
Gargoyle: A Network-based Insider Attack Resilient
Framework for Organizations

Arash Shaghaghi∗†, Salil S. Kanhere∗, Mohamed Ali Kaafar†§, Elisa Bertino§ and Sanjay Jha∗
∗The University of New South Wales (UNSW Sydney), Australia

§Macquarie University, Australia
‡Purdue University, USA

†CSIRO Data61
{a.shaghaghi, salil.kanhere, sanjay.jha}@unsw.edu.au

dali.kaafar@mq.edu.au
bertino@purdue.edu

Abstract—‘Anytime, Anywhere’ data access model has be-
come a widespread IT policy in organizations making insider
attacks even more complicated to model, predict and deter.
Here, we propose Gargoyle, a network-based insider attack
resilient framework against the most complex insider threats
within a pervasive computing context. Compared to existing
solutions, Gargoyle evaluates the trustworthiness of an access
request context through a new set of contextual attributes called
Network Context Attribute (NCA). NCAs are extracted from
the network traffic and include information such as the user’s
device capabilities, security-level, current and prior interactions
with other devices, network connection status, and suspicious
online activities. Retrieving such information from the user’s
device and its integrated sensors are challenging in terms of
device performance overheads, sensor costs, availability, relia-
bility and trustworthiness. To address these issues, Gargoyle
leverages the capabilities of Software-Defined Network (SDN) for
both policy enforcement and implementation. In fact, Gargoyle’s
SDN App can interact with the network controller to create
a ‘defense-in-depth’ protection system. For instance, Gargoyle
can automatically quarantine a suspicious data requestor in
the enterprise network for further investigation or filter out an
access request before engaging a data provider. Finally, instead
of employing simplistic binary rules in access authorizations,
Gargoyle incorporates Function-based Access Control (FBAC)
and supports the customization of access policies into a set of
functions (e.g., disabling copy, allowing print) depending on the
perceived trustworthiness of the context.

I. INTRODUCTION

The most secure organizations including U.S. intelligence
agencies and the armed services have not been immune to
insider threats. As discussed in [1], some of the well-known
examples of insider attacks include 1) the former National Se-
curity Advisory Sandy Berger who removed highly classified
documents from the National Archives to review them at his
office; 2) John Deutch, the CIA director who handled highly
sensitive classified information on an insecure computer con-
nected to the Internet; and 3) the original WikiLeaks incident
involving Bradley Manning who downloaded over 700,000
highly classified documents onto compact disks causing the
largest leak of military and diplomatic cables in U.S. history.

The insider threat risk is much higher in smaller and less
prepared organizations. In fact, Insider Threat Report 2018
[2] reports on two key observations. First, ninety percent of

participating organizations were vulnerable to insider attacks
with the increased risk being associated with the growing
number of mobile devices with sensitive access to data and
users with excessive privileges. Second, organizations have
reported shifting their focus on detection of insider threats
and deterrence methods but the majority of these are still at
the early stages of developing their insider threat program.

The main limitations of existing literature can be summa-
rized as follows. First, access control systems fail to swiftly
adapt to the ‘negative changes’ in user’s behavior even if it
suggests attacking the system [3]. The cause for this is that
the technical precursors used to predict insider attacks such
as download and use of hacker tools, unauthorized access to
systems and resources, system access after task termination,
and inappropriate Internet access are not included in the
access control process [4]. In fact, with existing solutions, the
system’s trust is established independently of these actions.
Second, assuming that users follow the security rules. For
example, trusting an employee to access confidential infor-
mation in a secure room over a secure connection and in
the presence of a supervisor rather than having an access
control system enforcing this policy. In other words, adaptive
access control solutions should model context using a range
of attributes required to deter insiders. The third limitation is
trusting the user’s device integrated sensors for retrieving the
context attributes. These sensors are within the user premises
and hard to protect against attacks. In fact, alternative sensors
are required to, at least, validate such information. Fourth,
a binary approach to access decisions is not suitable for
pervasive computing context. For instance, a user requesting
access to objects in a less trusted environment (e.g., when
in the proximity of flagged users, using an insecure WiFi
connection), should not be allowed to share information but
still be able to fulfill the assigned task. For instance, this could
be achieved by disabling functions such as Print and Email for
that access and allowing View and Search. The fifth limitation
is relying on single protection measures. In fact, there need
to be alternative backup access control enforcement points
that function independently of the user’s device. Hence, if an
attacker compromises a mobile device, it can still be prevented

ar
X

iv
:1

80
7.

