collection, and, hence, we missed an additional 109 users. In
summary, our new dataset consists of 3,670 users (of the initial 4,179), with more than 234K posts
(messages, shared content, check-ins, etc.) for these accounts. In our experiments, we will also rely
on a baseline of 1,408 random accounts from Chen et al. (2013) that we use to form a baseline of
“normal” accounts. For each of these accounts, we again collected posts from their timeline, their
page likes, and information from these pages. 53% of the accounts had at least 10 visible posts on
the timeline, and in total we collected about 35K posts.

Table 4 summarizes the data used in the experiments presented in the rest of the article. Note
that users who like more than one honeypot pages are included in all rows, hence the disparity
between the number of unique users (3,670) and the total reported in the table (3,899). Overall, we
gathered information from 600K unique pages, liked by 3,670 like farm accounts and 1,408 baseline
accounts, and around 270K posts.

Again, note that we collected openly available data such as (public) profile and timeline informa-
tion, as well as page likes. Also, all data were encrypted at rest and have not been re-distributed. No
personal information was extracted, as we only analyzed aggregated statistics. We also consulted
Data61’s legal team, which classified our research as exempt and, likewise, received approval from
the ethics committee of UCL.

3.2 Experimental Evaluation of Co-Clustering

We use the labeled dataset of 3,670 users from six different like farms and the 1,408 baseline users
and employ a graph co-clustering algorithm to divide the user-page bipartite graph into distinct
clusters (Kluger et al. 2003). Similarly to CopyCatch (Beutel et al. 2013) and SynchroTrap (Cao
et al. 2014), the clusters identified in the user-page bipartite graph represent near-bipartite cores,
and the set of users in a near-bipartite core like the same set of pages. Since we are interested in
distinguishing between two classes of users (like farm users and normal users), we set the target
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Table 5. Effectiveness of the Graph Co-clustering Algorithm

Campaign TP FP TN FN Precision Recall F1-Score
AL-USA 681 9 569 4 98% 99% 99%
AL-ALL 448 53 527 1 89% 99% 94%
BL-USA 523 588 18 0 47% 100% 64%
SF-USA 428 67 512 1 86% 100% 94%
SF-ALL 431 48 530 2 90% 99% 95%
MS-USA 201 22 549 2 90% 99% 93%

number of clusters at 2. Given that our crawlers were restricted to crawl the behavior of all like
farms and baseline users on daily basis, we do not have fine-grained features to further analyze
CopyCatch and SynchroTrap. Aiming to reveal the liking behavior of like farms users, we eval-
uate the employed graph co-clustering schemes of CopyCatch and SynchroTrap on our collected
datasets. Moreover, our analysis has a limitation that it relies on the data of a small number of like
farm accounts.

Results. In Table 5, we report the receiver operating characteristic (ROC) statistics of the graph
co-clustering algorithm—specifically, true positives (TP), false positives (FP), true negatives (TN),
false negatives (FN), Precision: (TP )/(TP + FP ), Recall: (TP )/(TP + FN ), and F1-Score, that is, the
harmonic average of precision and recall. Figure 7 visualizes the clustering results as user-page
scatter plots. The x-axis represents the user index and the y-axis the page index.5 The vertical
black line marks the separation between two clusters. The points in the scatter plot are colored
to indicate true positives (green), true negatives (blue), false positives (red), and false negatives
(black).

Analysis. We observe two distinct behaviors in the scatter plots: (1) “liking everything” (vertical
streaks) and (2) “everyone liking a particular page” (horizontal streaks). Both like farms and normal
users exhibit vertical and horizontal streaks in the scatter plots.

While the graph co-clustering algorithm neatly separates users for AL-USA, it incurs false pos-
itives for other like farms. In particular, the co-clustering algorithm fails to achieve a good sepa-
ration for BL-USA, where it incurs a large number of false positives, resulting in 47% precision.
Further analysis reveals that the horizontal false positive streaks in BL-USA include popular pages,
such as “Fast & Furious” and “SpongeBob SquarePants,” each with millions of likes. We deduce that
stealthy like farms, such as BL-USA, use the tactic of liking popular pages aiming to mimic normal
users, which reduces the accuracy of the graph co-clustering algorithm.