02
59

3v
1 

 [
cs

.C
R

] 
 7

 J
ul

 2
01

8



from targeting the organization’s services.
To address the aforementioned limitations, we designed and

developed Gargoyle. Compared to existing solutions, Gargoyle
is designed against the most complex malicious insider threats
and aims to detect and deter an insider throughout its key
attack phases (see §II). Gargoyle includes a new set of at-
tributes for context analysis called Network Context Attribute
(NCA). NCAs are extracted from the device generated network
traffic and include information such as the user’s device
capabilities, security-level, network connection type, network
status, current and prior interactions with other devices, and
suspicious online activities. For instance, Gargoyle detects
devices equipped with hacking tools (e.g., port scan, vulnera-
bility scanners) or connected over a suspicious network point
(e.g., Intrusion Detection System (IDS) raising the alarm for
certain network segments). It can also detect devices with
outdated software, unusual behavior (e.g., unusual locations,
interactions with devices, etc.) and suspicious browsing history
such as accessing blacklisted domains. Gargoyle leverages the
capabilities of Software-Defined Network (SDN) and retrieves
contextual information by passively analyzing network traffic.
This enables Gargoyle to function independent of the user’s
device integrated sensors and be portable to different organi-
zations deploying SDN with ease.

Gargoyle assesses the risk associated with an access request
through NCAs and by modeling the user’s behavior (both
current and historical). Compared to the existing solutions,
Gargoyle can be programmed to apply access restrictions
both at host-level and network-level. In fact, Gargoyle’s SDN
App (GSDN) enhances policy enforcement and facilitates a
defense-in-depth protection model. For instance, a suspicious
device can be restricted from accessing organization’s network
until further investigations. Finally, by implementing Function-
based Access Control (FBAC) [5], Gargoyle’s mobile App
(GAPP) can restrict a set of functions for a data requestor
depending perceived trustworthiness of a context.

The rest of this manuscript is structured as follows. We
review key background information in §II. Thereafter, the
threat model that Gargoyle is designed against is presented
in §III. An overview of our proposed solution is presented in
§IV, followed by discussion of its main components, context
extraction (§V) and access control (§VI). We present our
implementation (§VII) and evaluation of Gargoyle (§VIII)
followed by a discussion of related work in §IX. We conclude
the paper outlining the future work in §X.

II. BACKGROUND

A. Software-Defined Network (SDN)

Software Defined Networking (SDN) separates the con-
trol plane of the network from the data plane. It facilitates
network programmability and grants the ability to manage,
amend and control the network behavior dynamically. SDN
enables centralized control of data plane forwarding devices
independent of the technology used to connect the devices
while maintaining live and centralized network-wide view of
all the data path elements. One of the key practical benefits

of SDN comes with its Application Plane, allowing the de-
velopment of new services that leverage the added network-
layer capabilities. In fact, many different SDN applications
have already been proposed, and the the current focus is to
have an App Store support, where customers can dynamically
download and install network apps [6].

Major service providers and ISPs have already adopted SDN
at their data centers. Indeed, deploying SDN has many benefits
for organizations including networking infrastructure cost re-
duction, simpler management, reduced complexity, improved
security, more flexibility and better support for innovation [7].
Hence, it is expected that organizations of all sizes have no
choice but to gradually shift towards SDN adoption [8].

B. Function-based Access Control (FBAC)

Function-based Access Control (FBAC) [5] avoids a bi-
nary approach in access authorizations. With FBAC, access
authorizations are no longer stored as a two-dimensional
Access Control Matrix (ACM). Instead, FBAC stores access
authorizations as a three-dimensional tensor (called Access
Control Tensor). Hence, applications no longer have blind-
folded execution right, and users can only invoke commands
that have been authorized for each object. In practice, objects
are data blocks and functions are the commands available
in applications, such as Copy/Paste, Email, and Print. For
deployment, FBAC can be implemented as either restricting
a set of functions or allowing them for the data objects.

C. Insider Attack Phases

Based on [9], we assume a malicious insider goes through
the following four main phases to deliver attacks against
organization data and its systems. The ‘Reconnaissance’ phase
involves an attacker exploring the victim environment’s com-
puter systems, networks and applications for vulnerabilities
through means such as port scan, network, web application and
database vulnerability scans. The ‘Delivery’ phase involves en-
gaging the victim environment through actions such as social
engineering to deliver a seemingly innocuous communication
but coupled with a malicious payload such as remote access
trojans, rootkit backdoors, and keyloggers. After that, during
the ‘Exploit and Install’ phase, the insider aims to escalate his
privileges and attempts to install trojans and backdoors. These
are then used in the ‘Command & Control’ phase to launch
various attacks such as botnet, Denial of Service (DoS) and
email spam.

III. THREAT MODEL

Compared to existing solutions (see §IX for related work),
Gargoyle is designed against the most advanced cases of
insider attack within organizations adopting a Bring Your Own
Device (BYOD) policy. Here, we assume an insider placed
within the organization’s boundaries who is equipped with
portable computing devices (e.g., mobile phone, laptop, etc.).
We assume the insider and all the other data requesters access
files only using Gargoyle’s mobile application (i.e. files are
only available when requested through the App). All data
requestors and providers are assumed to be exchanging data



Host-based ACNetwork-based AC

...

Data Requester

SDN Controller

Traffic 
Context
Analyzer

FBAC 
Repository 

Policy 
Repository 

Context 
Repository 

SDN Data Plane
Intrusion Prevention

System 
(WedgeTail) 

Advanced Enforcement Point

Network Context Analyzer
SDN Data Plane

Data Provider

GSDN ...

Risk Management

GAPP

Fig. 1: Gargoyle’s Architecture: the three main components are shown in coloured boxes.

through either wired or wireless network connections. In other
words, other data exchange services such as Bluetooth function
cannot be used to exchange files between the data provider and
requester.

We assume that the insider’s goal fits into one of the
three common insider attack categories, including: I) data
exfiltration, II) data integrity and availability breach and III)
ICT systems sabotage [10]. He may achieve these goals either
by violating his own access privileges or attacking other users
who are retrieving sensitive information. In fact, the insider
may be equipped with any other device equipped with software
used to hack other devices and organization services. The
insider would typically have access to networking functions
as afforded to a typical employee which could include un-
restricted Internet access, ability to connect to organizational
services and and browsing the Internet.

The insider may be capable of performing attacks such
as social engineering to trick a legitimate user to request
access to data within an insecure context. For instance, to run
a data exfiltration attack, the attacker might exploit known
router vulnerabilities and gain unrestricted access to a set of
forwarding devices and tamper with traffic being routed. In
fact, although Gargoyle is a network-enabled service, we do
not assume the data plane devices to be necessarily secure
given the range of attacks and vulnerabilities reported against
the routing devices [11]. Instead, we only assume the network
control plane (or, the ‘network brain’) to be secure – this
includes Gargoyle’s SDN Application (GSDN) installed a top
of the controller. In fact, this is a reasonable assumption given
that compromising the core network infrastructure compo-
nents, which is typically placed away from the user boundary
is a much harder target for an adversary. Moreover, with
Software-Defined Network (SDN), which Gargoyle is built
on, a compromised controller means a compromised network
altogether, which is a threat to all organization services at
all levels. In fact, most, if not all, SDN-based services are
built assuming that the underlying technology is secure at both
control and data plane [12], [13]. Finally, it is assumed all
organization files are stored in the Atomic format required
for FBAC and information is accessible to data providers

only through GAPP. Moreover, it is assumed that GAPP is
trustworthy and capable of connecting with other Gargoyle
modules securely (e.g. using TLS).

IV. OVERVIEW OF GARGOYLE

Gargoyle’s architecture is inspired by Crampton and Huth’s
‘extended access-control architecture’ [14] and integrates the
observations of context and the assessment of risk into the
access control mechanism. As shown in Figure 1, the proposed
solution has three main components: (i) Network Context An-
alyzer, (ii) Risk Management, and (iii) Advanced Enforcement
Point (AEP). The Network Context Analyzer component ex-
tracts context information pertinent to each user both over-time
and in real-time. This information (called Network Context
Attribute, or NCA) is retrieved by analyzing the network traffic
collected for user devices using the ‘Traffic Context Analyzer’
module. Gargoyle is a network-based solution relying on for-
warding devices for context extraction and access enforcement,
and therefore, it has to ensure that the data plane forwarding
devices have not been compromised. To achieve this, it inte-
grates the reports from the SDN Data Plane Intrusion Preven-
tion System (IPS) when evaluating the context trustworthiness.
In fact, for Gargoyle to decide the most appropriate access
limitation (e.g., whether to disable certain functions or block
all access requests originated from certain network zones),
the IPS should be capable of identifying the compromised
forwarding devices, locating them and detecting their specific
malicious actions (e.g packet fabrication, forwarding, etc.).
Here, we integrate our earlier work WedgeTail [11] into
Gargoyle’s design to satisfy this requirement. WedgeTail is a
controller-agnostic Intrusion Prevention System (IPS) designed
to hunt for forwarding devices failing to process packets as
expected. It tracks packet paths when traversing the network
and generates their corresponding trajectories. Thereafter, by
comparing the actual packet trajectories with the expected
ones, WedgeTail detects malicious forwarding devices, locate
them and identify the specific malicious actions.

Finally, the Risk Management component according to the
policies specified by the Policy Repository (PR) and FBAC
Repository forwards a set of access authorizations to the AEP



Fig. 2: Gargoyle’s Traffic Context Analyzer

component. AEP’s instructions include actions for the ‘Host-
based’ and ‘Network-based’ access control modules. The host-
level access control involves allowing or restricting a set of
functions for data objects, which are enforced by Gargoyle’s
mobile Application (GAPP). The network-based access control
module implements a set of restrictions at network-level
through Gargoyle’s SDN Application (GSDN) – these are
completely independent of the host-level restrictions and have
a much higher granularity level. In other words, network-level
access enforcements are not applied at file level or functions,
but instead apply access restrictions such as disconnecting
the device from the network altogether. Network-level access
enforcement is mostly relevant during the later phases of
insider attack such as ‘Command & Control” and when the
attacker goal is to sabotage the enterprise ICT systems.