Our results highlight the limitations of prior graph co-clustering algorithms in detecting fake
likes by like farm accounts. We argue that fake liking activity is challenging to detect when only re-
lying on monitoring the liking activity due to the increased sophistication of stealthier like farms.
Therefore, as we discuss next, we plan to leverage the characteristics of timeline features to im-
prove accuracy.

4 CHARACTERIZING TIMELINE FEATURES

Motivated by the poor accuracy of graph co-clustering based detection tools on stealthy farms,
we set to evaluate the feasibility of timeline-based detection of like farm accounts. To this end,
we characterize timeline activities for users in our datasets (cf. Section 3.1) with respect to two
categories of features, non-lexical and lexical, aiming to identify the most distinguishing features

5To ease presentation, we exclude users and pages with fewer than 10 likes.
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Fig. 7. Visualization of graph co-clustering results. The vertical black line indicates the separation between

two clusters. We note that the clustering algorithm fails to achieve good separation, leading to a large number

of false positives (red dots).
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Fig. 8. Distribution of non-lexical features for like farm and baseline accounts.

to be used by machine-learning algorithms (in Section 5) for accurately classifying like farms vs.
regular accounts.

4.1 Analysis of Non-Lexical Features

Comments and likes. In Figure 8(a), we plot the distributions of the number of comments a post
attracts, revealing that users of AL-ALL like farm generate many more comments than the baseline
users. We note that BL-USA is almost identical to the baseline users. Next, Figure 8(b) shows the
number of likes associated with users’ posts, highlighting that posts of like farm users attract much
more likes than those of baseline users. Therefore, posts produced by the former gather more likes
(and also have lower lexical richness as shown later on in Table 6), which might actually indicate
their attempt to mask suspicious activities.

Shared content. We next study the distributions of posts that are classified as “shared activity,”
that is, originally made by another user, or articles, images, or videos linked from an external URL
(e.g., a blog or YouTube). Figure 8(c) shows that baseline users generate more original posts, and
share fewer posts or links, compared to farm users.

Words per post. Figure 8(d) plots the distributions of number of words that make up a text-based
post, highlighting that posts of like farm users tend to have fewer words. Roughly half of the users
in four of the like farms (AL-ALL, BL-USA, SF-ALL, and SF-USA) use 10 or fewer words in their
posts vs. 17 words by baseline users.
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Table 6. Lexical Analysis of Timeline Posts

Avg Avg Avg Avg Sent Avg Word Flesch
Campaign Chars Words Sents Length Length Richness ARI Score
Baseline 4,477 780 67 6.9 17.6 0.70 20.2 55.1
BL-USA 7,356 1,330 63 5.7 22.8 0.58 16.9 51.5
AL-ALL 2,835 464 32 6.2 13.9 0.59 14.8 43.6
AL-USA 2,475 394 33 6.2 12.7 0.49 14.1 54.0
SF-ALL 1,438 227 19 6.3 11.7 0.58 14.1 45.2
SF-USA 1,637 259 22 6.3 12.0 0.55 14.4 45.6
MS-USA 6,227 1,047 66 6.1 17.8 0.53 16.2 50.1

4.2 Analysis of Lexical Features

We now look at features that relate to the content of timeline posts, and similar lexical features
could be extracted for other non-English languages. We acknowledge that the extraction of lexical
features of a non-English language is a challenging task and the extraction models might be prone
to errors. We constrain our analysis to only English language and argue that lexical features ex-
tractions and analysis could be extended for other non-English Language such as Chinese (Zhang
et al. 2003a, 2003b), French (Silberztein 1989), Arabic (Farghaly and Shaalan 2009), and Hindi/Urdu
(Tiwary and Siddiqui 2008). We refer the reader to Silberztein (1997) for more details about lexical
features used in this article.

We have also considered user timelines as the collection of posts and the corresponding com-
ments on each post (i.e., all textual content) and build a corpus of words extracted from the time-
lines by applying the term frequency-inverse document frequency (TF-IDF) statistical tool (Salton
and McGill 1986). However, the overall performance of this “bag-of-words” approach was poor,
which can be explained with the short nature of the posts. Indeed, Hogenboom et al. (2015) has
shown that the word frequency approach to analyze short text on social media and blogs does not
perform well. Thus, in our work, we disregard simple TF-IDF based analysis of user timelines and
identify other lexical features.