V. GARGOYLE’S CONTEXT EXTRACTION

As mentioned, Gargoyle’s Network Context Analyzer com-
ponent is responsible for extracting the Network Context At-
tributes as well as the data plane security status. As mentioned,
we rely on WedgeTail [11] to inspect the forwarding devices
and report on malicious devices and their specific actions to
Context Repository. Here, we, therefore, focus on the Traffic
Context Analyzer component uses to retrieve the NCAs.

There are no restrictions on what an NCA can represent. In
fact, NCA may be any information that can be systematically
and reliably extracted from the network traffic. In this work,
we define the following as attributes of interest: a) the user’s
device capabilities including specific operating systems and
tools; 2) security-level that depends on current and prior
interactions, location and current user ID; 3) current and prior
interactions with other devices; 4) network connection status
including medium of communication (i.e. wired or wireless);
and 5) suspicious online activities including traffic directed
to restricted domains, IPs and services – refer to the sample
insider scenarios explained in §VIII for examples.

In order to extract NCAs we take a systematic approach
that can be imported to different networks. Figure 2 illustrates
the architecture of our solution, which we implemented over
Floodlight controller. The user traffic through either wired or

Fig. 3: GAPP implementation in Android

wireless connection is routed through a forwarding device
(1). As per OpenFlow standard, the first packet of the flow
is sent through to the controller (2). At this point, the Flow
Stats Analyzer collects the network statistics to detect possible
anomalies including DoS attacks (3). This information is
continuously updated and forwarded to the Risk Management
component for each user’s traffic being routed over each port.
At this point, the Forward Flow decides whether the flow needs
to through packet inspection as well as being forwarded to the
Data Provider. If so, the controller install the corresponding
flow rule at the forwarding device (5). Note that packet headers
are not forwarded to the controller and this is required so that
the Traffic Context Analyzer receives a copy of network traffic
(7) for inspection as well. At this point, packets are inspected
and any NCA is extracted (8) and attached to the report being
forwarded to the Context Repository (9).

A common attribute to evaluate user context is location,
which we define as another type of NCA. In this case, we
adopt the solution developed in our earlier work [15]. In
fact, with OpenFlow, whenever a packet is received by a
forwarding device (FD), and it does not match any of its
existing forwarding rules then a packetin message containing
the FDid and Portid is sent to the governing controller. The
controller uses this information and creates a dynamic geo-
location lookup table. This table matches the users device IP
with a forwarding device port. The network locations retrieved
through FDid can be matched to different sections within the
building. For example, in Figure 4, Zone1 is associated to
access point R1. An issue to consider for wireless devices is
managing the signal coverage. This can be solved using proper
and careful positioning of access points and signal blocking
solutions [16].

VI. GARGOYEL’S ACCESS CONTROL

Gargoyle’s Access Control component is composed of two
main modules: Risk Management and Advanced Enforcement
Point (AEP). When an access request is retrieved, the risk
management module queries the context repository for all
recent and historical NCAs and network status reports for
the user. It then retrieves the user policies from the Policy



Repository along. For instance, the organization default RBAC
model may define user A as an employee with access to
sensitive records (See Sample Scenario-I in §VIII). At this
point, it queries for contextual FBAC policies from the FBAC
repository. This repository specifies the functions that should
be allowed for each context. For instance, it specifies that if a
user is connected to the network over wireless and is request-
ing access to sensitive documents, then Copy function must
be disabled. Hence, any function not restricted is assumed to
be enabled. Here, we use XACML [17] to store the contextual
FBAC policies.

The risk management submits a set of access restrictions
to AEP. We call it Advanced Enforcement Point since unlike
existing solutions Gargoyle policy enforcement is applied
both at the host-level and network-level. For host-level, the
granularity is much higher but critical in cases where the
insider may be aiming to sabotage ICT systems. For instance,
if the flow rate indicates a DoS attack, the user is quarantined
from the network. We adopt our earlier system developed in
PEPS [15] for implementing the host-level access restrictions.

With Gargoyle, the host-level access restrictions are set
up dynamically and the level of functions for each data
segments. For this purposes, we developed Gargoyle’s Android
application (GAPP). GAPP’s design is inspired by [18] and
Figure 3 shows its architecture along with the main func-
tions. Context Handler (CH) is the front end and manages
the communication with PEP. Policy Decision Point (PDP)
evaluates the security policies and produces the decisions.
Session Manager (SM) keeps track of the ongoing usage
session to allow the continued enforcement of the policy. The
Attribute Managers (AM) manage the retrieval and update of
NCAs – AML refers to local attributes and AMX to remote
ones. Policy Implementation Points (PIP) provide interfaces to
query the AMs for retrieving and updating attributes – PIPL

refers to local attributes and PIPX to remote ones. Lock
Manager (LM) guarantees consistency in concurrent retrieval
and updating of NCAs.

VII. IMPLEMENTATION

We envision Gargoyle to be implemented as an application
for SDN controllers. However, at this stage, to demonstrate
Gargoyle’s compatibility with different platforms and evaluate
it over different controllers we implemented the Network
Context Analyzer and Risk Management components as a
proxy service sitting in between the control and data plane
– a similar approach is taken in solutions requiring advanced
traffic analysis such as [11], [19].

We developed GSDN as an application for Floodlight con-
troller. Furthermore, we replicated our earlier work in PEPS
[15] and setup MariaDB [20] as a data provider, which through
our purpose built extension communicates with GSDN and
defines dynamic network-level access control rules. To im-
plement the host-based access control, however, we extended
our earlier implementation of FBAC [5] and developed GAPP.
Currently, GAPP is an Android application capable of applying
function restrictions (e.g., Copy/Paste, Email, Print) for data

objects. Specifically, whenever an access request is received,
the Risk Management component depending on the perceived
trustworthiness of a context, instructs GAPP to disable a set of
functions for different file segments (i.e., all functions enabled
by default).

VIII. EVALUATION

Overview We evaluated Gargoyle over one thousand dif-
ferent simulated insider attack scenarios, which vary in terms
of the number of active users, policies and attacks as well
as the underlying organization setup including the physical
map, networking interfaces, and configurations. We evaluated
Gargoyle’s performance in extracting context information and
making access decisions. First, we collected actual network
traffic within an organization setting, simulated an SDN net-
work and re-routed traffic over it. At this point, according to
the scenarios specified for evaluating Gargoyle’s access con-
trol components (i.e., Risk Management and AEP), matching
synthetic and curated traffic was injected through the network
– refer to Insider Scenarios for more details). In order to have
a baseline to compare the performance of Gargoyle, we ran
the same insider scenarios when having Role-based Access
Control (RBAC) [21], solution proposed in [18] and FBAC
[5]. We chose RBAC given that it is the most common access
control model used in organizations. In particular we chose
[21] since it is based on UCON model [22] and is similar
to our work in terms of motivation and threat model. Third,
we evaluated the attack scenarios when having the default
FBAC in-place – which applies function restrictions based on
user-roles. Finally, we also report on Gargoyle’s mobile App
(GAPP) prototype in terms of its performance and efficacy in
applying access restrictions specified by AEP.

Network Setup We setup a Mininet network comprised
of up to 4 core forwarding devices (representing WiFi and
Wireless network points), eight edge forwarding devices and
a random number of hosts – corresponding to the trace file
being used. We hosted the simulated network on a machine
equipped with Intel Core i5, 2.66 GHz quad-core CPU and
16 GB of RAM. We attached this network to a Floodlight
controller equipped with GSDN and WedgeTail, which was
running separately over an Intel Core i7, 2.66 GHz quad-core
CPU and 8 GB of RAM. The same machine also ran other
components of Gargoyle.

Traffic Collection We collected network traffic over 60 days
period between 9 AM - 5 PM at a specific floor and building
at UNSW Sydney. For this, all users’ network traffic (wired
or wireless) sent through the floor’s switches were replayed
to a specific interface accessible to us. The collected traffic
included 94 identifiable users of whom 28 were present in
more than 80% of the data collection period. The collected
traffic is split into batches of two hours. The traffic collected
was sanitized using custom-written scripts, and all traffic not
useful for NCAs were removed (e.g., traffic generated for
services such as Dropbox LAN synch and Microsoft Windows
update).

Replaying Traffic We use Tcpreplay toolset [23] and
custom written scripts for this. Tcpreplay uses tcprewrite to



Fig. 4: A sample insider scenario used to evaluate Gargoyle.
For clarity, figure shows part of the actual map used during
evaluation. Each coloured oval indicates the matching colour
access point coverage.

remap the source and destination MAC and IP addresses
in the collected trace. We then regenerate the traffic with
proper timing and replay over in the simulated network. For
forwarding device flow entries, we created an interface for a
subset of prefix found in a full BGP table from Route Views
[24] and spread them randomly and uniformly to each router
as local prefixes. We then computed forwarding tables using
shortest path routing.