Language. Next, we analyze the ratio of posts in English, that is, for every post we filter out
all non-English ones using a standard language detection library.6 For each user, we count the
number of English-language posts and calculate its ratio with respect to the total number of posts.
Figure 9 shows that the baseline users and like farm users in the USA (i.e., MS-USA, BL-USA, and
AL-USA) mostly post in English, while users of worldwide campaigns (MS-ALL, BL-ALL, AL-ALL)
have significantly fewer posts in English. For example, the median ratio of English posts for AL-
ALL campaign is around 10% and that for SF-ALL around 15%. We acknowledge that our analysis is
limited to English-only content and may be statistically biased toward non-native English speakers
that is, non-USA campaign users. While our analysis could be extended to other languages, we
argue that English-based lexical analysis provides sufficient differences across different categories
of users. Thus, developing algorithms for language detection and processing on non-English posts
is out of the scope of this article.

Readability. We further analyze posts for grammatical and semantic correctness. We parse each
post to extract the number of words, sentences, punctuation, and non-letters (e.g., emoticons) and
measure the lexical richness, as well as the Automated Readability Index (ARI) (Senter and Smith
1967) and Flesch score (Flesch 1948). Lexical richness, defined as the ratio of number of unique

6https://python.org/pypi/langdetect (accessed on July 18, 2016).
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Fig. 9. Distributions of the ratio of English posts to non-English posts.

words to total number of words, reveals noticeable repetitions of distinct words, while the ARI,
computed as 4.71 × average word length) + (0.5 × average sentence length) −21.43, estimates the
comprehensibility of a text corpus. Table 6 shows a summary of the results. In comparison to like
farm users, baseline users post text with higher lexical richness (70% vs. 55%), ARI (20 vs. 15), and
Flesch score (55 vs. 48), thus suggesting that normal users use a richer vocabulary and that their
posts have higher readability.

4.3 Remarks

Our analysis of user timelines highlights several differences in both lexical and non-lexical features
of normal and like farm users. In particular, we find that posts made by like farm accounts have 43%
fewer words, a more limited vocabulary, and lower readability than normal users’ posts. Moreover,
like farm users generate significantly more comments and likes and a large fraction of their posts
consists of non-original and often redundant “shared activity.”

In the next section, we will use these timelines features to automatically detect like farm users
using a machine-learning classifier.

5 TIMELINE-BASED DETECTION OF LIKE FARMS

Aiming to automatically distinguish like farm users from normal (baseline) users, we use a super-
vised two-class SVM classifier (Müller et al. 2001), implemented using scikit-learn (Buitinck et al.
2013) (an open source machine-learning library for Python). We later compare this classifier with
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Table 7. Effectiveness of Non-Lexical Features (+SVM) in Detecting Like Farm Users

Total Training Testing F1-
Campaign Users Set Set TP FP TN FN Precision Recall Accuracy Score

BL-USA 583 466 117 37 80 270 12 76% 32% 77% 45%
AL-ALL 707 566 141 132 9 278 4 96% 94% 97% 95%
AL-USA 827 662 164 113 51 278 4 97% 69% 88% 81%
SF-ALL 870 696 174 139 35 273 9 94% 80% 90% 86%
SF-USA 653 522 131 110 21 277 5 96% 84% 94% 90%
MS-USA 259 207 52 39 13 280 2 95% 75% 96% 84%

Table 8. Effectiveness of Lexical Features (+SVM) in Detecting Like Farm Users

Total Training Testing F1-
Campaign Users Set Set TP FP TN FN Precision Recall Accuracy Score

BL-USA 564 451 113 113 0 240 0 100% 100% 100% 100%
AL-ALL 675 540 135 133 2 238 2 99% 99% 99% 99%
AL-USA 570 456 114 113 1 239 1 99% 99% 99% 99%
SF-ALL 761 609 152 151 1 238 2 99% 99% 99% 99%
SF-USA 570 456 114 113 1 225 15 99% 87% 95% 92%
MS-USA 224 179 45 45 0 240 0 100% 100% 100% 100%

other well-known supervised classifiers such as Decision Tree (Breiman et al. 1984), AdaBoost
(Freund and Schapire 1997), kNN (Andoni and Indyk 2008), Random Forest (Breiman 2001), and
Naïve Bayes (Zhang 2004) and confirm that the two-class SVM is the most effective in detecting
like farms users.

We extract 4 non-lexical features and 12 distinct lexical features from the timelines of baseline
and like farm users, as explained in Section 4, using the datasets presented in Section 3.1. The
non-lexical features are the average number of words, comments, likes per post, and re-shares.
The lexical features include the following: the number of characters, words, and sentences; the
average word length, sentence length, and number of upper case letters; the average percentage
of punctuation, numbers, and non-letter characters; richness, ARI, and Flesch Score.

We form two classes by labeling like farm and baseline users’ lexical and non-lexical features
as positives and negatives, respectively. We use 80% and 20% of the features to build the training
and testing sets, respectively. Appropriate values for parameters γ (radial basis function kernel
parameter (Schölkopf et al. 2001)) and υ (SVM parameter) are set empirically by performing a
greedy grid search on ranges 2−10 ≤ γ ≤ 20 and 2−10 ≤ υ ≤ 20, respectively, on each training group.

Non-lexical features. Table 7 reports on the accuracy of our classifier with non-lexical features,
that is, users interactions with posts as described in Section 4.1. Note that for each campaign, we
train the classifier with 80% of the non-lexical features from baseline and campaign training sets
derived from the campaign users timelines. The poor classification performance for the stealthiest
like farm (BL-USA) suggests that non-lexical features alone are not sufficient to accurately detect
like farm users.

Lexical features. Next, we evaluate the accuracy of our classifier with lexical features, reported
in Table 8. We filter out all users with no English-language posts (i.e., with the ratio of English
posts to non-English posts, R = 0, see Figure 9). Again, we train the classifier with 80% lexical
features from baseline and like farm training sets. We observe that our classifier achieves very
high precision and recall for MS-USA, BL-USA, and AL-USA. Although the accuracy decreases by
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Table 9. Effectiveness of Both Lexical and Non-Lexical Features (+SVM) in Detecting Like Farm Users

Total Training Testing F1-
Campaign Users Set Set TP FP TN FN Precision Recall Accuracy Score

BL-USA 583 466 117 116 1 278 4 99% 97% 99% 98%
AL-ALL 707 566 141 140 1 278 4 99% 97% 99% 98%
AL-USA 827 662 164 164 0 275 7 100% 96% 98% 97%
SF-ALL 870 696 174 172 2 271 11 99% 94% 97% 96%
SF-USA 653 522 131 130 1 273 9 99% 93% 98% 96%
MS-USA 259 207 52 52 0 280 2 100% 96% 99% 98%

Table 10. F1-Score Obtained with Different Classification Methods, Using Both Lexical

and Non-lexical Features, in Detecting Like Farm Users

Campaign SVM Decision Tree AdaBoost kNN Random Forest Naïve Bayes
BL-USA 98% 96% 96% 91% 88% 53%
AL-ALL 98% 84% 95% 86% 84% 75%
AL-USA 97% 88% 90% 91% 86% 81%
SF-ALL 96% 90% 94% 89% 87% 67%
SF-USA 96% 83% 92% 79% 78% 61%
MS-USA 98% 90% 89% 89% 87% 74%

approximately 8% for SF-USA, the overall performance suggests that lexical features are useful in
automatically detecting like farm users.

Combining lexical and non-lexical features. While building a classifier based on lexical fea-
tures performs very well in detecting fake accounts, we acknowledge that lexical features may
be affected by geographical location, especially if one set of users who write in English are native
speakers while the other set is not. Therefore, we further combine both lexical and non-lexical fea-
tures to build a more robust classifier. We also note that approximately 3% to 22% of like farm users
and 14% of baseline users do not have English language posts and are not considered in the lexical
features based classification. To include these users in our classification, for each like farm and
baseline, we set their lexical features to zeros and aggregate the lexical features with non-lexical
features and evaluate our classifier with the same classification methodology as detailed above.
Results are summarized in Table 9, which shows high accuracy for all like farms (F1-Score ≥ 96%),
thus confirming the effectiveness of our timeline-based features in detecting like farm users.