Insider Scenarios We defined seven different organizations
each with a different map layout and network setup. Figure 4
shows part of one of the organization maps used for evaluating
Gargoyle (simplified for clarity). The layouts had different
network setup with a maximum of 4 core forwarding device
and eight edge forwarding devices, which the network hosts
associated with. In order to evaluate Gargoyle we implanted
insider threat scenarios representing the four main phases of
an insider attack (see §II and Sample Scenarios). Moreover,
to further resemble real-word threats and evaluate Gargoyle’s
capabilities, we defined four categories of insider scenarios.
In the first category, the data requester’s (DR) device was
malicious. To implement this, the custom script injected traffic
indicating activities such as port scan in the DR’s traffic or
access to certain restricted websites. Similarly, for the second
category, the traffic pertaining to a user in the proximity
of a data requester was injected with signatures indicating
suspicious activity (e.g., malware signature, a device equipped
with Kali Linux, etc.). For the third category, we implanted
malicious forwarding devices in the network both at core
and edge, which data requester’s traffic (either inbound or
outbound to data provider) were routed through. The fourth
category included compound cases, which involved one or
more of the aforementioned scenarios (i.e., scenarios 1,2 and
3). Table II shows the distribution of different insider scenarios
types. On average per each simulated scenarios, 35 users were
present (with the maximum of 90), and we evaluated about 140

different scenarios for each organization map (see Table I for
a summary).

Number of different organization maps 7
Number of different network configurations 7
Number of edge forwarding devices (fixed) 8

Maximum number of core forwarding devices 4
Average number of users present in each scenario 35

Average number of insider scenarios evaluated per map 140

TABLE I: Experimental settings

1 DR’s device was suspicious 20%
2 Device in DR’s proximity was suspicious 30%
3 Network forwarding device was compromised 10%
4 Compound (e.g. both 1 and 2) 40%

TABLE II: Approximate distribution of insider scenario types

Requests blocked due to current suspicious behaviour 184
Requests blocked due to historic suspicious behaviour 243

Requests blocked due to compromised forwarding devices 58
Access granted with limited number of functions 515

TABLE III: Stats on access authorizations

Sample Scenario-I Consider Figure 4. Device DA belong-
ing to user UA with role R2 connected to the network through
access point R2 sends an access request to the File Server for
File F1, which contains sensitive paragraphs on the use of
drones in war. The organization policy PF1 requires F1 to be
accessible to Ri with 1 < i < 10. It also states information
to be accessible when the user’s traffic is routed through the
lower-level floors (i.e., Room A, B and Common Room).
Moreover, it requires that all paragraphs flagged as ‘top secret’
to be available for Print and Email only when DA is within
a completely safe context (i.e., no threats are detected) and
a supervisor is within the same wireless coverage zone. A
generic organization policy GP1 requires that if any device
with hacking capabilities are detected in the proximity of a
user requesting access to war-related documents, both users are
immediately blacklisted and only allowed to access external
services through Room C.

During the simulation, first Device B does not exist in Z2,
and all requirements are met for A to access F1. Hence, access
is granted at time t1 with GAPP granting Email and Print
functions for the user. However, at t2, device B owned by
user UB is added to Z2. There is no policy preventing access
if UB is in the proximity of a data requester for F1. However,
at time t2, we inject traffic for B that indicates it is equipped
with Kali Linux and running UDP/NULL port scan. Upon
detection of this, Gargoyle reacts according to the policies
specified.

Sample Scenario-II In the same figure consider device
L connected to the network through ethernet port P2 and
wireless interface R3. This device is requesting access to F1
as well. Specifically, at time t3, the device is requesting access
through wired and at time t4 through a wireless connection. A
generic organization policy GP2 specifies that if user’s traffic



is routed by any forwarding device flagged as suspicious or
comprised, then all access should be blocked unless traffic
can be routed through a safe path. Similar to sample scenario-
I, L is granted access to F1 at time t1, where the context
is retrieved as safe. However, at time t2, P2 delays packets
being routed. The malicious forwarding device along with the
action is detected by WedgeTail and reported to Gargoyle. At
this point, if L is connected to the network through P2, then
the access is dropped, and the device is quarantined from the
network. However, if L is connected through R3, then the
access is not affected.

A. Results Analysis

Gargoyle avoids a binary approach when making authoriza-
tions and depending on the context, a subset of functions may
be disallowed for the data requester. As shown in Table III,
in our simulated scenarios, more than half of access requests
were granted despite detecting a threat. This proves the ap-
plicability of Gargoyle in the real-world context by enabling
organizations to function securely even in the presence of
threats.

Baseline Comparison Figure 5.a shows a comparison
between RBAC, FBAC, [18] and Gargoyle in successfully
protecting resources against insider scenarios implemented.
UCON model used in [18] is successful in approximately 300
insider scenarios given that it ensures certain conditions are
met before and post authorizations. However, the attributes
used in this model are mainly limited to role, location and
time. Hence, it fails to protect resources in about 70% of the
insider scenarios simulated. Moreover, one should note that
any context information retrieved for this model are device
driven and not extracted from the network as in the case of
Gargoyle. This is a foundational difference between Gargoyle
and related work such as [18]. In the case of RBAC and
FBAC, they both grant access authorizations depending on the
DR’s role within the organization. The granularity of FBAC
manages limits the number of functions available to the user,
and so, it can protect against about two times more insider
scenarios despite not modeling the context properly. Hence,
as also discussed in related work such as [3], [14], to protect
organizations against insider threats, access control solutions
must integrate context information as part of their decision
process.