Comparison with other machinelearning classifiers. To generalize our approach, we have
also used other machine-learning classification algorithms, that is, Decision Tree, AdaBoost, kNN,
Random Forest, and Naïve Bayes. The training and testing of all these classifiers follow the same
setup as the SVM approach. We again use 80% and 20% of the combined lexical and non-lexical
features to build the training and testing sets, respectively. We summarize the performance of the
classifiers in Table 10. Our results show that the SVM classifier achieves the highest F1-Scores
across the board. Due to overfitting on our dataset, Random Forest and Naïve Bayes show poor
results and require mechanism such as pruning, detailed analysis of parameters, as well as selection
of the optimal set of prominent features to improve classification performance (Breiman 2001;
Kohavi and Sommerfield 1995).

Analysis. We now analyze in more detail the classification performance (in terms of F1-Score)
to identify the most distinctive features. Specifically, we incrementally add lexical and non-lexical
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Fig. 10. Cumulative F1-Score for all lexical and non-lexical features measured. The x-axis shows the incre-

mental inclusion of features in both training and testing of SVM. Details of the classification performance

for all features are listed in Table 9.

features to train and test our classifier for all campaigns. We observe that the average word length
(cf. Figure 10(a)) and average number of words per post (cf. Figure 10(b)) provide the most im-
provement in the F1-Score for all campaigns. This finding suggests that like farm users use shorter
words and fewer number of words in their timeline posts as compared to baseline users. While
these features provide the largest improvement in detecting a like farm account, an attempt to cir-
cumvent detection by increasing the word length or number of words per post will also effect the
ARI, Flesch score, and richness. That is, increasing word length and number of words on posts in
a way that is not readable nor understandable will not improve the overall outlook of the account
to appear real. Therefore, combining several features increases the workload required to appear
real on like farm accounts. The overall classification accuracy with both lexical and non-lexical
features is reported in Figure 10(c).

Robustness of our approach. The like farms users may evade our detection system by mimicking
the behavior of real users. To test the effectiveness of our features and classifiers, we assume two
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Fig. 11. Average F1-Score and false-positive ratio measured when fractions of like farms users mimic all lexi-

cal and non-lexical features (+SVM). The x-axis shows the percentage of like farms users who are mimicking

baseline users.

Table 11. The Difference in F1-Score Obtained When All Like Farm Users Coordinate

and Mimic Sets of Lexical and Non-Lexical Features of Baseline Users. F1-Score

in Table 9 Is Used as a Reference to Compute the Δ in F1-Score

Δ F1-Score

Campaign 1-Feature 2-Features 3-Features 4-Features 8-Features
BL-USA 1% 2% 3% 5% 42%
AL-ALL 2% 3% 4% 5% 47%
AL-USA 2% 4% 5% 10% 20%
SF-ALL 3% 4% 6% 6% 56%
SF-USA 8% 9% 11% 13% 55%
MS-USA 5% 6% 6% 7% 26%

worst-case attacking scenarios: (i) fractions of like farms users mimic all features of baseline users;
and (ii) all like farm users mimic sets of baseline users’ features.

We simulate the first scenario by assuming that sets of like farm users randomly select baseline
users and aggressively replace the values of all their features with that of the selected baseline
users. We use the aforementioned settings of the best of our classifiers, SVM, and run the exper-
iments for each like farm 10 times. Figure 11 shows the effect on F1-Score of our classifier when
fractions of like farm users aggressively mimic all the lexical and non-lexical features of baseline
users. When 30% of like farms users coordinate and mimic all features of baseline users, we observe
that our classifier achieves at least 73% F1-Score and at most 17% false positive ratio, decreasing
26% F1-Score compared to our approach (cf. Table 9).

For the latter case, we assume that all like farms users coordinate and select sets of features
from randomly selected baseline users that they copy or mimic. We use identical configuration
of our SVM classifier and conduct experiments for each like farm 10 times. Table 11 summarizes
the results of our experiments. With this attack strategy, we observe that when only one feature
is mimicked, the F1-Score of our approach (cf. Table 9) decreases by between 1% and 8%. The F1-
Score of our classifier decreases by between 26% and 56% when the like farm users target sets of
eight features including prominent ones (cf. Figure 10).

Note that any feature used to identify fake like farms’ behavior can be either circumvented or
manipulated by the like farms users by behaving more like real users. We believe that this is a
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typical arms race that eventually raises the bar for the like farms—the more effort they need to
invest in appearing as real users, the lower their incentive is to do this.

Remarks. Our results demonstrate that it is possible to accurately detect like farm users from
both sophisticated and naïve farms by incorporating additional account information—specifically,
timeline activities. The low false-positive ratio (
1%, cf. Table 9) highlights the effectiveness of our
approach as well as the limitations of prior graph co-clustering algorithms in detecting like farms
users (cf. Section 3). Unfortunately, we do not have access to a larger dataset to measure and discuss
the effects on the false-positive ratio of our approach. We believe then that without an evaluation
of our approach at a larger scale, further discussion would be speculative, so we refrained from
further interpretation of those results. We also argue that the use of a variety of lexical and non-
lexical features will make it difficult for like farm operators to circumvent detection. Like farms
typically rely on pre-defined lists of comments, resulting in word repetition and lower lexical
richness. As a result, we argue that, should our proposed techniques be deployed by Facebook, it
will be challenging, as well as costly, for fraudsters to modify their behavior and evade detection,
since this would require instructing automated scripts and/or cheap human labor to match the
diversity and richness of real users’ timeline posts.

6 RELATED WORK

Prior work has focused quite extensively on the analysis and the detection of sybil and/or fake
accounts in online social networks by relying on tightly knit community structures (Boshmaf
et al. 2015; Cao et al. 2012; Danezis and Mittal 2009; Yang et al. 2011, 2012; Yu et al. 2006). By
contrast, we work to detect accounts that are employed by like farms to boost the number of
Facebook page likes, whether they are operated by a bot or a human. We highlight several charac-
teristics about the social structure and activity of fake profiles attracted by the honeypot pages, for
example, their interconnected nature or the activity bursts. In fact, our analysis not only confirms
a few insights used by sybil detection algorithms but also reveals new patterns that could comple-
ment them. Fraud and fake activities are not restricted to social network but are widespread also
on other platforms, such as online gaming. In this context, Lee et al. (2016) rely on self-similarity
to effectively measure the frequency of repeated activities per player over time and use it to iden-
tify bots. Also, Kwon et al. (2017) analyze the characteristics of the ecosystem of multiplayer on-
line role-playing games and devise a method for detecting gold farming groups, based on graph
techniques.

Prior work on reputation manipulation on social networks include a few passive measurement
studies have also focused on characterizing fake user accounts and their activity. Nazir et al. (2010)
studied phantom profiles in Facebook gaming applications, while Thomas et al. (2011) analyzed
over 1.1 million accounts suspended by Twitter. Gao et al. (2010) studied spam campaigns on Face-
book originating from approximately 57,000 user accounts. Yang et al. (2012) performed an em-
pirical analysis of social relationships between spam accounts on Twitter, and Dave et al. (2012)
proposed a methodology to measure and fingerprint click-spam in ad networks. Our work differs
from these studies, as they all conducted passive measurements, whereas we rely on the deploy-
ment of several honeypot pages and (paid) campaigns to actively engage with fake profiles. Lee
et al. (2010) and Stringhini et al. (2010) created honeypot profiles in Facebook, MySpace, and Twit-
ter to detect spammers while we use accounts attracted by our honeypot Facebook pages that
actively engage like farms. Unlike Lee et al. (2010) and Stringhini et al. (2010), we leverage timeline-
based features for the detection of fake accounts. Our work also differs from theirs in that (1) their
honeypot profiles were designed to look legitimate, while our honeypot pages explicitly indicated
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they were not “real” (to deflect real profiles), and (2) our honeypot pages actively attracted fake
profiles by means of paid campaigns as opposed to passive honeypot profiles.

Thomas et al. (2013) analyzed trafficking of fake accounts in Twitter. They bought fake profiles
from 27 merchants and developed a classifier to detect these fake accounts. In a similar study,
Stringhini et al. (2012, 2013) analyzed the market of Twitter followers, which, akin to Facebook like
farms, provide Twitter followers for sale. Note that Twitter follower markets differ from Facebook
like farms, as Twitter entails a follower-followee relationship among users, while Facebook friend-
ships imply a bidirectional relationships. Also, there is no equivalent of liking a Facebook page in
the Twitter ecosystem.