Performance Metrics Gargoyle extracts context informa-
tion by passively intercepting network traffic. Hence, it does
not have any impact on the network performance. On the
user-side, however, Gargoyle must update the device’s policy
repository before access can be granted. As shown in Figure
5.b, even with more than 900 active policies for up to 90
active users, the average processing time is reasonable. In
fact, Gargoyle’s performance is acceptable when compared
to related work such as [3] that have similar scope and
methodology. Moreover, given that these are processed outside
the user’s device, the policy processing time and the system
performance can be adjusted for larger organizations using
services such as cloud computing and NFV.

Figure 5.c illustrates Gargoyle’s mobile application (GAPP)
performance. For this, we first fully charged our Samsung
Galaxy S3 to 100 percent. Then, via a monkeyrunner [25]
script we run four file access requests every 2 minutes. For
GAPP – RBAC this was just accessing files as any other text
editor by checking the user’s role within the organization.
For GAPP, this required retrieving policies from Gargoyle and
enforcing them when two different functions were called for
the file at random. Our results indicate that GAPP with FBAC
does not incur a noticeable energy overhead.

IX. RELATED WORK

The increasing adoption of mobile devices into organiza-
tions has motivated relatively sizeable literature discussing the
importance of incorporating contextual factors such as location
and time in access control [26]. For instance, [27] proposed
a modified version of the Android OS supporting context-
based access control policies, which restrict applications from
accessing specific data and resources based on the user context.
However, this work along with much similar work before it
requires the users to configure their own set of policies, it
is essentially an extension of RBAC, and more importantly,
context attributes are limited to location (absolute or relative)
and time. Recently, [18] proposes a framework to regulate
the usage of data shared on mobile devices and regulates
the right of using data continuously while access is in-
progress. Specifically, Lazouski et al. build their framework
on UCON model [22] rather than RBAC and retrieve policies
from a remote server instead of relying on users for setup.
Nevertheless, this solution also limits context to location and
time while also relying on the user’s device integrated sensors
for retrieving them. The closest work to Gargoyle in terms of
motivation and methodology is G-SIR [3], which incorporates
geo-social information as part of the AC system for insider
threat mitigation. However, the attributes uses are completely
different, and the framework assumes all information is already
available.

Another category of related work is research aiming to
detect insiders through the organization network traffic. Few
proposals exist in the area and authors in [9] and [28] have
surveyed these solutions. For instance, ELICIT [29] detecting
activities, such as searching, browsing, downloading, and
printing, by monitoring the use of sensitive search terms, print-
ing to a non-local printer and anomalous browsing activity.
We regard these solutions as complimentary to Gargoyle as
they are not designed as part of an access control solution.
Furthermore, none of these solutions are built atop of SDN.

X. CONCLUSION & FUTURE WORK

Gargoyle addresses the gap raised by [14], which specif-
ically argues the requirement to integrate anomaly detection
systems into organization’s access control systems. In fact, to
the best of our knowledge, Gargoyle is the first solution to
evaluate the context of an access request using network-traffic
extracted information such as the user’s device capabilities,



Fig. 5: a) Comparison of Gargoyle with related work in in successfully protecting resources against insider scenarios
implemented, b) Gargoyle’s risk management average processing time as the policy size increases, and c) Gargoyle’s mobile
application (GAPP) energy overhead.

security-level, current and prior interactions with other de-
vices, network connection status, and suspicious online activi-
ties. Furthermore, Gargoyle avoids a binary approach in access
authorizations and by incorporating Function-based Access
Control (FBAC), allows the customization of access policies
into a set of functions depending on the trustworthiness of the
context. Moreover, as a solution designed for organizations
adopting SDN, it can also apply certain access restrictions at
network-level and create a layered protection model.

Currently, our focus is to investigate Gargoyle’s perfor-
mance for larger networks when the context evaluation may
lead to false positives. One possible solution to this would be
to incorporate recent Machine Learning techniques for traffic
analysis and adjusting Gargoyle’s sensitivity when assessing
context risk. Alternatively, we could also include host-level
information and feedback into Gargoyle’s PDP and validate the
network-extracted information. In fact, integrating Gargoyle as
complimentary to existing solutions may be the most practical
approach for real-world deployment.

ACKNOWLEDGMENT

We acknowledge the useful comments and insights provided
by Prof. Yvo Desmedt and Dr. Sandra Scott-Hayward. All
data collection and storage for this project was approved under
HC15778 by UNSW Human Ethics Office.

REFERENCES

[1] M. Bunn and S. D. Sagan, Insider Threats. Cornell University Press,
2017.

[2] “Insider Threat Report: 2018,” Cybersecurity Insiders, 2018.
[3] N. Baracaldo, B. Palanisamy, and J. Joshi, “G-sir: an insider attack

resilient geo-social access control framework,” IEEE Transactions on
Dependable and Secure Computing, 2017.

[4] A. P. Moore, D. M. Cappelli, and R. F. Trzeciak, “The big picture of
insider it sabotage across us critical infrastructures,” in Insider Attack
and Cyber Security. Springer, 2008, pp. 17–52.

[5] Y. Desmedt and A. Shaghaghi, “Function-based access control (fbac):
From access control matrix to access control tensor,” in Proceedings of
the 8th ACM CCS International Workshop on Managing Insider Security
Threats. ACM, 2016.

[6] A. Shaghaghi, M. A. Kaafar, R. Buyya, and S. Jha, “Software-defined
network (sdn) data plane security: Issues, solutions and future direc-
tions,” Cluster Computing, 2018.

[7] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[8] “Future of Networking Global Survey 2017,” RIVERBED, 2017.

[9] L. Liu, O. De Vel, Q.-L. Han, J. Zhang, and Y. Xiang, “Detecting
and preventing cyber insider threats: A survey,” IEEE Communications
Surveys & Tutorials, 2018.

[10] CERT Insider Threat, “Unintentional insider threats: A review of phish-
ing and malware incidents by economic sector,” 2014.

[11] A. Shaghaghi, M. A. Kaafar, and S. Jha, “Wedgetail: An intrusion
prevention system for the data plane of software defined networks,” in
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. ACM, 2017, pp. 849–861.

[12] S. T. Ali, V. Sivaraman, A. Radford, and S. Jha, “A survey of securing
networks using software defined networking,” IEEE transactions on
reliability, vol. 64, no. 3, pp. 1086–1097, 2015.

[13] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security in
software defined networks,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, pp. 623–654, 2016.

[14] J. Crampton and M. Huth, “Towards an access-control framework
for countering insider threats,” in Insider Threats in Cyber Security.
Springer, 2010, pp. 173–195.

[15] A. Shaghaghi, M. A. Kaafar, S. Scott-Hayward, S. S. Kanhere, and
S. Jha, “Towards policy enforcement point as a service (peps),” in
Network Function Virtualization and Software Defined Networks (NFV-
SDN), IEEE Conference on. IEEE, 2016, pp. 50–55.

[16] D. D. Coleman, D. A. Westcott, B. E. Harkins, and S. M. Jackman,
“Certified wireless security professional official study guide,” 2010.

[17] E. Rissanen et al., “extensible access control markup language (xacml)
version 3.0,” OASIS standard, vol. 22, 2013.

[18] A. Lazouski, F. Martinelli, P. Mori, and A. Saracino, “Stateful data usage
control for android mobile devices,” International Journal of Information
Security, vol. 16, no. 4, pp. 345–369, 2017.

[19] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx: Detecting
security attacks in software-defined networks.” in NDSS, 2015.

[20] “MariaDB Foundation,” https://mariadb.org/ .
[21] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-

dramouli, “Proposed nist standard for role-based access control,” ACM
Transactions on Information and System Security (TISSEC), vol. 4, no. 3,
pp. 224–274, 2001.

[22] J. Park and R. Sandhu, “The ucon abc usage control model,” ACM
Transactions on Information and System Security (TISSEC), vol. 7, no. 1,
pp. 128–174, 2004.

[23] “Tcpreplay,” tcpreplay.synfin.net.
[24] “Route Views,” https://mariadb.org/ .
[25] “Monkeyrunner,” developer.android.com/studio/ test/monkeyrunner/ .
[26] E. Bertino and M. S. Kirkpatrick, “Location-based access control sys-

tems for mobile users: concepts and research directions,” in Proceedings
of the 4th ACM SIGSPATIAL International Workshop on Security and
Privacy in GIS and LBS. ACM, 2011, pp. 49–52.

[27] B. Shebaro, O. Oluwatimi, and E. Bertino, “Context-based access control
systems for mobile devices,” IEEE Transactions on Dependable and
Secure Computing, vol. 12, no. 2, pp. 150–163, 2015.

[28] M. B. Salem, S. Hershkop, and S. J. Stolfo, “A survey of insider attack
detection research,” in Insider Attack and Cyber Security. Springer,
2008, pp. 69–90.

[29] M. A. Maloof and G. D. Stephens, “Elicit: A system for detecting in-
siders who violate need-to-know,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2007, pp. 146–166.

https://mariadb.org/
tcpreplay.synfin.net
https://mariadb.org/
developer.android.com/studio/test/monkeyrunner/

	I Introduction
	II Background
	II-A Software-Defined Network (SDN)
	II-B Function-based Access Control (FBAC)
	II-C Insider Attack Phases

	III Threat Model
	IV Overview of Gargoyle
	V Gargoyle's Context Extraction
	VI Gargoyel's Access Control
	VII Implementation
	VIII Evaluation
	VIII-A Results Analysis

	IX Related Work 
	X Conclusion & Future Work
	References