Wang et al. (2014) studied human involvement in Weibo’s reputation manipulation services,
showing that simple evasion attacks (e.g., workers modifying their behavior) as well as poisoning
attacks (e.g., administrators tampering with the training set) can severely affect the effectiveness of
machine-learning algorithms to detect malicious crowd-sourcing workers. Song et al. (2015) also
looked at crowdturfing services that manipulate account popularity on Twitter through artificial
retweet and developed “CrowdTarget” to detect such tweets. Partially informed by these stud-
ies, we not only cluster like activity performed by users but also build on lexical and non-lexical
features.

Specific to Facebook fraud is CopyCatch (Beutel et al. 2013), a technique deployed by Facebook
to detect fraudulent accounts by identifying groups of connected users liking a set of pages within
a short time frame. SynchroTrap (Cao et al. 2014) extended CopyCatch by clustering accounts that
perform similar, possibly malicious, synchronized actions, using tunable parameters such as time-
window and similarity thresholds to improve detection accuracy. However, as discussed earlier,
while some farms seem to be operated by bots (producing large bursts of likes and having limited
numbers of friends) that do not really try to hide their activities, other stealthier farms exhibit
behavior that may be challenging to detect with tools like CopyCatch and SynchroTrap. In fact,
our evaluation of graph co-clustering techniques shows that these farms successfully evade detec-
tion by avoiding lockstep behavior and liking sets of seemingly random pages. As a result, we use
timeline features, relying on both lexical and non-lexical features, to build a classifier that detects
stealthy like farm users with high accuracy. Finally, we highlight that our work can complement
other methods used in prior work to detect fake and compromised accounts, such as using un-
supervised anomaly detection techniques (Viswanath et al. 2014), temporal features (Jiang et al.
2014a, 2014b), IP addresses (Stringhini et al. 2015), as well as generic supervised learning (Badri
Satya et al. 2016).

Remarks on “new material.” Compared to our preliminary results (published in De Cristofaro
et al. (2014) and reported in Section 2), this article clearly introduces significant additional new
material. Specifically, (i) we introduce an empirical evaluation demonstrating that temporal and
social graph analysis can only be used to detect naive farms (Section 3), and (ii) we present a novel
timeline-based classifier geared to detect accounts from stealthy like farms with a remarkably high
degree of accuracy (Sections 4 and 5).

7 CONCLUSION

Minimizing fraud in online social networks is crucial for maintaining the confidence and trust
of the user base and investors. In this article, we presented the results of a measurement study
of Facebook like farms, that is, paid services artificially boosting the number of likes on a Face-
book page, aiming to identify characteristics and accurately detect the accounts used by them. We
crawled profile information, liking patterns, and timeline activities from like farms accounts. Our
demographic, temporal, and social graph analysis highlighted similar patterns between accounts
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across different like farms and revealed two main modi operandi: Some farms seem to be operated
by bots and do not really try to hide the nature of their operations, while others follow a stealthier
approach, mimicking regular users’ behavior.

We then evaluated the effectiveness of existing graph-based fraud detection algorithms, such as
CopyCatch (Beutel et al. 2013) and SynchroTrap (Cao et al. 2014), and demonstrated that sophisti-
cated like farms can successfully evade detection.

Next, aiming to address their shortcomings, we focused on incorporating additional profile in-
formation from accounts’ timelines to train machine-learning classifiers geared to distinguish be-
tween like farm users from normal ones. We extracted lexical and non-lexical features from user
timelines, finding that posts by like farm accounts have 43% fewer words, a more limited vocab-
ulary, and lower readability than normal users’ posts. Moreover, like farm posts generated sig-
nificantly more comments and likes, and a large fraction of their posts consists of non original
and often redundant “shared activity” (i.e., repeatedly sharing posts made by other users, articles,
videos, and external URLs). By leveraging both lexical and non-lexical features, we experimented
with several machine-learning classifiers, with the best of our classifiers (SVM) achieving as high
as 100% precision and 97% of recall, and at least 99% and 93%, respectively, across all campaigns—
significantly higher than graph co-clustering techniques.

In theory, fraudsters could try to modify their behavior to evade our proposed timeline-based
detection. However, like farms either heavily automate mechanisms or rely on manual input of
cheap human labor. Since non-lexical features are extracted from users’ interactions with timeline
posts, imitating normal users’ behaviors will likely incur an remarkably higher cost. Even higher
would be the cost to interfere with lexical features, since this would entail modifying or imitating
normal users’ writing style.
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